The Ctenophore Mnemiopsis in Native and Exotic Habitats: U.S. Estuaries Versus the Black Sea Basin

Total Page:16

File Type:pdf, Size:1020Kb

The Ctenophore Mnemiopsis in Native and Exotic Habitats: U.S. Estuaries Versus the Black Sea Basin Hydrobiologia 451: 145–176, 2001. 145 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin Jennifer E. Purcell1,2, Tamara A. Shiganova3, Mary Beth Decker1,4 & Edward D. Houde5 1University of Maryland Center for Environmental Science, Horn Point Laboratory, P.O. Box 775, Cambridge, MD 21613, U.S.A. 2Present address: Shannon Point Marine Center, 1900 Shannon Point Rd., Anacortes, WA 98221, U.S.A. E-mail: [email protected] 3P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovskiy Pr., Moscow 117851, Russia 4Present address: Dept. of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, U.S.A. 5University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, P.O. Box 38, Solomons, MD 20688-0038, U.S.A. Key words: Beroe, Chesapeake Bay, fish, jellyfish, predation, zooplankton Abstract The native habitats of the ctenophore, Mnemiopsis, are temperate to subtropical estuaries along the Atlantic coast of North and South America, where it is found in an extremely wide range of environmental conditions (winter low and summer high temperatures of 2 and 32 ◦C, respectively, and salinities of <2–38). In the early 1980s, it was accidentally introduced to the Black Sea, where it flourished and expanded into the Azov, Marmara, Mediterranean and Caspian Seas. We compile data showing that Mnemiopsis has high potentials of growth, reproduction and feeding that enable this species to be a predominant zooplanktivore in a wide variety of habitats; review the population distributions and dynamics of Mnemiopsis in U.S. waters and in the Black Sea region; and examine the effects of temperature and salinity, zooplankton availability and predator abundance on Mnemiopsis population size in both regions, and the effects of Mnemiopsis on zooplankton, ichthyoplankton and fish populations, focusing on Chesapeake Bay and the Black Sea. In both regions, Mnemiopsis populations are restricted by low winter tem- peratures (<2 ◦C). In native habitats, predators of Mnemiopsis often limit their populations, and zooplanktivorous fish are abundant and may compete with the ctenophores for food. By contrast, in the Black Sea region, no obvious predators of Mnemiopsis were present during the decade following introduction when the ctenophore populations flourished. Additionally, zooplanktivorous fish populations had been severely reduced by over fishing prior to the ctenophore outbreak. Thus, small populations of potential predators and competitors for food enabled Mnemiopsis populations to swell in the new habitats. In Chesapeake Bay, Mnemiopsis consumes substantial proportions of zooplankton daily, but may only noticeably reduce zooplankton populations when predators of Mnemiopsis are uncommon. Mnemiopsis also is an important predator of fish eggs in both locations. In the Black Sea, reductions in zooplankton, ichthyoplankton and zooplanktivorous fish populations have been attributed to Mnemiopsis.We conclude that the enormous impact of Mnemiopsis on the Black Sea ecosystem occurred because of the shortage of predators and competitors in the late 1980s and early 1990s. The appearance of the ctenophore, Beroe ovata,may promote the recovery of the Black Sea ecosystem from the effects of the Mnemiopsis invasion. Introduction world’s oceans. In estuarine and coastal waters, cten- ophores can reach great abundances. They feed at Comb jellies comprise a diverse phylum (Ctenophora) high rates on zooplankton and ichthyoplankton, and of delicate, gelatinous species living throughout the thereby may be detrimental to fish populations. They 146 are well adapted for rapid population growth, having Black Sea, which are at the same latitude, have sim- high rates of feeding, growth and reproduction. ilar ranges of environmental conditions, and similar