4

Antifungal Properties of Bioactive Compounds from Plants

F. Castillo1, D. Hernández1, G. Gallegos1, R. Rodríguez2 and C. N. Aguilar2 1Universidad Autónoma Agraria Antonio Narro 2Universidad Autónoma de Coahuila México

1. Introduction Currently, the consequences derived from application of fungicides in traditional agricultural production systems for control of crop diseases have impacted negatively this activity. Fungicides application, where the indiscriminate use and application frequency high has led to problems and constraints in the control of these diseases by loss in efficiency, increased resistance to active ingredients, ecological damage and a serious negative impact on the human health. For this reason, it is had carryed out research to develop new products, methods and strategies for diseases control. The investigation and development of bio-based products is of great interest to subtract the negative effects generated by traditional agricultural production systems. The use and application of bioactive phytochemicals with antifungal properties represent an attractive and efficient alternative to inhibit the growth of several fungal pathogens. These bioactive compounds are naturally produced in the plants how secondary metabolites, the principal groups with antifungal activity were terpenes, tannins, flavonoids, essential oil, alkaloids, lecithin and polypeptides. These groups of compounds are important for the physiology of plants contributing properties confer resistance against microorganisms, other organisms and help preserve the integrity of the plant with continuous exposure to environmental stressors, such as ultraviolet radiation, high temperatures or dehydration.

2. Bioactive antifungal activity groups 2.1 General Plants have developed natural defense mechanisms to protect themselves long before the man played an active role in protecting them. It is known that plants synthesize a variety of groups of bioactive compounds in plant tissues as secondary metabolites that have antifungal activity to stop or inhibit the development of mycelia growth, inhibition of germination or reduce sporulation of fungal pathogens, each these groups presented variable mechanisms of action, for example, the toxicity of polyphenols in microorganisms is attributed to enzyme inhibition by oxidation of compounds. For essential oils is

www.intechopen.com

82 Fungicides for Plant and Animal Diseases postulated that cause disruption of the membrane by the action of lipophilic compounds, the use or employment as formulations of these compounds is in the form of extracts. The process of extraction of secondary metabolites from plant extracts is variable, can be obtained as aqueous extracts or powders using different solvents used for many different compounds, depending on their polarity. It is considered that these compounds obtained from plants are biodegradable and safe for use as an alternative for disease control in a traditional production system (Sepulveda et al., 2003; Hernandez et al., 2007; Wilson et al., 1997; Bautista et al., 2002; Abou-Jawdah et al., 2002; Cowan, 1999). These substances known as secondary metabolites, secondary products, or natural products, have no generally recognized, direct roles in the processes of photosynthesis, respiration, solute transport, translocation, protein synthesis, nutrient assimilation, differentiation or metabolism processes as the formation of carbohydrates, proteins and lipids. That is, particular secondary metabolites are often found in only one plant species or related group of species, whereas primary metabolites are found throughout the plant kingdom. In function to classify to chemically groups the secondary metabolites can be divided into three groups: terpenes, phenolics and nitrogen- containing compounds. This classification is due by the interrelationship with primary metabolism Figure 1.

Fig. 1. A simplified view of the major pathways of secondary metabolites biosynthesis and their interrelationship with primary metabolism (Taiz & Zeiger, 2002)

2.2 Polyphenols Plant phenolics are a chemically heterogeneous group of nearly 10,000 individual compounds: Some are soluble only in organic solvents, some are water-soluble carboxylic acids and glycosides and others are large, insoluble polymers. Present a structure of various

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 83 groups replaced by hydroxyl functions benzene and its derivatives are simple phenolic compounds called phenylpropanoids (Figure 2). Allowing them to be highly soluble organic substances in water and are present in extracts of leaves, bark, wood, fruits and galls of certain ferns, gymnosperms and angiosperms (Swain, 1979). These polyphenols are important for the physiology of plants to contribute to resistance to microorganisms, insects and herbivorous animals that can affect (Haslam, 1996), help to preserve the integrity of the plant with continuous exposure to environmental stressors, including radiation ultraviolet, relatively high temperatures and dehydration (Lira et al., 2007). These polyphenol antioxidants are therefore active in biological systems and probably the capacity or biological value explains its abundance in plant tissues (Meckes et al., 2004).

Fig. 2. Outline of the biosynthesis of phenols from phenylalanine. The formation of many plant phenolics, including simple phenylpropanoids, coumarins, benzoic acid derivatives, lignans, anthocyanins, isoflavones, condensed tannins and other flavonoides, begins with phenylalanine (Taiz & Zeiger, 2002)

www.intechopen.com

84 Fungicides for Plant and Animal Diseases

2.2.1 Hydrolysable tannins (HT) Are organic compounds, amorphous, taste astringent, weakly acidic, most soluble in water, only a few in organic solvents are yellow, red, or brown and are located in the cytoplasm and cell vacuole of plant tissues. Esters of glucose are partially or fully attached to different polyols such as ellagic acid, say, m-digallic, hexahydroxydiphenic acid or its derivatives (Figure 3). Obtained by hydrolysis with acids, bases and hydrolytic enzymes to break the glycosidic bond to liberate the sugar and phenolic compounds in it. (Gonzalez et al., 2009).

Fig. 3. Hydrolysable tannins and some of its derivatives: A) gallotannins, B) ellagitannins. C) ellagic acid, D) hydroxyphenolic acid, E) gallic acid

The hydrolysable tannins are divided into the following subgroups: The gallotannins, which by enzymatic hydrolysis give more sugar and gallic acid of phenolic compounds that comprise it (Figure 4) and ellagitannins, which give ellagic acid enzymatic hydrolysis more sugar or a derivative as hexahydrophenic acid (Figure 4).

Fig. 4. Chemical structure of a gallotannins

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 85

2.2.2 Condensed tannins (CT) Also called proanthocyanidins (PAS), are derived from the oxidation reaction that produces anthocyanidins (ACS) red in acid-alcohol solution (Figure 5). Are polymers of flavan 3-ol (catechin) and 3-4 flavan diol (leucoanthocyanidins) and have no sugar residues and their carbohydrate content is low or negligible. Are polymers of high molecular weight (1000 to 3000 Daltons), which gives them a relative immobility. Its complexity and easy to form bonds with proteins make them difficult to study. Condensed tannins include flavonoids, which in turn are subdivided into anthocyanidins and leucoanthocyanidins and catechin (Makkar et al., 2007; Taiz & Zeiger, 2002).

Fig. 5. Condensed tannins or proanthocyanidins

The substituents in the groups R1, R2 and R3, can have an effect on the reactivity of tannin (Figure 6). The group R2 is an OH radical can sometimes be esterified gallic acid (known as Gallo-catechin). For example an increase in the ratio prodelphynidins/procyanidins enhance the ability of condensed tannins to complex proteins.

R1 R3 Class OH H Proanthocyanidin OH OH Prodelphynidin H H Profisetinidin H OH Prorobinetinidin

Fig. 6. Structure of some condensed tannins

Hydroxyl groups allow the formation of complexes with proteins, metal ions and other molecules such as polysaccharides. In general, polyphenols identified and grouped according to their basic result is a chain of six carbons (Table 1).

www.intechopen.com

86 Fungicides for Plant and Animal Diseases

Atoms number Basic carbon skeleton Compounds

6 C6 Simple Phenols and Benzoquinones

7 C6 - C1 Phenolic acids

8 C6 - C2 Acetofenons and fenilacetonics acids

9 C6 - C3 hidroxicinamics Acids, fenilpropanoids

10 C6 - C4 Naftoquinones

13 C6 - C1- C6 Xantones

14 C6 - C2- C6 Estilbens and anthraquinones

15 C6 - C3- C6 Flavonoids and isoflavonoids

18 (C6 - C3)2 Lignans and neolingnans 30 Biflavonoids

N (C6 - C3)n Lignins, Catecol Melanins and flavolans (C ) (C -C - C ) 6 6 6 3 6 n Table 1. Classification of phenolics compounds in carbons atoms to base number (Garcia, 2004)

2.3 Terpenes The terpenoids, constitute the largest class of secondary products, the diverse substances of this class are generally insoluble in water. The terpenes are biosynthesized from primary metabolites by at least two different routes, a route mevalonic acid, where three molecules of acetyl CoA is condensed step by step to form mevalonic acid. This six-carbon molecule is pirofosforilada and dehydrated to form isopentyl diphosphate and this is the basic unit of the terpenes active, the other route is called route metileritritol phosphate that functions in chloroplasts and other plastids. All terpenes are derived from the union of five-carbon elements that have the branched carbon skeleton of isopentane:

The basic structural elements of terpenes are sometimes called isoprene units because terpenes can decompose at high temperatures to give isoprene:

The terpenes or isoprenoids are classified by the number of five-carbon units they contain, example: Ten-carbon terpenes, which contain two C5 units, are called monoterpenes; 15- carbon terpenes (three C5 units) are sesquiterpenes; and 20-carbon terpenes (four C5 units) are diterpenes. Larger terpenes include triterpenes (30 carbons), tetraterpenes (40 carbons) and polyterpenoids ([C5] n carbons, where n > 8) (Taiz and Zeiger, 2002).

