Siva‑1 Regulates Multidrug Resistance of Gastric Cancer by Targeting MDR1 and MRP1 Via the NF‑Κb Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Siva‑1 Regulates Multidrug Resistance of Gastric Cancer by Targeting MDR1 and MRP1 Via the NF‑Κb Pathway 1558 MOLECULAR MEDICINE REPORTS 22: 1558-1566, 2020 Siva‑1 regulates multidrug resistance of gastric cancer by targeting MDR1 and MRP1 via the NF‑κB pathway FAN-BIAO KONG1*, QIAO-MING DENG2*, HONG-QIANG DENG1*, CHEN-CHENG DONG1, LEI LI3, CHUN-GANG HE1, XIAO-TONG WANG3, SHENG XU1 and WEI MAI3 1Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021; 2Department of Surgery, Guangxi Traditional Chinese Medical University Affiliated First Hospital, Nanning, Guangxi Zhuang Autonomous Region 530023; 3Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China Received December 17, 2019; Accepted May 15, 2020 DOI: 10.3892/mmr.2020.11211 Abstract. Siva-1 is a well-known anti-apoptosis protein apoptotic cells decreased following overexpression of Siva-1. that serves a role in multiple types of cancer cells. However, The colony formation assay demonstrated that cell growth whether Siva-1 affects multidrug resistance via the NF-κB and proliferation were significantly promoted by Siva-1 pathway in gastric cancer is currently unknown. The present overexpression. Additionally, Siva-1 overexpression increased study aimed to determine the possible involvement of Siva-1 the migration and invasion of KATO III/VCR cells in vitro. in gastric cancer anticancer drug resistance in vitro. A Western blot analysis determined that Siva-1 overexpression vincristine (VCR)-resistant KATO III/VCR gastric cancer increased NF-κB, MDR1 and MRP1 levels. The current study cell line with stable Siva-1 overexpression was established. demonstrated that overexpression of Siva-1, which functions The protein expression levels of Siva-1, NF-κB, multidrug as a regulator of MDR1 and MRP1 gene expression in gastric resistance 1 (MDR1) and multidrug resistance protein 1 cancer cells via promotion of NF-κB expression, inhibited the (MRP1) were detected via western blotting. The effect of sensitivity of gastric cancer cells to certain chemotherapies. Siva-1 overexpression on anticancer drug resistance was These data provided novel insight into the molecular mecha- assessed by measuring the 50% inhibitory concentration of nisms of gastric cancer, and may be of significance for the KATO III/VCR cells to VCR, 5‑fluorouracil and doxorubicin. clinical diagnosis and therapy of patients with gastric cancer. The rate of doxorubicin efflux and apoptosis were detected by flow cytometry. Additionally, colony formation, wound Introduction healing and Transwell assays were used to detect the prolifera- tion, migration and invasion of cells, respectively. The results Advanced gastric cancer often recurs and metastasizes of the current study revealed that the Siva-1-overexpressed subsequent to surgery, and eventually the metastatic cancer KATO III/VCR gastric cancer cells exhibited a significantly cells develop resistance to the chemotherapeutic drugs (1-3). decreased sensitivity to VCR, 5‑fluorouracil and doxorubicin. Multidrug resistance (MDR) accounts for poor prognosis in The results of flow cytometry revealed that the percentage of gastric cancer (4), the development of multidrug resistance is a key issue for tumor recurrence and metastasis, leading to treatment failure of gastric cancer. Cancer cells may become unresponsive to chemotherapeutics via multidrug resistance, which interrupts apoptosis signaling. Multidrug resistance Correspondence to: Professor Sheng Xu, Department of involves the overexpression of energy-dependent ATP-binding Surgery, People's Hospital of Guangxi Zhuang Autonomous cassette transporter protein, which detoxifies cancer cells Region, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China and lowers intracellular concentrations under the therapeutic E‑mail: [email protected] threshold by pumping drugs out at the expense of ATP hydro- lysis (5,6). Therefore, it is necessary to identify multidrug Dr Xiao-Tong Wang, Department of Gastrointestinal and Peripheral resistant molecules in gastric cancer cells, and to develop more Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous effective diagnostic and therapeutic clinical strategies in order Region, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China to treat advanced gastric cancer. E‑mail: [email protected] Siva-1 exists in a wide variety of tissues and cells, and serves as a proapoptotic protein (7). Siva-1 was elucidated by *Contributed equally Prasad et al (8) from a HeLa cell library using yeast two-hybrid screening with a tumor necrosis factor receptor. Although Key words: Siva-1, multidrug resistance, gastric cancer numerous studies (9-11) have demonstrated that Siva-1 func- tions in the cytoplasm, studies have also determined that Siva-1 can relocate into the nucleus (12,13). The human Siva KONG et al: SIVA-1 REGULATES MULTIDRUG RESISTANCE OF GASTRIC CANCER 1559 gene is located on chromosome 14 (14), a region which is often 37˚C in a