The native habitats of ctenophores in the genus zooplankton and zooplanktivorous fish assemblages. Mnemiopsis are estuaries along the eastern coastline of North and South America. Mnemiopsis is probably the most-studied ctenophore genus in the world because of Body composition, metabolism, growth and its great abundance in estuaries in heavily populated reproduction of Mnemiopsis areas of the U.S., and because of its explosive pop- ulation growth after accidental introduction into the Body composition Black Sea in the early 1980s. It has spread from the Black Sea to the Seas of Azov, Marmara and eastern The relationships among various measures of body Mediterranean, and in 1999, it appeared for the first size of Mnemiopsis may vary with ctenophore size, sa- time in the Caspian Sea. At present, its impact is a linity and feeding history (Table 1). Oral-aboral length serious problem for the ecosystems of these basins. measurements are somewhat subjective due to the The identities of species within the genus Mne- flaccid body, as illustrated by the variation in length- miopsis are uncertain. Two species names have been to-wet weight conversions (Table 1). Biovolume (V commonly used, M. leidyi A. Agassiz, which has in ml) typically is measured in field studies and is been used for areas above Cape Hatteras in the U.S., roughly equivalent to wet weight (WW in g). Live and M. mccradyi Mayer, 1900, which has been used WW can be calculated from tentacle bulb length below Cape Hatteras (Larson, 1988), and both spe- in formalin-preserved samples (Purcell, 1988). Dry cies are listed from South America (Mianzan, 1999). weight (DW) commonly is measured, but results dif- Mayer (1912) considered the high body density and fer depending on the salt content of the ctenophore, the warts on the body surface to be specific fea- which reflects ambient salinity. Carbon (C) and ni- tures of M. mccradyi, however, these features were trogen (N) contents as percent of DW vary, generally formerly noted in M. leidyi (in A. Agassiz, 1865; being inversely related to ctenophore size and directly Fewkes, 1881). Recent investigations reveal indistin- related to prey density (Reeve et al., 1989; Borodkin guishable specimens from North and South America & Korzhikova, 1991). C%DW ranged from 13.1% in (K. Bayha, pers. comm.). Experimental results on 1.1 mm ctenophores to 1.5% in 20 mm specimens. respiration, excretion, egg production, feeding and C%DW ranged from 1% when fed at ≤20 prey l−1 to growth on Mnemiopsis from northern and southern 2% at 200 prey l−1. Chemical composition (glycogen, U.S. are indistinguishable (Kremer, 1994). mono- and polysaccharides) of Mnemiopsis has been Identification of the ctenophore that appeared in further studied by Anninsky et al. (1998). the Black Sea was confused by inconsistencies in description of morphological features of the genus Metabolism Mnemiopsis by its first researchers. The introduced ctenophore was called both M. leidyi and M. mccradyi More extensive research has been conducted on the (e.g. Vinogradov et al., 1989; Zaika & Sergeeva, respiration and excretion of Mnemiopsis than on any 1990). Seravin (1994) revised the genus Mnemiopsis, other gelatinous species. The average respiratory quo- concluding that it includes only one polymorphic spe- tient (molecular ratio) of CO2:O2 of 0.74 and O2:NH4 cies, M. leidyi. Due to the uncertainty of clear species, of 6.7 (O:N atomic ratio = 13.3) are indicative of we will refer to the ctenophores by the genus name. protein and lipid metabolism, and suggest that Mne- In this review, we explore the effects of the en- miopsis are strict carnivores (Kremer, 1977). Weight- vironment on populations of Mnemiopsis.First,we specific metabolism of Mnemiopsis and other cten- consider how temperature, salinity and prey densit- ophores has been reported to depend on body size ies affect the ctenophore’s composition, metabolism, (Miller, 1970; Nemazie et al., 1993) (Table 2), how- individual growth