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 87

2.4 Nitrogenous compounds A large variety of plant secondary metabolites have nitrogen in their structure. Included in this category are such well-known anti-defenses as alkaloids, amines, cyanogenic glycosides, non-protein amino acids, glucosinolates, alkamides and peptides (Wink & Schimmer, 2010). Most nitrogenous secondary metabolites are biosynthesized from common amino acids.

2.5 Plants with antifungal properties It´s has studied the secondary metabolites present in various plant species, one to identify its presence, chemical structure and effect on the plant and on other organisms, so that the number of Identified Substances exceed to 100 000 at present (Wink and Schimmer, 2010) in table 2 shows a relationship of phenolic compounds in other organisms different to the plants with presence of these compounds.

Phylum Structural patrons Phenols from polyketides and quinones (occasionally Bacteria present) Simple phenols, phenylpropanoids, quinones (usually Fungi present) Oidados and brominated phenols, phloroglucinol Algae derivatives from cell wall Lichens Anthraquinones, xanthones and depsidones Phenols in the cell wall, phenylpropanoids, stilbenes and Bryophytes some flavonoids Ferns, conifers and Lignin in the cell wall and wide range of phenols of all flowering plants kinds Table 2. Distribution of polyphenols compounds on different phylum’s in comparative to Plant phylum (Garcia, 2004, as cited in Harborne, 1990)

The number of plant species containing one or more of the major groups of compounds with anti-fungal activity is very diverse (Glasby, 1991), in Table 3 lists some of the studied plant with antifungal effect.

Specie Compounds Identifying Reference Simmondsia chinensis Glucosides Abbassy et al., 2007 Thymus zygis subsp. Carvacrol Gonçalves et al., 2010 sylvestris, Camphor , 1,8-cineole, piperitone , A. gypsicola and A. borneol and -terpineol, n-eicosane , Kordali et al., 2009 biebersteinii n-heneicosane , n-tricosane, linoleic acid lignans, methyl-nordihydroguaiaretic Vargas-Arispuro et al., Larrea tridentata acid and nordihydroguaiaretic acid 2005

www.intechopen.com

88 Fungicides for Plant and Animal Diseases

Specie Compounds Identifying Reference Stuardo & Sn Martin, Chenopodium quinoa triterpenoid saponins 2008 Jasso de Rodríguez et Aloe vera Crude extracts al., 2005 Drimys winteri essential oil Monsálvez et al., 2010, Pimenta dioica Essential oils Zabka et al., 2009. Roy & Chatterjee, Catharanthus roseus 5-hydroxy flavones 2010 Larrea tridentata, Flourensia cernua, Agave Condensed and hidrolizables Castillo et al., 2010, lechuguilla, Opuntia sp. Tannins and Yucca sp. Flourensia microphylla, Flourensia cernua Jasso de Rodríguez et Crude extracts and Flourensia al., 2007 retinophylla Salvia officinalis essential oil Pinto et al., 2007 Carya illinoensis shells polyphenolic extracts Osorio et al., 2010 and Punica granatum Bulnesia sarmientoi bulnesol, hanamyol Rodilla et al., 2011 Veloz-García et al., Caesalpinia cacalaco gallic and tannic acids 2010 essential oils Osei-Safo et al., 2010 2-undecanone, 2-decanone and 2- Ruta chalepensis Mejri et al., 2010 dodecanone Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, crude plant Mahlo et al., 2010 Vangueria infausta and Xylotheca kraussiana Agapanthus africanus Crude extracts Tegegne et al., 2008 Reynoutria sachalinensis Pasini et al., 1997 1.8-cineole, linalool, terpineol acetate, methyl eugenol, linalyl acetate, Laurus nobilis Corato et al., 2010 eugenol, sabinene, -pinene, - terpineol. methyleugenol, eucarvone, 5-allyl- Asarum heterotropoides 1,2,3-trimethoxybenzene and 3,7,7- Dan et al., 2010 var. mandshuricum trimethylbicyclo(4.1.0)hept-3-ene Choi et al., 2004; Rumex crispus chrysophanol, parietin and nepodin Gyung et al., 2004

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 89

Specie Compounds Identifying Reference Astronium fraxinifolium, Inga marginata, Malva sylvestris, Matayba elaeagnoides, Miconia argyrophylla, Myrcia fallax, Ocimum Crude extracts Andrade et al., 2010 gratissimum, Origanum vulgare, Rollinia emarginata, Siparuna arianeae, Styrax pohlii, Tabebuia serratifolia and Trichilia pallid Eugenol, piperine, piperlongumine Piper longum Lee et al., 2001 and piperettine) Enzymes, peroxidase, ┚-1,3-glucanase Datura metel Devaiah et al., 2009 and chitinase Calotropis procera, Nerium oleander, Eugenia jambolana, Citrullus colocynthis, Ambrosia maritima, Abdel-Monaim et al., Crude extracts Acacia nilotica and 2011 Ocimum basilicum and fruit extracts of C. colocynthis, C. procera and E. jambolana Robinia pseudoacacia Crude extracts Zhang et al., 2008 Cassia sp cassia oil Feng et al., 2008 Konstantinidou- Reynoutria sachalinensis Crude extracts Doltsinis and Schmit, 1998 -pinene, allo-aromadendrene, germacrene-D, n-octane, -selinene Hypericum perfoliatum and -selinene. and Hypericum Hosni et al., 2008 Menthone, n-octane, - tomentosum caryophyllene, -pinene, lauric acid and -pinene -pinene, caryophyllene oxide, - Metasequoia thujene, bornylene, totarol, - Bajpai et al., 2007 glyptostroboides caryophyllene, -3-carene, 2--pinene and -humulene. Aegle marmelos essential oil Pattnaik et al., 1996 Allium sativum essential oil Pyun and Shin 2006 Economou & Bystropogon plumosus essential oil Nahrstedt, 1991 Citrus aurantium essential oil Pattnaik et al., 1996 Cryptomeria japonica essential oil Cheng et al., 2005 Cymbopogonflexuosus essential oil Pattnaik et al., 1996 Cymbopogon martini essential oil Pattnaik et al., 1996