fully‑humidified atmosphere containing 5% CO2. targeted for chromosomal translocation. Previous studies KATO III/VCR cells were maintained culture medium was have demonstrated that Siva-1 arrests apoptosis and facilitates supplemented with 0.6 µg/ml VCR to maintain drug-resistant cancer development in osteosarcoma, hepatocellular carci- phenotypes. noma and non-small cell lung cancer (15-18). However, the molecular function of Siva-1 regulating multidrug resistant in Gene transfection. The DNA sequence of SIVA‑1 was gastric cancer currently remains uncertain as previous studies obtained from the Gene Bank (ID No. NM_6427) and the have presented confusing and ambiguous results (16), which cDNA, which included the entire coding sequence (CDS) has prompted further investigation into both its function of SIVA‑1 was obtained from Shanghai Cancer Institute. and associated signaling pathway. Whether Siva-1 acts as a pGV358-GFP (Shanghai Cancer Institute), which express determinant for gastric cancer development therefore requires green fluorescent protein, were used to construct the further examination. Siva-1-overexpression lentivirus. The Siva-1-overexpression With the aim of gaining further knowledge regarding the lentiviral vector (pGV358-GFP-SIVA‑1) and negative control specific mechanisms of Siva‑1 in gastric cancer and elucidating vector (pGV358-GFP) was stored in the laboratory of Guangxi molecular determinants for multidrug resistance, the current People's Hospital. Lentiviruses were generated by co-trans- study overexpressed Siva-1 in gastric cancer cells using a fecting pGV358-GFP-SIVA‑1 with pHelper1.0 and pHelper2.0 lentiviral vector. Subsequently, effects on chemotherapeutic plasmids (Shanghai Genechem Co., Ltd) into 293T cells compound 50% inhibitory concentration (IC50) values, apop- according to the manufacturer's protocol (20). Recombinant tosis, colony formation, metastasis and invasion were observed. pGV358-GFP-SIVA‑1 plasmid was transfected into 293T cells Preliminary experiments revealed that drug-sensitive (native) to determine LV titers using the end-point dilution method, gastric cancer cells were sensitive to chemotherapeutic which involved counting the number of infected green cells drugs at very low doses. Thus, it is appropriate to choose a under fluorescence microscopy (magnification, x100). The chemotherapeutic drug resistance gastric cancer cell line as lentiviral titer was calculated by the formula: lentiviral titer a research tool. The five commonly used chemotherapeutic (TU/ml) = number of positive cells x dilution times/volume drugs, including vincristine (VCR), doxorubicin (DOX), of lentivirus used. KATO III/VCR cells were plated at a low platinum drugs, 5‑fluorouracil (5‑FU) and paclitaxel (PTX), density (5x104 cells/well) in 6-well plates. Following incubation in gastric cancer is of great clinical interest (19). Therefore, for 24 h, KATO III/VCR cells were infected with polybrene the vincristine (VCR)-resistant KATO III/VCR gastric cancer (2 mg/ml; Shanghai Genechem Co., Ltd) combined with cell line was selected for further experimentation. DOX is a recombinant lentiviruses at a multiplicity of infection (MOI) common substrate for P-glycoprotein (P-gp), which is one of value of 12 PFU/cell (MOI, 12), as previously described (21). the major energy‑dependent efflux transporters that contribute Transfected cells were subsequently cultured in the presence to MDR. The ability to pump DOX was analyzed by flow of 600 mg/ml G418 (Invitrogen; Thermo Fisher Scientific) cytometry to reveal potential molecular determinants for for 4 weeks, after which stably overexpressed cell lines were multidrug resistance. Additionally, the possible underlying generated. Cells were then divided into three groups: i) KATO mechanisms of multidrug resistance were also investigated in III/VCR + LV-Siva-1; ii) KATO III/VCR + LV-negative the current study. control (NC); and iii) KATO III/VCR. Materials and methods Cytotoxicity assay. Cells (5x104 cells/ml) were cultured in 96-well tissue microplates (100 µl/well) and exposed Reagents. VCR, trypsin, penicillin and streptomycin were to VCR (1.8 µg/ml). Following incubation for 48 h at 37˚C, obtained from Sigma‑Aldrich (Merck KGaA). DOX (0.4 µg/ml) the cytotoxicity of KATO III/VCR + LV-Siva-1, KATO was purchased from Sigma‑Aldrich (Merck KGaA). Cells III/VCR + LV‑NC and KATO III/VCR cells was determined were cultured in RPMI‑1640 medium, which was purchased via an MTT assay
Recommended publications
  • University of Milano-Bicocca Department of Medicine and Surgery Circulating Levels of Soluble Receptor for Advanced Glycation En
