Ctenophores of the Baltic and Adjacent Seas – the Invader Mnemiopsis Is Here!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Author's Personal Copy
Author's personal copy 554 Book reviews Fifty Years of Invasion Ecology – The Legacy of Charles The 30 chapters are well written, and David Richardson Elton. D.M. Richardson (ed.). Wiley-Blackwell, Oxford did an excellent job in editing the diverse contributions of 51 (2011). 432 pp., £45 (paperback), £95 (hardcover), authors, most of them from North America, South Africa, and ISBN: 978-1-4443-3586-6 (paperback), 978-1-4443-3585- Australia. Asia and South America are not represented by any 9 (hardcover) contribution, and European researchers are underrepresented. Most chapters are relatively short, with an easily accessible This book is intended for all scientists and students inter- essay style. This comes at the expense of presentation of ested in biological invasions. It is based on a conference held original data, mirrored by rather few tables and figures. On in South Africa in 2008 to celebrate the 50th anniversary of the other hand, we applaud the possibility to download illus- the famous volume by Charles S. Elton on ‘The Ecology of trations from a companion website. The book is technically Invasions by Animals and Plants’. When a scientific disci- well done; virtually no typos could be spotted, and the over- pline starts exploring its history, defines terms and reviews lap among individual chapters is minimal. The terminology, achievements, this can be a sign of maturity, yet invasion for example on ‘alien’ and ‘non-indigenous’ species (chap- ecology continues to develop in a positive and dynamic way. ters 1 and 4), is not fully consistent, but this should not be The research dynamics in this field are enormous, building on taken too seriously. -
Microbiota Differences of the Comb Jelly Mnemiopsis Leidyi in Native and Invasive Sub-Populations
bioRxiv preprint doi: https://doi.org/10.1101/601419; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Microbiota differences of the comb jelly Mnemiopsis leidyi in native and invasive sub‐populations Cornelia Jaspers1*, Nancy Weiland‐Bräuer3, Martin Fischer3, Sven Künzel4, Ruth A. Schmitz3 and Thorsten B.H. Reusch1 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, Germany 2Institute for General Microbiology, Christian‐Albrechts‐Universität zu Kiel, Kiel, Germany 3Max Planck Institute for Evolutionary Biology, Plön, Germany *corresponding author: [email protected], +49‐431‐600‐4560, ORCID: 0000‐0003‐2850‐4131 Keywords: Comb jelly, metaorganism, bacteria, species translocations, invasive species 1 bioRxiv preprint doi: https://doi.org/10.1101/601419; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The translocation of non‐indigenous species around the world, especially in marine systems, is a matter of concern for biodiversity conservation and ecosystem functioning. While specific traits are often recognized to influence establishment success of non‐indigenous species, the impact of the associated microbial community for the fitness, performance and invasion success of basal marine metazoans remains vastly unknown. In this study we compared the microbiota community composition of the invasive ctenophore Mnemiopsis leidyi in different native and invasive sub‐populations along with characterization of the genetic structure of the host. By 16S rRNA gene amplicon sequencing we showed that the sister group to all metazoans, namely ctenophores, harbored a distinct microbiota on the animal host, which significantly differed across two major tissues, namely epidermis and gastrodermis. -
Ctenophore Relationships and Their Placement As the Sister Group to All Other Animals
ARTICLES DOI: 10.1038/s41559-017-0331-3 Ctenophore relationships and their placement as the sister group to all other animals Nathan V. Whelan 1,2*, Kevin M. Kocot3, Tatiana P. Moroz4, Krishanu Mukherjee4, Peter Williams4, Gustav Paulay5, Leonid L. Moroz 4,6* and Kenneth M. Halanych 1* Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propul- sion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data and methods to control systematic error, we establish the placement of Ctenophora as the sister group to all other animals and refine the phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350 million years ago ± 88 million years, conflicting with previous hypotheses, which suggest it originated approximately 65 million years ago. We recover Euplokamis dunlapae—a species with striated muscles—as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows that the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bio- luminescent and did not have separate sexes. Our results imply at least two transitions from a pelagic to benthic lifestyle within Ctenophora, suggesting that such transitions were more common in animal diversification than previously thought. tenophores, or comb jellies, have successfully colonized from species across most of the known phylogenetic diversity of nearly every marine environment and can be key species in Ctenophora. -