www.intechopen.com

90 Fungicides for Plant and Animal Diseases

Specie Compounds Identifying Reference Eucalyptus citriodora essential oil Pattnaik et al., 1996 Melaleuca alternifolia essential oil Nenoff et al., 1996 Mentha piperita essential oil Pattnaik et al., 1996 Pelargonium graveolens essential oil Pattnaik et al., (1996 Pimpinella anisum essential oil Kosalec et al., (2005 Piper angustifolium essential oil Tirillini et al., 1996 Salvia officinalis essential oil Hili et al., 1997 Salvia sclarea essential oil Pitarokili et al., 2002 Tagetes patula essential oil Romagnoli et al., 2005 Thymbra capitata essential oil Salgueiro et al., 2004 Thymus pulegioides essential oil Pinto et al., 2006 Lavandula angustifolia essential oil D’Auria et al., 2005 Dictamnus dasycarpus Dictamnine Zhao et al., 1998 9-Angeloylretronecine, Heliotrine, Heliotropium bursiferum Marquina et al., 1989 Lasiocarpine, Supinine Baumgartner et al., Ficus septic Antofine, Ficuseptine 1990 Illukumbin B, Methylillukumbin B, Greger et al., 1992, Glycosmis cyanocarpa Methylillukumbin A, N- 1993 Methylsinharine, Sinharine Hexanal, E-2-Hexanal, E-2-Heptanal, Olea europaea Battinelli et al., 2006 Nonanal and E-2-Octenal Cochlospermum Cochloxanthin, Diallo et al., 1991 tinctorium Dihydrocochloxanthin Eupatorium riparium Methylripariochromene A Bandara et al., 1992 Angelicin, Bergapten, Apium graveolens Afek et al., 1995 Columbianetin, Xanthotoxin 3´_-Formyl-2´_,4´_,6´_- Wedelia biflora Miles et al., 1991 trihydroxydihydrochalcone Scutellaria spp Clerodin, Jodrellin A, Jodrellin B Cole et al., 1991 Hardwickic acid, 3,4- McChesney & Clark, Croton sonderianus Secotrachylobanoic acid 1991 Gomphrena martiana 5-Hydoxy-3-methoxy-6,7- and Gomphrena Pomilio et al., (1992 methylenedioxyflavone boliviana 3,5,6,7,8-Pentamethoxyflavone, 3,5,6,7-Tetramethoxyflavone, 5,6,7,8- Tomas-Barberan et al., H. nitens Tetramethoxyflavone, 1988 Dimethylchrysin, Trimethylgalangin Van Puyvelde et al., H. odoratissimum 3-O-Methylquercetin 1989 veratrylidenehydrazide, 3,3′-di-O-methylquercetin, Wedelia biflora 2,7-dihydroxy-3(3t'-methoxy-4′- Miles et al., 1993 hydroxy)-5-methoxyisoflavone and 3′,7-di-O-methylquercetin 4′-O- Podophyllum hexandrum demethyldehydropodophyllotoxin Rahman et al., 1995 and picropodophyllone

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 91

Specie Compounds Identifying Reference Piper angustifolium Camphene Tirillini et al., 1996 Cistus incanus subsp. Geraniol Chinou et al., 1994 creticus Bystropogon plumosus, B. origanifolius var. palmensis, B. wildpretii, Economou & Pulegone B. maderensis and B. Nahrstedt, 1991; canariensis var. smithianus Zingiber officinale Gingerenone A Endo et al., 1990 Coleonema pulchellum Precolpuchol Brader et al., 1997 8-oxo-Argentone, 8-oxo-15-nor- P. argentatum × P. Argentone, 15-Hydroxyargentone, Maatooq et al., 1996 tomentosa Argentone and 15-nor-Argentone Bidens cernua Cernuol Smirnov et al., 1998 BR-xanthone A, Garcinone D, Gopalakrishnan et al., Garcinia mangostana Gartanin, Mangostin, -Mangostin 1997 (E)-3-Chloro-4-stilbenol, (E)-3,5- Dimethoxy-4- stilbenol, (E)-3,5- Dimethoxystilbene, (E)-3-Methoxy-4- stilbenol, (Z)-4-Methoxy-3-stilbenol, Schultz et al., 1992 (E)-5-Methoxy-3-stilbenol, (E)-4- Stilbenol, (E)-3-Stilbenol, (Z)-3- Stilbenol, (E)-3,4-Stilbenediol, (E)-3,5- Stilbenediol Geraniol, Linalool, 1,8-Cineole, Pattnaik et al., 1997 Citral Isolimonene, Isopulegol, Carvone Naigre et al., 1996 5,7-Dihydroxy-4-hydroxyisoflavan, 6,7-Dihydroxy-4_-methoxyisoflavan, Weidenborner et al.,

5,7-Dihydroxy-4_-methoxyisoflavan, 1990 Biochanin A Carvacrol, p-Cymene and - Thymus pulegioides Pinto et al., 2006 Terpinene 8-Acetylheterophyllisine, Panicutin, Rahman et al., 1997 Vilmorrianone Chakraborty et al., Clausenal 1995 Quetin-Leclercq et al., Harman, Harmine, Norharman 1995 Isopsychotridine E, Hodgkinsine A, Quadrigemine C, Quadrigemine H, Calycodendron milnei Saad et al., 1995 Psychotridine E, Vatine, Vatine A, Vatamine, Vatamidine,

www.intechopen.com

92 Fungicides for Plant and Animal Diseases

Specie Compounds Identifying Reference Dehatrine, Actinodaphnine, Anhydroushinsunine, Methoiodide, Tsai et al., 1989 N-Methylactinodaphnine Tsai et al., 1989; Anonaine Simeon et al., 1990 Lanuginosine, Lysicamine Simeon et al., 1990 Berberine Okunade et al., 1994 Alkaloids 3-Methoxysampangine Liu et al., 1990 Steroidal alkaloids Fewell & Roddick, ┙-Chaconine, ┙-Solanine 1993 Polygodial Lee et al., 1999 Table 3. Chemical compounds identified with antifungal properties derived from species plants

2.6 Effect of compounds in inhibiting mycelia fungi The most compounds have varied effects on the development of mycelia growth of fungi and the effect on sporulation rate and inhibition of germination ranging from a fungistatic effect to complete inhibition. The answer depends on the arrest of compounds derived from extracts of the species and to inhibit . Table 4 shows the sensitivity of plant pathogen fungi to bioactive coumponds from plants.

Fungicidal Plant Specie Plant pathogen activity References concentrations Achillea gypsicola and Fusarium equiseti and F. Kordali et al., 2009 A. biebersteinii graminearum Pythium ultimum, F. oxysporum, Agapanthus africanus Alternaria alternata, Tegegne et al., 2008 Mycosphaerella pinodes and Ascochyta Rhizoctonia solani, F. oxysporum Jasso de Rodríguez Aloe vera 105 μl L−1 and Colletotrichum et al., 2005 coccodes Alternaria humicola, Colletotrichum gloeosporioides, Asarum heterotropoides Rhizoctonia solani, <0.42 μg mL−1 Dan et al., 2010 var. mandshuricum Phytophthora cactorum and Fusarium solani

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 93

Fungicidal Plant Specie Plant pathogen activity References concentrations Astronium fraxinifolium, Inga marginata, Malva sylvestris, Matayba elaeagnoides, Miconia argyrophylla, Myrcia inhibition of fallax, Ocimum Colletotrichum conidial Andrade et al., 2010 gratissimum, Origanum lindemuthianum germination vulgare, Rollinia emarginata, Siparuna arianeae, Styrax pohlii, Tabebuia serratifolia and Trichilia pallida niger, Bucida buceras, Aspergillus parasiticus, Breonadia salicina, Colletotricum Harpephyllum caffrum, gloeosporioides, 0.02-0.08 mg Mahlo et al., 2010 Olinia ventosa, Penicillium janthinellum, mL−1 Vangueria infausta and Penicillium expansum, Xylotheca kraussiana Trichoderma harzianum and Fusarium oxysporum Pythium sp., Colletotrichum truncatum, Colletotrichum coccodes, Carya illinoensis shells Alternaria alternata, 0.2 mgL−1 Osorio et al., 2010 and Punica granatum Fusarium verticillioides, Fusarium solani, Fusarium sambucinum and Rhizoctonia solani Cassia sp. Alternaria alternate 500 μl L−1 Feng et al., 2008 5 mg saponins ml−1, 100% of Chenopodium quinoa Botrytis cinerea conidial Stuardo et al., 2008 germination inhibition Gaeumannomyces Monsálvez et al., Drimys winteri 932- 30.37mg L−1 graminis var tritici 2010, Flourensia microphylla, Alternaria sp., Jasso de Flourensia cernua and Rhizoctonia solani and 10 to 1500μl L−1 Rodríguez et al., Flourensia retinophylla Fusarium oxysporum 2007 Larrea tridentata, Flourensia cernua, 2000 ppm of Agave lechuguilla, Rhizoctonia solani totals Castillo et al., 2010, Opuntia sp. and Yucca polyphenols sp.,