    University of Milano-Bicocca Department of medicine and surgery PhD PROGRAM IN TRANSLATIONAL AND MOLECULAR MEDICINE DIMET Circulating levels of soluble Receptor for Advanced Glycation End-products (sRAGE) decrease with aging and may predict age- related cardiac remodeling Coordinator: Prof. Andrea Biondi Tutor: Prof. Giulio Pompilio Co-tutor: Dr. Angela Raucci Dr. Filippo Zeni Matr N°: 787963 XXIX CYCLE Academic Year 2015-2016 Table of contents Chapter 1……………..……………………………………………………………….3 General Introduction ............................................................................. 4 Aging ............................................................................................................ 4 Molecular mechanisms of aging ................................................................ 5 DNA Damage and instability .............................................................................. 5 DNA damage and apoptosis ............................................................................... 6 Telomere shortening ............................................................................................. 7 Epigenetic Alterations .......................................................................................... 8 Mitochondrial dysfunction .............................................................................. 10 Stem cells exhaustion ......................................................................................... 11 Biomarkers of aging ..........................................................................................
    [Show full text]
  • Genome-Wide Analysis of Host-Chromosome Binding Sites For
    Lu et al. Virology Journal 2010, 7:262 http://www.virologyj.com/content/7/1/262 RESEARCH Open Access Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Fang Lu1, Priyankara Wikramasinghe1, Julie Norseen1,2, Kevin Tsai1, Pu Wang1, Louise Showe1, Ramana V Davuluri1, Paul M Lieberman1* Abstract The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP- Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A con- sensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, sug- gesting that some of these sites are indirectly bound by EBNA1.
    [Show full text]
  • Human CD27 / TNFRSF7 Protein, His Tag (MALS Verified) Catalog # CD7-H522b
    Human CD27 / TNFRSF7 Protein, His Tag (MALS Verified) Catalog # CD7-H522b Synonym Formulation CD27,TNFRSF7,S152,T14,Tp55 Lyophilized from 0.22 μm filtered solution in PBS, pH7.4. Normally trehalose is Source added as protectant before lyophilization. Human CD27, His Tag (CD7-H522b) is expressed from human 293 cells Contact us for customized product form or formulation. (HEK293). It contains AA Thr 21 - Ile 192 (Accession # P26842-1). Reconstitution Predicted N-terminus: Thr 21 Molecular Characterization Please see Certificate of Analysis for specific instructions. For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA. Storage This protein carries a polyhistidine tag at the C-terminus. The protein has a calculated MW of 21.1 kDa. The protein migrates as 35-45 For long term storage, the product should be stored at lyophilized state at -20°C kDa under reducing (R) condition (SDS-PAGE) due to glycosylation. or lower. Please avoid repeated freeze-thaw cycles. Endotoxin This product is stable after storage at: Less than 1.0 EU per μg by the LAL method. -20°C to -70°C for 12 months in lyophilized state; ° Purity -70 C for 3 months under sterile conditions after reconstitution. >90% as determined by SDS-PAGE. SDS-PAGE SEC-MALS Human CD27, His Tag on SDS-PAGE under reducing (R) condition. The gel The purity of Human CD27, His Tag (Cat. No. CD7-H522b) was more than was stained overnight with Coomassie Blue. The purity of the protein is greater 85% and the molecular weight of this protein is around 38-48 kDa verified by than 90%.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Siva1 Suppresses Epithelial–Mesenchymal Transition and Metastasis of Tumor Cells by Inhibiting Stathmin and Stabilizing Microtubules
    Siva1 suppresses epithelial–mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules Nan Lia, Peng Jiangb, Wenjing Dub, Zhengsheng Wuc, Cong Lia, Mengran Qiaoa, Xiaolu Yangb,1, and Mian Wua,1 aHefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; bDepartment of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and cDepartment of pathology, Anhui Medical University, Hefei, Anhui 230032, China Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved June 20, 2011 (received for review November 19, 2010) Epithelial–mesenchymal transition (EMT) enables epithelial cells to still not clear, nor is the regulation of stathmin phosphorylation acquire motility and invasiveness that are characteristic of mesen- well understood. In this study, we find that stathmin interacts with chymal cells. It plays an important role in development and tumor Siva1, a molecule involved in aspects of apoptosis regulation (15– cell metastasis. However, the mechanisms of EMT and their dys- 18). Our study reveals a critical role for stathmin and microtubule function in cancer cells are still not well understood. Here we re- dynamics in promoting EMT. We further show that Siva1 is an port that Siva1 interacts with stathmin, a microtubule destabilizer. important negative regular of stathmin and that the down-regu- Siva1 inhibits stathmin’s activity directly as well as indirectly lation of Siva1 may promote EMT and tumor cell dissemination. through Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of stathmin at Ser16.