Invasive Species: a Challenge to the Environment, Economy, and Society
Invasive Species: A challenge to the environment, economy, and society 2016 Manitoba Envirothon 2016 MANITOBA ENVIROTHON STUDY GUIDE 2 Acknowledgments The primary author, Manitoba Forestry Association, and Manitoba Envirothon would like to thank all the contributors and editors to the 2016 theme document. Specifically, I would like to thank Robert Gigliotti for all his feedback, editing, and endless support. Thanks to the theme test writing subcommittee, Kyla Maslaniec, Lee Hrenchuk, Amie Peterson, Jennifer Bryson, and Lindsey Andronak, for all their case studies, feedback, editing, and advice. I would like to thank Jacqueline Montieth for her assistance with theme learning objectives and comments on the document. I would like to thank the Ontario Envirothon team (S. Dabrowski, R. Van Zeumeren, J. McFarlane, and J. Shaddock) for the preparation of their document, as it provided a great launch point for the Manitoba and resources on invasive species management. Finally, I would like to thank Barbara Fuller, for all her organization, advice, editing, contributions, and assistance in the preparation of this document. Olwyn Friesen, BSc (hons), MSc PhD Student, University of Otago January 2016 2016 MANITOBA ENVIROTHON STUDY GUIDE 3 Forward to Advisors The 2016 North American Envirothon theme is Invasive Species: A challenge to the environment, economy, and society. Using the key objectives and theme statement provided by the North American Envirothon and the Ontario Envirothon, the Manitoba Envirothon (a core program of Think Trees – Manitoba Forestry Association) developed a set of learning outcomes in the Manitoba context for the theme. This document provides Manitoba Envirothon participants with information on the 2016 theme. -
NEW RECORD of PLEUROBRACHIA PILEUS (O. F. MÜLLER, 1776) (CTENOPHORA, CYDIPPIDA) from CORAL REEF, IRAQI MARINE WATERS Hanaa
Mohammed and Ali Bull. Iraq nat. Hist. Mus. (2020) 16 (1): 83- 93. https://doi.org/10.26842/binhm.7.2020.16.1.0083 NEW RECORD OF PLEUROBRACHIA PILEUS (O. F. MÜLLER, 1776) (CTENOPHORA, CYDIPPIDA) FROM CORAL REEF, IRAQI MARINE WATERS Hanaa Hussein Mohammed* and Malik Hassan Ali** *Department Biological Development of Shatt Al-Arab and N W Arabian Gulf, Marine Science Center, University of Basrah, Basrah, Iraq **Department Marine Biology, Marine Science Center, University of Basrah, Basrah, Iraq **Corresponding author: [email protected] Received Date: 16 January 2020, Accepted Date: 27April 2020, Published Date: 24 June 2020 ABSTRACT The aim of this paper is to present the first record of ctenophore species Pleurobrachia pileus (O. F. Müller, 1776) in the coral reef as was recently found in Iraqi marine waters. The specimens were collected from two sites, the first was in Khor Abdullah during May 2015, and the second site was located in the pelagic water of the coral reef area, near the Al-Basrah deep sea crude oil marine loading terminal. Three samples were collected at this site during May 2015, February and March 2018 which showed that P. pileus were present at a densities of 3.0, 2.2 and 0.55 ind./ m3 respectively. The species can affect on the abundance of other zooplankton community through predation. The results of examining the stomach contents revealed that they are important zooplanktivorous species; their diets comprised large number of zooplankton as well as egg and fish larvae. The calanoid copepods formed the highest percentage of the diet, reaching 47%, followed by cyclopoid copepods 30%, and then the fish larvae formed 20% of the diet. -
Population Dynamics and Predation Impact of the Introduced Ctenophore Mnemiopsis Leidyi in the Gullmars Fjord, West Coast of Sweden
POPULATION DYNAMICS AND PREDATION IMPACT OF THE INTRODUCED CTENOPHORE MNEMIOPSIS LEIDYI IN THE GULLMARS FJORD, WEST COAST OF SWEDEN Lene Friis Møller & Peter Tiselius Dep. Of Marine Ecology – Kristineberg University of Gothenburg The Gullmar Fjord Always stratified Well-documented Rich and diverse fauna Kristineberg Also many jellies Cnidarians Aurelia aurita Cyanea capillata Many hydromedusae Ctenophores Pleurobrachia pileus Bolinopsis infundibulum Beroe cucumis Beroe gracilis What is dominating has now changed.... Mnemiopsis leidyi - invasive ctenophore Native species along the Eats zooplankton American East Coast (and fish eggs) Invaded northern Europe in 2005/2006 High reproduction Most famous for its invasion into the Black Sea in the 80´s Given the rapid growth and high reproductive output of the Mnemiopsis, severe effects on its prey populations may be expected It is impossible to predict the outcome of the introduction into Swedish waters based on observations from other areas – both potential prey and predators differ It is therefore necessary to investigate the development and impact of Mnemiopsis locally Mnemiopsis studies in the Gullmar Fjord In the current project we study the development of the Mnemiopsis population in the Gullmar fjord by regular sampling from March 2007 to present (for long periods every week) (+ zooplankton, chl a, primary production, CTD) x Biomass (g wet weight m-3) 10 20 30 40 50 60 70 80 90 0 17‐Jun‐07 6‐Aug‐07 25‐Sep‐07 2009 2008 2007 14‐Nov‐07 3‐Jan‐08 22‐Feb‐08 Mnemiopsis biomass 12‐Apr‐08 2007-2009 1‐Jun‐08 21‐Jul‐08 9‐Sep‐08 29‐Oct‐08 18‐Dec‐08 6‐Feb‐09 28‐Mar‐09 17‐May‐09 6‐Jul‐09 25‐Aug‐09 14‐Oct‐09 3‐Dec‐09 22‐Jan‐10 Development Oral/aboral Rapoza et al. -