and reproduction. Then, we exam- ever, Kremer (1975a, 1977, 1982) found no weight- ine the conditions found in the habitats of Mnemiopsis specific effects. Total nitrogen excretion is comprised + and how their populations vary with physical and bio- of 66% NH4 and 34% dissolved organic nitrogen logical factors, first considering native habitats and (Kremer, 1977, 1982). Ammonium excretion rates then exotic habitats. We have chosen to concentrate per g DW reported from Chesapeake Bay are 3-fold on comparisons between the Chesapeake Bay and the higher than for Narragansett Bay, but are similar when 147 Table 1. Biometric conversions for Mnemiopsis. V = live volume in ml, L = total length in mm, WW = wet weight in g, DW = dry weight in g, C = carbon in mg, N = nitrogen in mg Conversion Salinity Source WW = 1.017V - 0.122 31 Kremer & Nixon (1976) WW = 0.009L1.872 31 Kremer & Nixon (1976) WW=0.00236L2.35 18 Vinogradov et al. (1989) WW=0.00079 L2.51 18 Pavlova & Minkina (1993) WW= 0.001074L2.76 — Finenko et al. (1995) WW=0.0023L2.05, R=0.94 (Spring) 18 Shiganova (unpublished) WW=0.0061L1.81, R=0.95 (Summer) 18 Shiganova (unpublished) DW = 0.034WW 31 Kremer & Nixon (1976) DW=0.0331WW0.939 18 Tzikhon-Lukanina & Reznichenko (1991) DW = 0.0095WW - 0.0014 6–12 Nemazie et al. (1993) C = 0.0005V 6–12 calculated from Nemazie et al. (1993) C%WW=0.00012% 18 Vinogradov et al. (1989) C%DW = 1.7% 31 Kremer & Nixon (1976) C% DW = 4.2% 18 Finenko et al. (1995) C%DW = 5.1% 6–12 Nemazie et al. (1993) N% DW = 0.5% 31 Kremer (1976) N%DW = 1.3% 6–12 Nemazie et al. (1993) + −1 −1 −1 −1 Table 2. Metabolic rates of Mnemiopsis. Excretion (E) in µgatomsNH4 -N g DW h . Respiration (R) in µgatomsO2 gDW h ,R1 −1 −1 −1 −1 −1 −1 ◦ ∗ in ml O2 ind h ,R2 in µlO2 gDW h ,R3 in µlO2 ind h . T = temperature in C, DW = g dry weight. = calculated from the ◦ equations for ctenophores 0.4 g DW at 22 C, and using the conversions 1 ml O2 =1.42mgO2 = 44.88 µmol O2 = 89.76 µgatomsO2 Rate equation Temperature Salinity R or E at Source ◦ ◦ ( C) 22 C,0.4gDW − − ∗ (µgatomsgDW 1 h 1) E = 0.059 e0.13T 10–24 31 1.03 Kremer (1975b) E = 1.952 DW0.742 18–28 6–12 1.17 Nemazie et al.
Recommended publications
  • Microbiota Differences of the Comb Jelly Mnemiopsis Leidyi in Native and Invasive Sub-Populations
    bioRxiv preprint doi: https://doi.org/10.1101/601419; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Microbiota differences of the comb jelly Mnemiopsis leidyi in native and invasive sub‐populations Cornelia Jaspers1*, Nancy Weiland‐Bräuer3, Martin Fischer3, Sven Künzel4, Ruth A. Schmitz3 and Thorsten B.H. Reusch1 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, Germany 2Institute for General Microbiology, Christian‐Albrechts‐Universität zu Kiel, Kiel, Germany 3Max Planck Institute for Evolutionary Biology, Plön, Germany *corresponding author: [email protected], +49‐431‐600‐4560, ORCID: 0000‐0003‐2850‐4131 Keywords: Comb jelly, metaorganism, bacteria, species translocations, invasive species 1 bioRxiv preprint doi: https://doi.org/10.1101/601419; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The translocation of non‐indigenous species around the world, especially in marine systems, is a matter of concern for biodiversity conservation and ecosystem functioning. While specific traits are often recognized to influence establishment success of non‐indigenous species, the impact of the associated microbial community for the fitness, performance and invasion success of basal marine metazoans remains vastly unknown. In this study we compared the microbiota community composition of the invasive ctenophore Mnemiopsis leidyi in different native and invasive sub‐populations along with characterization of the genetic structure of the host. By 16S rRNA gene amplicon sequencing we showed that the sister group to all metazoans, namely ctenophores, harbored a distinct microbiota on the animal host, which significantly differed across two major tissues, namely epidermis and gastrodermis.