www.intechopen.com

94 Fungicides for Plant and Animal Diseases

Fungicidal Plant Specie Plant pathogen activity References concentrations Aspergillus flavus and 300-500 μg mL−1 Vargas-Arispuro et Larrea tridentata Aspergillus parasiticus of NDGA al., 2005 Botrytis cinerea, Monilinia 1, 2 and 3 mg Laurus nobilis laxa and Penicillium Corato et al.,, 2010 mL−1 digitatum Fusarium oxysporum, Inhibition range Fusarium solani, of 49–70% and Sclerotonia sclerotiorum, minimum Metasequoia Rhizoctonia solani, inhibitory Bajpai et al., 2007 glyptostroboides Colletotricum capsici, concentration Botrytis cinerea and ranging from 500 Phytophthora capsici, to 1000 μg mL−1. Pyricularia oryzae, Rhizoctonia solani, Botrytis cineria, Piper longum 1mg mL−1 Lee et al., 2001 Phytophthora infestans, Puccinia recondite and Erysiphe graminis Pasini et al., 1997; Sphaerotheca pannosa var. Konstantinidou- Reynoutria sachalinensis rosae Doltsinis & Schmit, 1998 Robinia pseudoacacia Sphaerotheca fuliginea, 80 mg mL−1 Zhang et al., 2008 Blumeria graminis f. sp. Rumex crispus 30 μg mL−1 Choi et al., 2004 hordei Penicillium, Aspergillus, Salvia officinalis Cladosporium and 0.63 μl ml−1 Pinto et al., 2007 Fusarium Thymus zygis subsp. 0.08- 0.16 μL Gonçalves et al., Aspergillus strains sylvestris mL−1 2010 Rhizoctonia solani, Collectotrichum MIC(50) values Cryptomeria japonica gloeosporioides, Fusarium of 65, 80, 80 and Cheng et al., 2005 solani and Ganoderma 110 mg mL−1 australe Candida albicans and Melaleuca alternifolia 500–6000 Nenoff et al., 1996 Candida sp. Trichophyton rubrum, T. mentagrophytes, MIC to 1.5 and Pimpinella anisum Kosalec et al., 2005 Microsporum canis and 9.0% (V/V). M. gypseum Candida albicans, Cryptococcus neoformans, Piper angustifolium 10–100 Tirillini et al., 1996 Aspergillus flavus, Aspergillus fumigatus,

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 95

Fungicidal Plant Specie Plant pathogen activity References concentrations Torulopsis utilis, Schizosaccharomyces Salvia officinalis pombe, Candida albicans Hili et al., 1997 and Saccharomyces cerevisiae EC50: 493–584 μL Pitarokili et al., Salvia sclarea Soil-borne pathogens L−1 2002 Penicillium digitatum and 1.25–10.0 μL Romagnoli et al., Tagetes patula Botrytis cinerea mL−1 2005 Candida sp., Aspergillus 0.08–0.32 μL Salgueiro et al., Thymbra capitata sp mL−1 2004 Candida, Aspergillus and 0.16–0.64 μL Thymus pulegioides Pinto et al., 2006 dermatophyte species mL−1 Lavandula angustifolia Candida albicans 0.69% D’Auria et al., 2005 Candida albicans, 3-Methoxysampangine Aspergillus fumigatus and 0.2–3.1 Liu et al., 1990 Cryptococcus neoformans Steroidal alkaloids Ascobolus crenulatus, Alternaria brassicicola, Fewell & Roddick ┙-Chaconine 60–100 μM Phoma medicaginis and 1993 Rhizoctonia solani Ascobolus crenulatus, Alternaria brassicicola, Fewell & Roddick ┙-Solanine 80–100 μM Phoma medicaginis and 1993 Rhizoctonia solani Cladosporium Dictamnus dasycarpus 25 Zhao et al., 1998 cucumerinum Tricophyton mentagrophytes, Battinelli et al., Olea europaea 1.9 -250 Microsporum canis and 2006 Candida spp Colletotrichum Eupatorium riparium Bandara et al., 1992 gloeosporioides Rhizoctonia solani; Wedelia biflora Miles et al., 1991 Pythium ultimum; Fusarium oxysporum f. Scutellaria spp sp. lycopersici and Cole et al., 1991 Verticillium tricorpus Rhizoctonia solani; Wedelia biflora Miles et al., 1993 Pythium ultimum; Epidermophyton Podophyllum hexandrum floccosum, Curvularia Rahman et al., 1995 lunata, Nigrospora oryzae,

www.intechopen.com

96 Fungicides for Plant and Animal Diseases

Fungicidal Plant Specie Plant pathogen activity References concentrations Microsporum canis, Allescheria boydii and Pleurotus ostreatus, Drechslera rostrata Candida albicans, 1.0–5.0 mM; Piper angustifolium Aspergillus flavus, 0.016–0.13% of Tirillini et al., 1996 Aspergillus fumigatus oil; Cistus incanus subsp. Candida albicans 125–375 Chinou et al., 1996 creticus 1.25–20.0 μL Thymus pulegioides Candida, Aspergillus Pinto et al., 2006 mL−1 Zingiber officinale Pyricularia oryzae 10.0 ppm Endo et al., 1990 Coleonema pulchellum Cladosporium herbarum Brader et al., 1997 Parthenium argentatum Aspergillus fumigatus and 0.25 mg mL−1 Maatooq et al., 1996 × P. tomentosa A. niger 1.0 mg mL−1 Fusarium oxysporum vasinfectum, Alternaria Gopalakrishnan et Garcinia mangostana tenuis and Drechslera al., 1997 oryzae Aspergillus repens; A. Weidenb¨orner et amstelodami; A. chevalieri; al., 1990a, b A. flavus; A. petrakii; Coriolus versicolor, Gloeophyllum trabeum 8-140 Schultz et al., 1992 and Poria placenta Aspergillus niger 0.78–100 μL mL−1 Naigre et al., 1996 Candida albicans, Trichophyton mentagrophytes, T. ruburum, Penicillium 0.78–100.0 Lee et al., 1999 marneffei, Aspergillus fumigatus, A. flavus, P. chrysogenum, C. lipolytica and C. tropicalis Cymbopogonflexuosus 0.16–11.6 Pattnaik et al., 1996 Cymbopogon martini 0.5–8.3 Pattnaik et al., 1996 Eucalyptus citriodora 0.16–10.0 Pattnaik et al., 1996 Bidens cernua 5.0–200 Smirnov et al., 1998 Gomphrena martiana 75 Pomilio et al., 1992 and G. boliviana

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 97

Fungicidal Plant Specie Plant pathogen activity References concentrations Tomas-Barberan et Helichrysum nitens 1- 20 μg al., 1988 Pyun and Shin Allium sativum 64 2006 Psidium acutangulum Miles et al., 1993 McChesney & Croton sonderianus Clark, 1991 Bystropogon plumosus, B. origanifolius var. Economou & palmensis, B. wildpretii, Nahrstedt, 1991; 0.4–85.0% of oil B. maderensis and B. Kalodera et al., canariensis var. 1994 Smithianus Mentha piperita 0.27–10.0 Pattnaik et al., 1996 Pelargonium graveolens Pattnaik et al., 1996 Table 4. Bioactive compounds from plants on fungal species.

2.7 Commercial use of natural fungicides Currently, the commercial use of natural fungicides on the market is low, the 5th Annual Meeting of the biological control industry (Loison, 2010) reports a total of 55 biological fungicides registered in the U.S. market and in the EU the registered biopesticides are much fewer: 21 fungicides for be used in Pome fruit, vines and tomato (Table 5).