    [Show full text]
  • Regulation of Rhob Gene Expression During Tumorigenesis and Aging Process and Its Potential Applications in These Processes
    cancers Review Regulation of RhoB Gene Expression during Tumorigenesis and Aging Process and Its Potential Applications in These Processes Eutiquio Gutierrez 1,2,*, Ian Cahatol 1,3, Cedric A.R. Bailey 1,4, Audrey Lafargue 5 , Naming Zhang 6, Ying Song 6, Hongwei Tian 6, Yizhi Zhang 6, Ryan Chan 6, Kevin Gu 6, Angel C.C. Zhang 7, James Tang 7, Chunshui Liu 7, Nick Connis 6, Phillip Dennis 6 and 6, Chunyu Zhang y 1 College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E 2nd Street, Pomona, CA 91766, USA 2 Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson Street, Torrance, CA 90509, USA 3 Department of Graduate Medical Education, Community Memorial Health System, 147 N Brent Street, Ventura, CA 93003, USA 4 Department of Pathology and Immunology, Washington University School of Medicine, 509 S Euclid Avenue, St. Louis, MO 63110, USA 5 Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231, USA 6 Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA 7 Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA * Correspondence: [email protected] Deceased: This paper is dedicated to Dr. Chunyu Zhang, the principal investigator of this research. y Received: 25 April 2019; Accepted: 6 June 2019; Published: 13 June 2019 Abstract: RhoB, a member of the Ras homolog gene family and GTPase, regulates intracellular signaling pathways by interfacing with epidermal growth factor receptor (EGFR), Ras, and phosphatidylinositol 3-kinase (PI3K)/Akt to modulate responses in cellular structure and function.
    [Show full text]
  • Toward Understanding the Role of P53 in Cardiovascular Diseases
    J. Biomedical Science and Engineering, 2013, 6, 209-212 JBiSE http://dx.doi.org/10.4236/jbise.2013.62A025 Published Online February 2013 (http://www.scirp.org/journal/jbise/) Toward understanding the role of p53 in cardiovascular diseases Mohanalatha Chandrasekharan1, Silvia Vasquez2, Rajesh Kumar Galimudi3, Prashanth Suravajhala1 1Bioclues.org, IKP Knowledge Park, Secunderabad, India 2Instituto Peruano de Energía Nuclear, Centro Nuclear RACSO, Lima, Perú 3Department of Genetics, Osmania University, Hyderabad, India Email: [email protected], [email protected], [email protected], [email protected] Received 14 November 2012; revised 15 December 2012; accepted 22 December 2012 ABSTRACT hypertrophy to heart failure through the suppression of hypoxia inducible factor-1 (HIF-1), which regulates an- Tumour suppressor protein 53 (TP53 or simply p53) giogenesis in the hypertrophied heart. In addition, as p53 is a well known protein linked to apoptosis, cell sig- is known to promote apoptosis, which in turn is involved nalling, cascading and several myriad functions in in heart failure, p53 might be a key molecule in trigger- cells. Many diseases are linked to p53 though analysis ing the development of heart failure from multiple me- show only 216 interaction partners. Whether p53 chanisms [5,6]. While p53 can modulate the activity and plays an important role in cardiovascular diseases expression of some other proteins have been recently (CVD) remains uncertain. Through this bioinfor- studied, whether or not there are potentially beneficial matical analysis, we propose that p53 might play a effects remains to be understood. The actions of the ag- major role in CVD whilst being linked to Hypoxia ing proteins on the CVD have been well studied [7] with and Lupus.