    [Show full text]
  • Invasive Species: a Challenge to the Environment, Economy, and Society
    Invasive Species: A challenge to the environment, economy, and society 2016 Manitoba Envirothon 2016 MANITOBA ENVIROTHON STUDY GUIDE 2 Acknowledgments The primary author, Manitoba Forestry Association, and Manitoba Envirothon would like to thank all the contributors and editors to the 2016 theme document. Specifically, I would like to thank Robert Gigliotti for all his feedback, editing, and endless support. Thanks to the theme test writing subcommittee, Kyla Maslaniec, Lee Hrenchuk, Amie Peterson, Jennifer Bryson, and Lindsey Andronak, for all their case studies, feedback, editing, and advice. I would like to thank Jacqueline Montieth for her assistance with theme learning objectives and comments on the document. I would like to thank the Ontario Envirothon team (S. Dabrowski, R. Van Zeumeren, J. McFarlane, and J. Shaddock) for the preparation of their document, as it provided a great launch point for the Manitoba and resources on invasive species management. Finally, I would like to thank Barbara Fuller, for all her organization, advice, editing, contributions, and assistance in the preparation of this document. Olwyn Friesen, BSc (hons), MSc PhD Student, University of Otago January 2016 2016 MANITOBA ENVIROTHON STUDY GUIDE 3 Forward to Advisors The 2016 North American Envirothon theme is Invasive Species: A challenge to the environment, economy, and society. Using the key objectives and theme statement provided by the North American Envirothon and the Ontario Envirothon, the Manitoba Envirothon (a core program of Think Trees – Manitoba Forestry Association) developed a set of learning outcomes in the Manitoba context for the theme. This document provides Manitoba Envirothon participants with information on the 2016 theme.
    [Show full text]
  • Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the Description of a New Genus to Accommodate H
    Zootaxa 3905 (2): 151–192 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3905.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A47AE95B-99CA-42F0-979F-1CAAD1C3B191 A review of the hyperiidean amphipod genus Hyperoche Bovallius, 1887 (Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the description of a new genus to accommodate H. shihi Gasca, 2005 WOLFGANG ZEIDLER South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. E-mail [email protected] Table of contents Abstract . 151 Introduction . 152 Material and methods . 152 Systematics . 153 Suborder Hyperiidea Milne-Edwards, 1830 . 153 Family Hyperiidae Dana, 1852 . 153 Genus Hyperoche Bovallius, 1887 . 153 Key to the species of Hyperoche Bovallius, 1887 . 154 Hyperoche medusarum (Kröyer, 1838) . 155 Hyperoche martinezii (Müller, 1864) . 161 Hyperoche picta Bovallius, 1889 . 165 Hyperoche luetkenides Walker, 1906 . 168 Hyperoche mediterranea Senna, 1908 . 173 Hyperoche capucinus Barnard, 1930 . 177 Hyperoche macrocephalus sp. nov. 180 Genus Prohyperia gen. nov. 182 Prohyperia shihi (Gasca, 2005) . 183 Acknowledgements . 186 References . 186 Abstract This is the first comprehensive review of the genus Hyperoche since that of Bovallius (1889). This study is based primarily on the extensive collections of the ZMUC but also on more recent collections in other institutions. Seven valid species are recognised in this review, including one described as new to science. Two new characters were discovered; the first two pereonites are partially or wholly fused dorsally and the coxa of pereopod 7 is fused with the pereonite.
    [Show full text]
  • Evolution of the TGF-B Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis Leidyi
    Evolution of the TGF-b Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi Kevin Pang1, Joseph F. Ryan2, Andreas D. Baxevanis2, Mark Q. Martindale1* 1 Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 2 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America Abstract The TGF-b signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-b superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-b ligands, two TGF-b- like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-b receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan.
    [Show full text]
  • Ctenophore Immune Cells Produce Chromatin Traps in Response to Pathogens and NADPH- Independent Stimulus
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141010; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Ctenophore immune cells produce chromatin traps in response to pathogens and NADPH- independent stimulus Authors and Affiliations: Lauren E. Vandepasa,b,c*†, Caroline Stefanic†, Nikki Traylor-Knowlesd, Frederick W. Goetzb, William E. Brownee, Adam Lacy-Hulbertc aNRC Research Associateship Program; bNorthwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA 98112; cBenaroya Research Institute at Virginia Mason, Seattle, WA 98101; dUniversity of Miami Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33149; eUniversity of Miami Department of Biology, Coral Gables, FL 33146; *Corresponding author; †Authors contributed equally Key Words: Ctenophore; ETosis; immune cell evolution Abstract The formation of extracellular DNA traps (ETosis) is a mechanism of first response by specific immune cells following pathogen encounters. Historically a defining behavior of vertebrate neutrophils, cells capable of ETosis were recently discovered in several invertebrate taxa. Using pathogen and drug stimuli, we report that ctenophores – thought to represent the earliest- diverging animal lineage – possess cell types capable of ETosis, suggesting that this cellular immune response behavior likely evolved early in the metazoan stem lineage. Introduction Immune cells deploy diverse behaviors during pathogen elimination, including phagocytosis, secretion of inflammatory cytokines, and expulsion of nuclear material by casting extracellular DNA “traps” termed ETosis. Specific immune cell types have not been identified in early diverging non-bilaterian phyla and thus conservation of cellular immune behaviors across Metazoa remains unclear.