Commercial name Active Ingradient Company Plant pathogen Bioflavonoid of BC 1000 TM Seed extracts and Chemie S.A. Botritys cinérea orange pulp Ascochyta, Pullullaria, Fusarium, Cercospora, Botrytis, Septoria, Alternaria, Seed extracts and Bio save TM Bioland SA Stemphylium, orange pulp Rhizoctonia, Peronospora, Pythium, Penicilium, Sigatoka, Aspergillus. Plant and mineral Agrispon TM Agric. Sci Dallas Cercospora beticola extacts. Sincocin TM Plant extracts Agric. Sci Dallas Cercospora beticola

www.intechopen.com

98 Fungicides for Plant and Animal Diseases

Commercial name Active Ingradient Company Plant pathogen Plant extracts of Timorex Gold Stockton Group Mycosphaerella fijiensis Melalueca alternifolia Aashab bio Evergreen TM Plant extracts industries Organozoid and Trichophyton Gloves Off TM Thymol, Carvacrol Such mentagrophytes Garden Fungicide Rosemary, thyme EcoSmart TM and clove oil Pongamia and Tulsi S. K. Bio Extracts Root rot, Dammping Eco Safe TM oil, Recines & Applications off, Steam rot, leaf spot communis fungal diseases in all S. K. Bio Extracts field crops, Gloss TM Natural Alkaloids & Applications vegetables and horticultural crops Table 5. Some commercial product in the market with active ingredients from plants

3. Conclusions The plant extracts applied in as crude state or as a fraction affect the development of fungal colonies to inhibit partially and totally in laboratory tests at low concentrations of bioactive compounds, besides affecting the incedencia and severity when applied as a treatment to increase the shelf life of products with excellent results. However, more research is needed to determine its effect on molecular changes, morphological and biochemical these compounds cause the pathogen and host.

4. References Abbassy, M.A., Abdelgaleil, S.A.M., Belal, A.S.H. & Abdel, R.M.A.A. (2007). Insecticidal, antifeedant and antifungal activities of two glucosides isolated from the seeds of Simmondsia chinensis, Industrial Crops and Products, Vol. 26, No. 3, (Octuber, 2007), pp. (345-350), ISSN: 0926-6690 Abdel-Monaim, M.F., Abo-Elyousr, K.A.M. & Morsy, K.M.. (2011). Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Protection, Vol. 30, No. 2, (Febrary 2011), pp. (185-191), ISSN: 0261- 2194 Abou-Jawdah, Y., Sobh, H. & Salameh A. (2002) Antymicotic activities of selected plant flora, growing wild in Lebanon, against phytopathogenic fungi, Journal of Agricultural and Food Chemistry, Vol. 50, No. 11, (May 2002), pp. (3208-3213), ISSN: 0021-8561 Afek, U., Carmeli, S. & Aharoni, N. (1995) Columbianetin, a phytoalexin associated with celery resistance to pathogens during storage, Phytochemistry, Vol. 39, No. 6, (Augost, 1995), pp. (1347–1350), ISSN: 0031-9422

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 99

Andrade, P.J.M., Aparecida, S.E. & Ferreira. O. D. (2010). Use of plant extracts in the control of common bean anthracnose. Crop Protection, Vol. 29, No. 8, (Augost, 2010), pp. (838-842), ISSN: 0261-2194 Bajpai, V.K., Rahman, A. & Kang, S.Ch. 2007. Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Miki ex Hu, Industrial Crops and Products, Vol. 26, No. 1, (January, 2007), pp. (28-35), ISSN: 0926-6690 Bandara, B.M., Hewage, C.M., Karunaratne, V., Wannigama, C.P. & Adikaram, N.K. (1992). An antifungal chromene from Eupatorium riparium, Phytochemistry, Vol. 31, No. 6, (June, 1992), pp. (1983–1985), ISSN: 0031-9422 Battinelli, L., Daniele, C., Cristiani, M., Bisignano, G., Saija, A. & Mazzanti, G. (2006). In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Oleaeuropaea L. fruit. Phytomedicine, Vol. 13, No. 8, (September, 2006), pp. (558–563), ISSN: 0944- 7113 Baumgartner, B., Erdelmeier, C.A., Wright, A.D., Ralli, T. & Sticher, O. (1990) An antimicrobial alkaloid from Ficus septica. Phytochemistry, Vol. 29, No. 10, (Octuber, 1990), pp. (3327–3330), ISSN: 0031-9422 Bautista, S.L., Barrera, N.L., Bravo, L.K. & Bermúdez, T. (2002). Antifungal activity of leaf and stem extracts from various plant species on the incidente of Colletotrichum gloeosporioides of papaya and mango fruits after storage, Rev. Mex. Fitopatol. Vol. 20, No. 1, (June, 2002), pp. (8-12), ISSN: 0185- 3309 Brader, G., Bacher, M., Hofer, O. & Greger, H. (1997) Prenylated phenylpropenes from Coleonema pulchellum with antimicrobial activity. Phytochemistry, Vol. 45, No. 6, (Jul, 1997), pp. (1207–1212), ISSN: 0031-9422 Castillo, F., Hernández, D., Gallegos, G., Méndez, M., Rodríguez, R., Reyes A. &. Aguilar, C.N. (2010). In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn, Industrial Crops and Products, Vol. 32, No. 3, (June 2010), pp. (324–328), ISSN 0926-6690 Chakraborty, A., Saba, C., Podder, G., Chowdhury, B.K. and Bhattacharyya, P. (1995) Carbazole alkaloid with antimicrobial activity from Clausena heptaphylla. Phytochemistry, Vol. 38, No. 3, (Febrary, 1995), pp. (787–789), ISSN: 0031-9422 Cheng, S.S., Lin, H.Y. & Chang, S.T. (2005). Chemical composition and antifungal activity of essential oils from different tissue of Japanese Cedar (Cryptomeria japonica), Journal of Agricultural and Food Chemistry, , Vol. 53, No. 3, (February, 2005), pp. (614–9), ISSN: 0021-8561 Chinou, I., Demetzos, C., Harvala, C., Roussakis, C. & Verbist, J.F. (1994). Cytotoxic and antibacterial labdane-type diterpenes from the aerial parts of Cistus incanus subsp. creticus, Planta Medica, Vol. 60, No. 1, (Febrary, 1994), pp. (34–6), ISSN: 0032-0943 Choi, G.J., Lee, S.W., Jang, K.S., Kim, J.S., Cho, K.Y. & Kim, J.Ch. (2004). Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews, Crop Protection, Vol. 23, No. 12, (December. 2004), pp. (1215- 1221), ISSN: 0261-2194 Cole, M.D., Bridge, P.D., Dellar, J.E., Fellows, L.E., Cornish, M.C. & Anderson, J.C. (1991) Antifungal activity of neo-clerodane diterpenoids from Scutellaria, Phytochemistry, Vol. 30, No. 4, (March, 1991), pp. (1125–1127), ISSN: 0031-9422