Seasonal Variation of the Sound-Scattering Zooplankton Vertical Distribution in the Oxygen-Deficient Waters of the NE Black
Ocean Sci., 17, 953–974, 2021 https://doi.org/10.5194/os-17-953-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal variation of the sound-scattering zooplankton vertical distribution in the oxygen-deficient waters of the NE Black Sea Alexander G. Ostrovskii, Elena G. Arashkevich, Vladimir A. Solovyev, and Dmitry A. Shvoev Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky prospekt, Moscow, 117997, Russia Correspondence: Alexander G. Ostrovskii ([email protected]) Received: 10 November 2020 – Discussion started: 8 December 2020 Revised: 22 June 2021 – Accepted: 23 June 2021 – Published: 23 July 2021 Abstract. At the northeastern Black Sea research site, obser- layers is important for understanding biogeochemical pro- vations from 2010–2020 allowed us to study the dynamics cesses in oxygen-deficient waters. and evolution of the vertical distribution of mesozooplank- ton in oxygen-deficient conditions via analysis of sound- scattering layers associated with dominant zooplankton ag- gregations. The data were obtained with profiler mooring and 1 Introduction zooplankton net sampling. The profiler was equipped with an acoustic Doppler current meter, a conductivity–temperature– The main distinguishing feature of the Black Sea environ- depth probe, and fast sensors for the concentration of dis- ment is its oxygen stratification with an oxygenated upper solved oxygen [O2]. The acoustic instrument conducted ul- layer 80–200 m thick and the underlying waters contain- trasound (2 MHz) backscatter measurements at three angles ing hydrogen sulfide (Andrusov, 1890; see also review by while being carried by the profiler through the oxic zone. For Oguz et al., 2006). -
Changing Jellyfish Populations: Trends in Large Marine Ecosystems
CHANGING JELLYFISH POPULATIONS: TRENDS IN LARGE MARINE ECOSYSTEMS by Lucas Brotz B.Sc., The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Oceanography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2011 © Lucas Brotz, 2011 Abstract Although there are various indications and claims that jellyfish have been increasing at a global scale in recent decades, a rigorous demonstration to this effect has never been presented. As this is mainly due to scarcity of quantitative time series of jellyfish abundance from scientific surveys, an attempt is presented here to complement such data with non- conventional information from other sources. This was accomplished using the analytical framework of fuzzy logic, which allows the combination of information with variable degrees of cardinality, reliability, and temporal and spatial coverage. Data were aggregated and analysed at the scale of Large Marine Ecosystem (LME). Of the 66 LMEs defined thus far, which cover the world’s coastal waters and seas, trends of jellyfish abundance (increasing, decreasing, or stable/variable) were identified (occurring after 1950) for 45, with variable degrees of confidence. Of these 45 LMEs, the overwhelming majority (31 or 69%) showed increasing trends. Recent evidence also suggests that the observed increases in jellyfish populations may be due to the effects of human activities, such as overfishing, global warming, pollution, and coastal development. Changing jellyfish populations were tested for links with anthropogenic impacts at the LME scale, using a variety of indicators and a generalized additive model. Significant correlations were found with several indicators of ecosystem health, as well as marine aquaculture production, suggesting that the observed increases in jellyfish populations are indeed due to human activities and the continued degradation of the marine environment. -
Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the Description of a New Genus to Accommodate H
Zootaxa 3905 (2): 151–192 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3905.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A47AE95B-99CA-42F0-979F-1CAAD1C3B191 A review of the hyperiidean amphipod genus Hyperoche Bovallius, 1887 (Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the description of a new genus to accommodate H. shihi Gasca, 2005 WOLFGANG ZEIDLER South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. E-mail [email protected] Table of contents Abstract . 151 Introduction . 152 Material and methods . 152 Systematics . 153 Suborder Hyperiidea Milne-Edwards, 1830 . 153 Family Hyperiidae Dana, 1852 . 153 Genus Hyperoche Bovallius, 1887 . 153 Key to the species of Hyperoche Bovallius, 1887 . 154 Hyperoche medusarum (Kröyer, 1838) . 155 Hyperoche martinezii (Müller, 1864) . 161 Hyperoche picta Bovallius, 1889 . 165 Hyperoche luetkenides Walker, 1906 . 168 Hyperoche mediterranea Senna, 1908 . 173 Hyperoche capucinus Barnard, 1930 . 177 Hyperoche macrocephalus sp. nov. 180 Genus Prohyperia gen. nov. 182 Prohyperia shihi (Gasca, 2005) . 183 Acknowledgements . 186 References . 186 Abstract This is the first comprehensive review of the genus Hyperoche since that of Bovallius (1889). This study is based primarily on the extensive collections of the ZMUC but also on more recent collections in other institutions. Seven valid species are recognised in this review, including one described as new to science. Two new characters were discovered; the first two pereonites are partially or wholly fused dorsally and the coxa of pereopod 7 is fused with the pereonite. -