    [Show full text]
  • The Ctenophore Mnemiopsis Leidyi A. Agassiz 1865 in Coastal Waters of the Netherlands: an Unrecognized Invasion?
    Aquatic Invasions (2006) Volume 1, Issue 4: 270-277 DOI 10.3391/ai.2006.1.4.10 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion? Marco A. Faasse1 and Keith M. Bayha2* 1National Museum of Natural History Naturalis, P.O.Box 9517, 2300 RA Leiden, The Netherlands E-mail: [email protected] 2Dauphin Island Sea Lab, 101 Bienville Blvd., Dauphin Island, AL, 36528, USA E-mail: [email protected] *Corresponding author Received 3 December 2006; accepted in revised form 11 December 2006 Abstract The introduction of the American ctenophore Mnemiopsis leidyi to the Black Sea was one of the most dramatic of all marine bioinvasions and, in combination with eutrophication and overfishing, resulted in a total reorganization of the pelagic food web and significant economic losses. Given the impacts this animal has exhibited in its invaded habitats, the spread of this ctenophore to additional regions has been a topic of much consternation. Here, we show the presence of this invader in estuaries along the Netherlands coast, based both on morphological observation and molecular evidence (nuclear internal transcribed spacer region 1 [ITS-1] sequence). Furthermore, we suggest the possibility that this ctenophore may have been present in Dutch waters for several years, having been misidentified as the morphologically similar Bolinopsis infundibulum. Given the level of shipping activity in nearby ports (e.g. Antwerp and Rotterdam), we find it likely that M. leidyi found its way to the Dutch coast in the ballast water of cargo ships, as is thought for Mnemiopsis in the Black and Caspian Seas.
    [Show full text]
  • Animal Evolution: Trichoplax, Trees, and Taxonomic Turmoil
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R1003 Dispatches Animal Evolution: Trichoplax, Trees, and Taxonomic Turmoil The genome sequence of Trichoplax adhaerens, the founding member of the into the same major classes (C, E/F enigmatic animal phylum Placozoa, has revealed that a surprising level of and B) as do those described from genetic complexity underlies its extremely simple body plan, indicating either Amphimedon [4]. Consistent with that placozoans are secondarily simple or that there is an undiscovered a more derived position, however, morphologically complex life stage. Trichoplax has a number of Antp superclass Hox genes that are absent David J. Miller1 and Eldon E. Ball2 but no other axial differentiation, from the sponge Amphimedon. resembling an amoeba. Grell [3] who These include the ‘ParaHox’ gene With the recent or imminent release formally described these common but Trox-2 [5] and the extended Hox of the whole genome sequences of inconspicuous marine organisms as family gene Not [6] known from a number of key animal species, this belonging to a new phylum, assumed previous work. Particularly intriguing is an exciting time for the ‘evo-devo’ that their simplicity is primary, and is the discovery in Trichoplax of many community. In the last twelve months, that they therefore must represent genes associated with neuroendocrine whole genome analyses of the a key stage in animal evolution. This function across the Bilateria; in cnidarian Nematostella vectensis, view is still held by several prominent common with Amphimedon [7], many the choanoflagellate Monosiga Trichoplax biologists, but has always elements of the post-synaptic scaffold brevicollis and the cephalochordate been contentious; the view that it is are present, but so too are channel Branchiostoma floridae (commonly derived from a more complex ancestor and receptor proteins not known from known as amphioxus) have been has recently been gaining momentum sponges.