www.intechopen.com

100 Fungicides for Plant and Animal Diseases

Corato, U., Maccioni, O., Trupo, M., & Di Sanzo G. (2010). Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi, Crop Protection, Vol. 29, No. 2, (Febrary, 2010), pp. (142-147), ISSN: 0261-2194 Cowan, M. M. (1999). Plant products as antimicrobial agents, Clinical Microbiology Review, Vol. 12, No. 4, (October 1999), pp. (564-582), ISSN: 1098-6618 D’Auria, F.D., Tecca, M., Strippoli, V., Salvatore, G., Battinelli, L. & Mazzanti, G. (2005) Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form, Med. Mycol., Vol. 43, No. 5, (Augost, 2005), pp. (391–396), ISSN: 1369-3786 Dan, Y., Hai-Yan, L., Wei-Wei, G. & Shi-Lin, Ch. (2010). Activities of essential oils from Asarum heterotropoides var. mandshuricum against five phytopathogens, Crop Protection, Vol. 29, No. 3, (March, 2010), pp. (295-299), ISSN: 0261-2194 Devaiah, S.P., Mahadevappa, G.H. & Shetty, H.S. (2009). Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract, Crop Protection, Vol. 28, No. 9, (September, 2009), pp. (783-791), ISSN: 0261-2194 Diallo, B., Vanhaelen-Fastre, R. & Vanhaelen, M. (1991) Antimicrobial activity of two apocarotenoids isolated from Cochlospermum tinctorium rhizome, Fitoterapia, Vol. 62, No. 2, pp. (144–145), ISSN: 0367-326X Economou, D. & Nahrstedt, A. (1991) Chemical, physiological and toxicological aspects of the essential oil of some species of the genus Bystropogon, Planta Medica, Vol. 57, No. 4, pp. (347–51), ISSN: 0032-0943 Endo, K., Kanno, E. & Oshima, Y. (1990) Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizome of Zingiberofficinale, Phytochemistry, Vol. 29, No. 3, pp. (797–799), ISSN: 0031-9422 Feng, W., Zheng, X., Chen, J. & Yang, Y. (2008). Combination of cassia oil with magnesium sulphate for control of postharvest storage rots of cherry tomatoes, Crop Protection, Vol. 27, No. 1, (January, 2008), pp. (112-117), ISSN: 0261-2194 Fewell, A.M. & Roddick, J.G. (1993). Interactive antifungal activity of the glycoalkaloids, asolanine and _-chaconine, Phytochemistry, Vol. 33, No. 2, (May, 1993), pp. (323– 328), ISSN: 0031-9422 García, D.E. (2004). Los metabolitos secundarios de las especies vegetales, Pastos y Forrajes, Vol. 27, No. 1, (), pp. (1-12), ISSN: ISSN 0864-0394 Glasby, J.S. (1991). Dictionary of Plants Secondary Metabolites Containing, Taylor & Francis (Eds) e-Library, 2005. 1644 p. ISBN 0-203-48987-X Master e-book. Gonçalves, M.J., Cruz, M.T., Cavaleiro, C., Lopes, M.C. & Salgueiro, L. (2010). Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris, Industrial Crops and Products, Vol. 32, No. 1, (July, 2010), pp. (70-75), ISSN: 0926-6690 González G E, Rodríguez H R & Aguilar G C N. (2009). Biodegradación de Taninos. Cienciacierta, 17. www.postgradoeinvestigacion.uadec.mx/CienciaCierta/CC17/cc17taninos.html Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives,

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 101

Journal of Natutal Products, Vol. 60, No. 5, (Mayo, 1997), pp. (519–524), ISSN: 0163- 3864 Greger, H., Hofer, O., K¨ahlig, H. & Wurz, G. (1992). Sulfur-containing cinnamides with antifungal activity from Glycosmis cyanocarpa, Tetrahedron, Vol. 48, No. 7, pp. (1209– 1218), ISSN: 0040-4020 Greger, H., Zechner, G., Hadacek, F. & Wurz, G. (1993). Sulphur-containing amides from Glycosmis species with different antifungal activity, Phytochemistry, Vol. 34, No. , (), pp. (175–9), ISSN: 0031-9422 Gyung, J. Ch., Seon-Woo L., Kyoung S. J., Jin-Seog K., Kwang Y. Ch. & Jin-Cheol K. (2004). Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews, Crop Protection, Vol. 23, No. 12, (December, 2004), pp. (1215-1221), ISSN: 0261-2194 Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: possible modes of action, Journal of Natural Products, Vol. 59, No. 2, (Febrero, 1996), pp. (205-215), ISSN: 0163-3864 Hernández, L. A. N., Bautista, B. S. & Velázquez del valle, M. G. (2007). Prospectiva de extractos vegetales para controlar enfermedades postcosecha hortofrutícolas, Rev. Fitotecnia Mex. Vol. 30, No. 2, (Abril-Junio, 2007), pp. (119-123), ISSN: 0185-3309 Hili, P., Evans, C.S. & Veness, R.G. (1997). Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil, Letters in Applied Microbiology, Vol. 24, No. 4, (April, 1997), pp. (269–75), ISSN: 0266-8254 Hosni, K., Msaâda, K., Ben Taârit, M., Ouchikh, O., Kallel, M. & Marzouk, B. (2008). Essential oil composition of Hypericum perfoliatum L. and Hypericum tomentosum L. growing wild in Tunisia, Industrial Crops and Products, Vol. 27, No. 3, (May, 2008), pp. (308-314), ISSN: 0926-6690 Jasso de Rodríguez D., Hernández-Castillo D., Angulo-Sánchez J.L., Rodríguez-García R., Villarreal Quintanilla J.A. & Lira-Saldivar R.H. (2007). Antifungal acvtivity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum, Industrial Crops and Products, Vol. 25, No. 2, (Febrary, 2007), pp. (111- 116), ISSN 0926-6690 Jasso de Rodríguez D., Hernández-Castillo D., Rodríguez-García R. & Angulo-Sánchez J. L. (2005). Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi, Industrial Crops and Products, Vol. 21, No. 1, (January, 2005), pp. ( 81-87), ISSN: ISSN 0926-6690 Konstantinidou-Doltsinis, S. & Schmit, S. (1998). Impact of treatment with plant extracts from Reynoutria sachalinensis (F. Schmidt) Nakai on intensity of powdery mildew severity and yield in cucumber under high disease pressure, Crop Protection, Vol. 17, No. 8, (November, 1998), pp. (649-656), ISSN: 0261-2194 Kordali S., Cakir A, Aytas A. T, Mete E, Akcin A, Aydin T, & Kilic, H. (2009). Antifungal and herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicola Hub-Mor. and Achillea biebersteinii Afan. (Asteraceae), Industrial Crops and Products, Vol. 29, No. 2-3, (March 2009), pp. (562-570), ISSN: 0926-6690 Kosalec, I., Pepeljnjak, S. & Kustrak, D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae), Acta Pharmaceutica, Vol. 55, No. 4, (December, 2005), pp. (377–85), ISSN: 1330-0075

www.intechopen.com

102 Fungicides for Plant and Animal Diseases

Lee, S.E., Park, B.S., Kim, M.K., Choi, W.S., Kim, H.T., Cho, K.Y., Lee, S.G. & Lee, H.S. (2001). Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi, Crop Protection, Vol. 20, No. 6, (July, 2001), pp. (523-528), ISSN: 0261-2194 Lee, S.H., Lee, J.R.L., Lunde, C.S. & Kubo, I. (1999). In vitro antifungal susceptibilities of Candida albicans and other fungal pathogens to polygodial, a sesquiterpene dialdehyde., Planta Medica, Vol. 65, No. 3, (April), pp. (204–208), ISSN: 0032-0943 Lira, S.R.H., Hernández, S.M., Chavéz, B.C., Hernández, C.F.D. & Cuellar, V.E. (2007). Biopesticides and biological control. CIQA, Monterrey, México. Pp 13-29. ISBN 968- 844.054-X Mexico Liu, S., Oguntimein, B.O., Hufford, C.D. and Clark, A.M. (1990). 3- methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens, Antimicrobial Agents and Chemotherapy, Vol. 34, No. 4, (April, 1990), pp. (529–533), ISSN: 0066-4804 Loison, M. (2010). The plant protection corner, in: A growing industry, various business models, New Ag Internacional magazine, (Febrary 2010). www.newaginternational.com/current/plantprotection201011.pdf Maatooq, G.T., Stumpf, D.K., Hoffmann, J.J., Hutter, L.K. and Timmermann, B.N. (1996) Antifungal eudesmanoids from Parthenium argentatum x P. tomentosa. Phytochemistry, Vol. 41, No. 2, (Febrary, 1996), pp. (519–524), ISSN: 0031-9422 Mahlo, S.M., McGaw, L.J. & Eloff, J.N. (2010). Antifungal activity of leaf extracts from South African trees against plant pathogens, Crop Protection, Vol. 29, No. 12, (December, 2010), pp. (1529-1533), ISSN: 0261-2194 Makkar, H P S, Siddhuraju, P & Becker, K. (2007). Plant secondary metabolites, Human press Inc, pp. 130, ISSN: 1-58829-993-7, USA. Marquina, G., Laguna, A., Franco, P., Fernandez, L., Perez, R. & Valiente, O. (1989). Antimicrobial activity of pyrrolizidine alkaloids from Heliotropium bursiferum, Pharmazie, Vol. 44, No. 12, (December, 1989), pp. (870–871), ISSN: 0031-7144 McChesney, J.D. & Clark, A.M. (1991). Antimicrobial diterpenes of Croton sonderianus, hardwickic and 3,4-secotrachylobanoic acids, Journal of Natural Products., Vol. 54, No. 6, (November, 1991), pp. (1625–1633), ISSN: 0163-3864 Meckes, M, Rivera, A.D., Nava, V. & Jimenez, A. (2004). Activity of some Mexican medicinal plant extracts on carrageenan-induced rat paw edema, Phytomedicine, Vol. 11, No. 5, (July, 2004), pp. (446-451), ISSN: 0944-7113 Mejri, J., Abderrabba, M. & Mejri, M. (2010). Chemical composition of the essential oil of Ruta chalepensis L: Influence of drying, hydro-distillation duration and plant parts, Industrial Crops and Products, Vol. 32, No. 3, (November, 2010), pp. (671-673), ISSN: 0926-6690 Miles, D.H., Chittawong, V., Hedin, P.A. & Kokpol, U. (1993). Potential agrochemicals from leaves of Wedelia biflora, Phytochemistry, Vol. 32, No. 6, (April, 1993), pp. (1427– 1429), ISSN: 0031-9422 Miles, D.H., de Medeiros, J.M., Chittawong, V., Hedin, P.A., Swithenbank, C. & Lidert, Z. (1991). 3´_-Formyl-2´_,4´_,6´_-trihydroxydihydrochalcone from Psidium acutangulum, Phytochemistry, Vol. 30, No. 4, (Mayo, 1991), pp. (1131–1132), ISSN: 0031-9422 Monsálvez, M., Zapata, N., Vargas, M., Berti, M., Bittner, M., & Hernández, V. (2010). Antifungal effects of n-hexane extract and essential oil of Drimys winteri bark