The Early Life History of Fish
Rapp. P.-v. Réun. Cons. int. Explor. Mer, 191: 287-295. 1989 Process of estuarine colonization by 0-group sole (Solea solea): hydrological conditions, behaviour, and feeding activity in the Vilaine estuary Jocelyne Marchand and Gérard Masson Marchand, Jocelyne and Masson, Gérard. 1989. Process of estuarine colonization by 0-group sole (Solea solea): hydrological conditions, behaviour, and feeding activity in the Vilaine estuary. - Rapp. P.-v. Réun. Cons. int. Explor. Mer, 191: 287-295. The influence of environmental factors on the estuarine settlement and the behaviour of sole late larvae was examined by sampling which was stratified either by transects or by depth, photoperiod, and tidal conditions at one station. The initiation of inshore migration is controlled by the thermohaline conditions in the bay which depend on river flow, tidal cycle, and wind regime. Their fluctuations in abundance seem to be linked less to predator-prey relationships than to water density variations which induce spatial segregation of the sole and potential predators like ctenophora and scyphomedusae. In the estuary, late larvae exhibit a vertical migratory behaviour in relation to photoperiod with excursions up into the water column during the night. This diurnal rhythm is endogenous and is not related to feeding activity which is itself linked to tidal conditions and to predation on epi- and endo-benthic fauna. Jocelyne Marchand and Gérard Masson: Laboratoire de Biologie Marine, Université de Nantes, 2 rue de la Houssinière, 44072 Nantes Cedex 03, France. Introduction Methods The common sole, Solea solea, is a predominant species, In the bay and estuary of the Vilaine where the fresh economically and biologically, in the fish communities water flow is controlled by a barrage, 0-group sole were of the French Atlantic coast. -
Evolution of the TGF-B Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis Leidyi
Evolution of the TGF-b Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi Kevin Pang1, Joseph F. Ryan2, Andreas D. Baxevanis2, Mark Q. Martindale1* 1 Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 2 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America Abstract The TGF-b signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-b superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-b ligands, two TGF-b- like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-b receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. -
Ctenophore Immune Cells Produce Chromatin Traps in Response to Pathogens and NADPH- Independent Stimulus
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141010; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Ctenophore immune cells produce chromatin traps in response to pathogens and NADPH- independent stimulus Authors and Affiliations: Lauren E. Vandepasa,b,c*†, Caroline Stefanic†, Nikki Traylor-Knowlesd, Frederick W. Goetzb, William E. Brownee, Adam Lacy-Hulbertc aNRC Research Associateship Program; bNorthwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA 98112; cBenaroya Research Institute at Virginia Mason, Seattle, WA 98101; dUniversity of Miami Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33149; eUniversity of Miami Department of Biology, Coral Gables, FL 33146; *Corresponding author; †Authors contributed equally Key Words: Ctenophore; ETosis; immune cell evolution Abstract The formation of extracellular DNA traps (ETosis) is a mechanism of first response by specific immune cells following pathogen encounters. Historically a defining behavior of vertebrate neutrophils, cells capable of ETosis were recently discovered in several invertebrate taxa. Using pathogen and drug stimuli, we report that ctenophores – thought to represent the earliest- diverging animal lineage – possess cell types capable of ETosis, suggesting that this cellular immune response behavior likely evolved early in the metazoan stem lineage. Introduction Immune cells deploy diverse behaviors during pathogen elimination, including phagocytosis, secretion of inflammatory cytokines, and expulsion of nuclear material by casting extracellular DNA “traps” termed ETosis. Specific immune cell types have not been identified in early diverging non-bilaterian phyla and thus conservation of cellular immune behaviors across Metazoa remains unclear.