    [Show full text]
  • Alien Invasive Species at the Romanian Black Sea Coast – Present and Perspectives
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 443–467 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0031-6 ALIEN INVASIVE SPECIES AT THE ROMANIAN BLACK SEA COAST – PRESENT AND PERSPECTIVES MARIUS SKOLKA, CRISTINA PREDA Abstract. Using literature data and personal field observations we present an overview of aquatic animal alien invasive species at the Romanian Black Sea coast, including freshwater species encountered in this area. We discuss records, pathways of introduction, origin and impact on native communities for some of these alien invasive species. In perspective, we draw attention on the potential of other alien species to become invasive in the study area. Résumé. Ce travail présente le résultat d’une synthèse effectuée en utilisant la littérature de spécialité et des observations et études personnelles concernant les espèces invasives dans la région côtière roumaine de la Mer Noire. On présente des aspects concernant les différentes catégories d’espèces invasives – stabilisées, occasionnelles et incertes – des écosystèmes marins et dulcicoles. L’origine géographique, l’impact sur les communautés d’organismes natifs, l’impact économique et les perspectives de ce phénomène sont aussi discutés. Key words: alien invasive species, Black Sea, Romania. INTRODUCTION Invasive species are one of the great problems of the modern times. Globalization, increase of commercial trades and climatic changes make invasive species a general threat for all kinds of terrestrial, freshwater or marine ecosystems (Mooney, 2005; Perrings et al., 2010). Perhaps polar areas or the deep seas are the only ecosystems not affected by this global phenomenon. Black Sea is a particular marine basin, with special hydrological characteristics, formed 10,000 years BP, when Mediterranean waters flowed to the Black Sea over the Bosporus strait.
    [Show full text]
  • Journal of Marine Science Research and Oceanography Does the Invasive Predator Mnemiopsis Leidyi A
    ISSN: 2642-9020 Research Article Journal of Marine Science Research and Oceanography Does the Invasive Predator Mnemiopsis leidyi A. Agassiz, 1868 Control Copepod Abundances in the Seine Estuary? Jean-Philippe Pezy1*, Aurore Raoux1 and Jean-Claude Dauvin1 1 Normandie Univ, UNICAEN, UNIROUEN, Laboratoire *Corresponding author Morphodynamique Continentale et Côtière, CNRS UMR Jean-Philippe Pezy, Normandie Univ, UNICAEN, UNIROUEN, Laboratoire 6143M2C, 24 rue des Tilleuls, 14000 Caen, France Morphodynamique Continentale et Côtière, CNRS UMR 6143M2C, 24 rue des Tilleuls, 14000 Caen, France Submitted: 16 March 2021; Accepted: 19 March 2021; Published: 01Apr 2021 Citation: Jean-Philippe Pezy, Aurore Raoux, Jean-Claude Dauvin (2021) Does the Invasive Predator Mnemiopsis Leidyi A. Agassiz, 1868 Control Copepod Abundances in the Seine Estuary? J Mari Scie Res Ocean, 4(1) : 172-180. Abstract The indigenous ctenophore Pleurobrachia pileus (O.F. Müller, 1776) was common in the coastal waters of the English Channel in the early 1990s and showed very abundant populations in the downstream part of the Seine estuary. In 2005, the non-indigenous ctenophore Mnemiopsis leidyi A. Agassiz, 1868, a species native to the Western Atlantic, was reported for the first time in Europe in Norwegian fjords and in Le Havre harbour (Seine estuary, France). More recently, in 2017, both Pleurobrachia pileus and Mnemiopsis leidyi were recorded during suprabenthos and zooplankton sampling in the Seine estuary along a downstream-upstream transect. Both species show more abundant populations in May than in September. Conversely, copepods show a spatial distribution depending on the ctenophore distribution, with low copepod abundances in the downstream part of the estuary being associated with high ctenophore abundances, while high copepod abundances are recorded where ctenophores are absent or display low abundances.