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 103

against Take-All disease, Industrial Crops and Products, Vol. 31, No. 2, (March), pp. (239-244), ISSN: 0926-6690 Naigre, R., Kalck, P., Roques, C., Roux, I. & Michel, G. (1996). Comparison of antimicrobial properties of monoterpenes and their carbonylated products, Planta Medica., Vol. 62, No. 3, (June, 1996), pp. (275–277), ISSN: 0032-0943 Nenoff, P., Haustein, U.F. & Brandt, W. (1996). Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro, Skin Pharmacology, Vol. 9, No. 6, (June, 1996), pp. (388–394), ISSN: 1011-0283 Okunade, A.L., Hufford, C.D., Richardson, M.D., Peterson, I.R. & Clark, A.M. (1994). Antimicrobial properties of alkaloids from Xanthorhiza simplicissima, Journal Pharmaceutical Scinces, Vol. 83, No. 3, (March, 1994), pp. (404–6), ISSN: 0022-3549 Osei-Safo, D., Addae-Mensah, I., Garneau, F.X. & Kossi, K. H. (2010). A comparative study of the antimicrobiaa activity of the leaf essential oils of chemo-varieties of Clausena anisata (Willd.) Hook. f. ex Benth, Industrial Crops and Products, Vol. 32, No. 3, (November. 2010), pp. (634-638), ISSN: 0926-6690 Osorio E, Flores M, Hernández D, Ventura J, Rodríguez R, & Cristóbal N. Aguilar. (2010). Biological efficiency of polyphenolic extracts from nuts shell (Carya illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi, Industrial Crops and Products, Vol. 31, No. 1, (January, 2010), pp. (153-157), ISSN: 0926-6690 Pasini, C., D'Aquila. F., Curir, P. & Lodovica, G. M. (1997). Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses, Crop Protection, Vol. 16, No. 6, (May, 1997), pp. (251-256), ISSN: 0261- 2194 Pattnaik, S., Subramanyam, V.R. & Kole, C.R. (1996). Antibacterial and antifungal activity of ten essential oils in vitro, Microbios, Vol. 86, No. 349, pp. (237–46), ISSN: 0026-2633 Pattnaik, S., Subramanyam, V.R., Bapaji, M. & Kole, C.R. (1997). Antibacterial and antifungal activity of aromatic constituents of essential oils, Microbios, Vol. 89, No. 358, pp. (39–46), ISSN: 0026-2633 Pinto, E., Pina-Vaz, C., Salgueiro, L., Goncalves, M.J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A. & Martinez-de-Oliveira, J. (2006). Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspargillus and dermatophyte species, Journal of Medical Microbiology, Vol. 55, No. 10, (Octuber, 2006), pp. (1367– 73), ISSN: 0022-2615 Pinto, E., Ribeiro, S.L., Cavaleiro, C., Palmeira, A. & Gonçalves, M.J. (2007). In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis, Industrial Crops and Products, Vol. 26, No. 2, (August, 2007), pp. (135-141), ISSN: 0926-6690 Pitarokili, D., Couladis, M., Petsikos-Panayotarou, N. & Tzakou, O. (2002). Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece, Journal of Agricultural and Food Chemistry, Vol. 50, No. 23, (November, 2002), pp. (6688–6691), ISSN: 0021-8561 Pomilio, A.B., Buschi, C.A., Tomes, C.N. & Viale, A.A. (1992). Antimicrobial constituents of Gomphrena martiana and Gomphrena boliviana, Journal of Ethnopharmacology, Vol. 36, No. 2, (April, 1992), pp. (155–161), ISSN: 0378-8741

www.intechopen.com

104 Fungicides for Plant and Animal Diseases

Pyun, M.S. & Shin, S. (2006). Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole, Phytomedicine, Vol. 13, No. 6, (june, 2006), pp. (394–400), ISSN: 0944-7113 Quetin-Leclercq, J., Favel, A., Balansard, G., Regli, P. & Angenot, L. (1995). Screening for in vitro antifungal activities of some indole alkaloids, Planta Medica, Vol. 61, No. 5, (October, 1995), pp. (475–7), ISSN: 0032-0943 Rahman, A.U., Ashraf, M., Choudhary, M.I., Rehman, H.U. & Kazmi, M.H. (1995). Antifungal aryltetralin lignans from leaves of Podophyllum hexandrum, Phytochemistry, Vol. 40, No. 2, (September, 1995), pp. (427–31), ISSN: 0031-9422 Rahman, A.U., Nasreen, A., Akhtar, F., Shekhani, S., Clardy, J., Parvez, M. & Choudhary, M.I. (1997). Antifungal diterpenoid alkaloids from Delphinium denudatum, Journal of Natural Products, Vol. 60, No. 5, (May, 1997), pp. (472–474), ISSN: 0163-3864 Rodilla, J.M., Silva, L.A., Martinez, N., Lorenzo, D., Davyt, D., Castillo, L., Giménez, C., Cabrera, R., González-Coloma, A., Zrostlíková, J. & Dellacassa, E. (2011). Advances in the identification and agrochemical importance of sesquiterpenoids from Bulnesia sarmientoi essential oil, Industrial Crops and Products, Vol. 33, No. 2, (March, 2011), pp. (497-503), ISSN: 0926-6690 Romagnoli, C., Bruni, R., Andreotti, E., Rai, M.K., Vicentini, C.B. & Mares, D. (2005). Chemical characterization and antifungal activity of essential oil of capitula from wild India Tagetes patula L, Protoplasma, Vol. 225, No. 1-2 , (April, 2005), pp. (57–65), ISSN: 0033-183X Roy, S. & Chatterjee, P. (2010). A non-toxic antifungal compound from the leaves of Catharanthus roseus characterized as 5-hydroxy flavone by UV spectroscopic analysis and evaluation of its antifungal property by agar-cup method, Industrial Crops and Products, Vol. 32, No. 3, (November, 2010), pp. (375-380), ISSN: 0926-6690 Saad, H.E., El-Sharkawy, S.H. & Shier, W.T. (1995). Biological activities of pyrrolidinoindoline alkaloids from Calycodendron milnei, Planta Medica, Vol. 61, No. 4, (August, 1995), pp. (313–6), ISSN: 0032-0943 Salgueiro, L.R., Pinto, E., Goncalves, M.J., Pina-Vaz, C., Cavaleiro, C. Rodrigues, A.G., Palmeira, A., Costa-de-Oliveira, S. and Martinez-de-Oliveira, J. (2004) Chemical composition and antifungal activity of the essential oil of Thymbra capitata, Planta Medica, Vol.70, No. 6, (June, 2004), pp. (572–575), ISSN: 0032-0943 Schultz, T.P., Boldin,W.D., Fisher, T.H., Nicholas, D.D., Murtrey, K.D. & Pobanz, K. (1992) Structure–fungicidal properties of some 3- and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemestry, Vol. 31, No. 11, (November, 1992), pp. (3801–6), ISSN: 0031-9422 Sepúlveda, J. G., Porta, D. H. & Rocha, S. M. (2003). La participación de los metabolitos secundarios en la defensa de las plantas, Rev. Mex. Fitopatol., Vol. 21, No. 3, (Diciembre, 2003), pp. (355-363), ISSN: 0185 3309 Simeon, S., Rios, J.L. and Villar, A. (1990) Antimicrobial activity of Annona cherimolia stem bark alkaloids. Pharmazie, Vol. 45, No. 6, (June, 1990), pp. (442–3), ISSN: 0031-7144 Smirnov, V.V., Bondarenko, A.S. & Prikhodko, V.A. (1998). Antimicrobial activity of sesquiterpene phenol from Bidens cernua, Fitoterapia, Vol. 69, No. 1, pp. (84–5), ISSN: 0367-326X