    [Show full text]
  • Diffusion Tubes: a Method for the Mass Culture of Ctenophores and Other
    bioRxiv preprintDiffusion doi: https://doi.org/10.1101/751099 tubes: mass culture; this of version ctenophores posted October and 5,other 2019. pelagicThe copyright marine holder invertebrates.for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Diffusion tubes: a method for the mass culture of ctenophores 3 and other pelagic marine invertebrates. 4 5 Wyatt L. Patry1*, Mac Kenzie Bubel1, Cypress Hansen1, Thomas Knowles1 6 7 1Animal Care Division, Monterey Bay Aquarium, Monterey, California, United States of 8 America 9 10 * Corresponding author 11 E-mail: [email protected] 12 13 Abstract 14 15 The culture of pelagic marine invertebrates, especially the ctenophore Mnemiopsis leidyi, has 16 been demonstrated in past studies dating back to the 1960’s, however the mass culture of delicate 17 pelagic invertebrates has remained elusive. By using a pair of acrylic tubes and enabling water 18 diffusion between them, we have been able to reliably and cost effectively mass culture several 19 genera of ctenophores (Pleurobrachia, Hormiphora, Bolinopsis, Mnemiopsis, and Leucothea), 20 one species of siphonophore (Nanomia) and one species of larvacean (Oikopleura). The simple, 21 compact method is effective enough to support two permanent exhibits of ctenophores at the 1 bioRxiv preprintDiffusion doi: https://doi.org/10.1101/751099 tubes: mass culture; this of version ctenophores posted October and 5,other 2019. pelagicThe copyright marine holder invertebrates.for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Invasive Alien Species
    Living in an Ecosystem near You: Invasive Alien Species 2 Glossary All bold words in the book are found on this page. Be sure to check back when you want to know the meaning of a word in bold . Biodiversity : the variety of life on Earth, at each of the Land use : human modification of the natural genetic, species and ecosystem levels, and the environment into a built environment.. relationships between them. Livelihood : way of supporting yourself, either through Cell : the basic building block of life. All organisms are a paying job or by growing, producing and/or gathering made up of one or more cells. everything you need to survive. Climate change : long-term major changes in the Microorganism : a creature too small to be seen with average weather pattern of a specific region or the Earth the naked eye; you need a magnifying glass or as a whole (e.g. more frequent storms or hotter or drier microscope to see it. conditions, etc.). Mitigation : a form of control used if there are no other Community : a group of organisms that share an options; it focuses on minimizing the impacts of environment. biodiversity and the economy. Containment : a form of control that restricts the Natural competitors : species that share the same spread of IAS and keeps the population inside a specific environment and compete for resources such as water, geographic range food and shelter. Control : a way to reduce the density and abundance of Niche : role and position of an organism or population IAS to below an acceptable level.
    [Show full text]
  • First Records of Mnemiopsis Leidyi A. Agassiz 1865 Off the NW Mediterranean Coast of Spain
    Aquatic Invasions (2009) Volume 4, Issue 4: 671-674 DOI 10.3391/ai.2009.4.4.12 © 2009 The Author(s) Journal compilation © 2009 REABIC (http://www.reabic.net) This is an Open Access article Short communication First records of Mnemiopsis leidyi A. Agassiz 1865 off the NW Mediterranean coast of Spain Verónica L. Fuentes1*, Dacha Atienza1, Josep-Maria Gili1 and Jennifer E. Purcell2,3 1Institut de Ciencies del Mar, CSIC, P. Marítim de la Barceloneta, 37-49 08003 Barcelona, Spain 2Western Washington University, Shannon Point Marine Center, 1900 Shannon Point Rd, Anacortes, WA 98221 USA 3University College Cork, Coastal and Marine Resources Centre, Naval Base, Haulbowline Island, Cobh, Co. Cork, Ireland E-mail: [email protected] (FLF), [email protected] (DA), [email protected] (JMG), [email protected] (JT) *Corresponding author Received 6 October 2009; accepted in revised form 29 October 2009; published online 5 November 2009 Abstract The comb jelly Mnemiopsis leidyi was first reported in July 2009 along the Spanish coast of the NW Mediterranean Sea and occurred throughout the summer (last report 26 September 2009). Large numbers of the ctenophore were reported by many participants of the “Medusa Project”. The high concentrations of M. leidyi along the Spanish coast, together with its blooms earlier this year in Israel, suggests establishment in the Mediterranean Sea. This is of great concern because of the well-known effects of M. leidyi on marine ecosystems and the consequences for commercial fisheries. Key words: Mnemiopsis leidyi, Ctenophora, invasive species, NW Mediterranean, Spain The introduction of Mnemiopsis leidyi A.
    [Show full text]