www.intechopen.com

Antifungal Properties of Bioactive Compounds from Plants 105

Stuardo M & San Martín R. 2008. Antifungal properties of quinoa Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea, Industrial Crops and Products, Vol. 27, No. 3, (May, 2008), pp. (296-302), ISSN: 0926-6690 Swain T. (1979). Tannins and lignins. In Herbivores: their interactions with secondary plant metabolites (G.A. Rosenthal & D.H. Janzen, eds.). Academic Press, New York, pp. (657-682) Swain, T. (1979). Tannins and Lignins. In: Rosenthal, G. A., Janzen, D. H. (ed.) Herbivores, their interaction with secondary plant metabolites, Academic Press. New York, p. 657- 682), ISSN: Taiz, L & Zeiger, E. (2002). Plant physiology, Third edition. Sinauer Assoc. 690 p. ISSN: 87893-823-0, USA Tegegne, G., Pretorius, J.C. & Swart, W.J. (2008). Antifungal properties of Agapanthus africanus L. extracts against plant pathogens, Crop Protection, Vol. 27, No. 7, (July, 2008), pp. (1052-1060), ISSN: 0261-2194 Tirillini, B., Velaquez, E.R. & Pellegrino, R. (1996). Chemical composition and antimicrobial activity of essential oil of Piper angustifolium, Planta Medica, Vol. 62, No. 4, (Augost, 1996), pp. (372–3), ISSN: 0032-0943 Tomas-Barberan, F.A., Msonthi, J.D. & Hostettmann, K. (1988). Antifungal epicuticular methylated flavonoids from Helichrysum nitens. Phytochemistry, Vol. 27, No. 3, pp. (753–5), ISSN: 0031-9422 Tsai, I.L., Lion, Y.F. & Lu, S.T. (1989). Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities, Kaohsiung Journal of Medical Sciences, Vol. 5, No. 3, (March, 1989), pp. (132–45), ISSN: 1607-551X Van Puyvelde, L.V., De Kimpe, N., Costa, J., Munyjabo,V., Nyirankuliza S., Hakizamungu, E. & Niceas Schamp. (1989). Isolation of Flavonoids and a Chalcone from Helichrysum odoratissimum and Synthesis of Helichrysetin, Journal of Natural Products, Vol. 52, No, 3, (May, 1989), pp. (629-633), ISSN: 1557-1676 Vargas-Arispuro, I., Reyes-Báez, R., Rivera-Castañeda, G., Martínez-Téllez, M.A. & Rivero- Espeje, I. (2005). Antifungal lignans from the creosotebush (Larrea tridentata), Industrial Crops and Products, Vol. 22, No. 2, (September, 2005), pp. (101-107), ISSN: 0926-6690 Veloz-García, R., Marín-Martínez, R., Veloz-Rodríguez, R., Rodríguez-Guerra, R., Torres- Pacheco, I., González-Chavira, M.M., Anaya-López, J.L., Guevara-Olvera, L., Feregrino-Pérez, A.A., Loarca-Piña, G., & Guevara-González, R.G. (2010). Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum, Industrial Crops and Products, Vol. 31, No. 1, (January, 2010), pp. (134-138), ISSN: 0926-6690 Weidenborner, M., Hindorf, H., Jha, H.C. & Tsotsonos, P. (1990). Antifungal activity of flavonoids against storage fungi of the genus Aspergillus, Phytochemistry, Vol. 29, No. 4, (May, 1990), pp. (1103–1105), ISSN: 0031-9422 Wilson, C. L., Solar, J. M., Ghaouth, A. E. & Wisniewski, M. E. (1997). Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea, Plant Disease, Vol. 81, No. 2, (Febrary, 1997), pp. (204-210), ISSN: 0191-2917 Wink, M & Schimmer, O. 2010. Annual Plant Reviews (2009) 39: 21–161: Biochemistry of Plant Secondary Metabolism. Second edition, A John Wiley & Sons, Ltd., Publication, 433 p. doi: 10.1002/9781444318876.ch2.

www.intechopen.com

106 Fungicides for Plant and Animal Diseases

Zabka, M., Pavela, R. & Slezakova, L. (2009). Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi, Industrial Crops and Products, Vol. 30, No. 2, (September, 2009), pp. (250-253), ISSN: 0926-6690 Zhang, Z.Y., Dai G.H., Zhuge Y.Y. & Li Y.B. (2008). Protective effect of Robinia pseudoacacia Linn1 extracts against cucumber powdery mildew fungus, Sphaerotheca fuliginea, Crop Protection, 27, No. 6, (June, 2008), pp. (920-925), ISSN: 0261-2194 Zhao, W., Wolfender, J.L., Hostettmann, K., Xu, R. & Qin, G. (1998). Antifungal alkaloids and limonoid derivatives from Dictamnus daysycarpus, Phytochemistry, 47, No. 1, (January, 1998), pp. (7–11), ISSN: 0031-9422

www.intechopen.com Fungicides for Plant and Animal Diseases Edited by Dr. Dharumadurai Dhanasekaran

ISBN 978-953-307-804-5 Hard cover, 298 pages Publisher InTech Published online 13, January, 2012 Published in print edition January, 2012

A fungicide is a chemical pesticide compound that kills or inhibits the growth of fungi. In agriculture, fungicide is used to control fungi that threaten to destroy or compromise crops. Fungicides for Plant and Animal Diseases is a book that has been written to present the most significant advances in disciplines related to fungicides. This book comprises of 14 chapters considering the application of fungicides in the control and management of fungal diseases, which will be very helpful to the undergraduate and postgraduate students, researchers, teachers of microbiology, biotechnology, agriculture and horticulture.

How to reference In order to correctly reference this scholarly work, feel free to copy and paste the following:

F. Castillo, D. Hernandez,́ G. Gallegos, R. Rodrigueź and C. N. Aguilar (2012). Antifungal Properties of Bioactive Compounds from Plants, Fungicides for Plant and Animal Diseases, Dr. Dharumadurai Dhanasekaran (Ed.), ISBN: 978-953-307-804-5, InTech, Available from: http://www.intechopen.com/books/fungicides-for-plant-and-animal-diseases/antifungal-properties-of-bioactive- compounds-from-plants

InTech Europe InTech China University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Phone: +86-21-62489820 Fax: +385 (51) 686 166 Fax: +86-21-62489821 www.intechopen.com © 2012 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.