    [Show full text]
  • 1017372108.Full.Pdf
    Siva1 suppresses epithelial–mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules Nan Lia, Peng Jiangb, Wenjing Dub, Zhengsheng Wuc, Cong Lia, Mengran Qiaoa, Xiaolu Yangb,1, and Mian Wua,1 aHefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; bDepartment of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and cDepartment of pathology, Anhui Medical University, Hefei, Anhui 230032, China Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved June 20, 2011 (received for review November 19, 2010) Epithelial–mesenchymal transition (EMT) enables epithelial cells to still not clear, nor is the regulation of stathmin phosphorylation acquire motility and invasiveness that are characteristic of mesen- well understood. In this study, we find that stathmin interacts with chymal cells. It plays an important role in development and tumor Siva1, a molecule involved in aspects of apoptosis regulation (15– cell metastasis. However, the mechanisms of EMT and their dys- 18). Our study reveals a critical role for stathmin and microtubule function in cancer cells are still not well understood. Here we re- dynamics in promoting EMT. We further show that Siva1 is an port that Siva1 interacts with stathmin, a microtubule destabilizer. important negative regular of stathmin and that the down-regu- Siva1 inhibits stathmin’s activity directly as well as indirectly lation of Siva1 may promote EMT and tumor cell dissemination. through Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of stathmin at Ser16.
    [Show full text]
  • Human CD27 / TNFRSF7 Protein
    Human CD27 / TNFRSF7 Protein Catalog # AMS.CD7-H522b For Research Use Only CD7-H522b-STC2 Description Source Human CD27 (AMS.CD7-H522b) is expressed from human 293 cells (HEK293). It contains AA Thr 21 - Ile 192 (Accession # P26842-1). Predicted N-terminus: Thr 21 Predicted N-terminus Thr 21 Protein Structure Molecular This protein carries a polyhistidine tag at the C-terminus. The protein has a calculated MW of 21.1 kDa. The protein migrates as 35- Characterization 45 kDa under reducing (R) condition (SDS-PAGE) due to glycosylation. Endotoxin Less than 1.0 EU per μg by the LAL method. Purity >90% as determined by SDS-PAGE. Formulation and Storage Formulation Lyophilized from 0.22 μm filtered solution in PBS, pH7.4. Normally trehalose is added as protectant before lyophilization. Contact us for customized product form or formulation. Reconstitution Please see Certificate of Analysis for specific instructions.For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA. Storage For long term storage, the product should be stored at lyophilized state at -20°C or lower.Please avoid repeated freeze-thaw cycles. No activity loss was observed after storage at: ● 4-8℃ for 12 months in lyophilized state; ● -70℃ for 3 months under sterile conditions after reconstitution. Background Background CD Antigen CD27 is also known as Tumor necrosis factor receptor superfamily member 7 (TNFRSF7), which belongs to TNF- receptor superfamily. CD27 / TNFRSF7 is found in most T-lymphocytes. CD27 / TNFRSF7 is required for generation and long-term maintenance of T cell immunity. It binds to ligand CD70, and plays a key role in regulating B-cell activation and immunoglobulin synthesis.
    [Show full text]
  • Helicobacter Pylori: Preying on SIVA for Survival in the Stomach
    The Journal of Clinical Investigation COMMENTARY Helicobacter pylori: preying on SIVA for survival in the stomach José B. Sáenz1 and Jason C. Mills1,2,3 1Division of Gastroenterology, Department of Internal Medicine, 2Department of Developmental Biology, and 3Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA. infected with cagA-positive strains of H. pylori showed increased XIAP phosphor- Infection with the Gram-negative bacterium Helicobacter pylori remains the ylation (the activated form of the protein) most important modifiable risk factor for the development of gastric cancer, and decreased SIVA1 compared with unin- a leading cause of cancer-related deaths worldwide. How the interactions fected individuals or those infected with between H. pylori and its host shape the gastric environment during chronic cagA-negative strains (5). This article thus infection warrants further investigation. In this issue of the JCI, Palrasu identifies yet another key function of the et al. used human cell lines and mouse models to provide mechanistic versatile CagA protein (10), in this case insight into H. pylori’s ability to delay apoptosis in gastric epithelial cells promoting H. pylori pathogenesis by sub- by actively driving the degradation of a proapoptotic factor, SIVA1. Their verting established host apoptotic defense findings suggest that promoting the survival of gastric epithelial cells has mechanisms (5). implications not only for H. pylori pathogenesis but for host tumorigenesis. Apoptosis in the stomach The Palrasu et al. study (5) forces us to reconsider the evolutionary tit-for-tat that exists between H. pylori and the human Helicobacter pylori overcomes changes in epithelial cell proliferation, stomach.
    [Show full text]
  • Elucidating the IGFBP2 Signaling Pathway in Glioma Development and Progression
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2012 Elucidating the IGFBP2 signaling pathway in glioma development and progression Kristen M. Holmes Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Holmes, Kristen M., "Elucidating the IGFBP2 signaling pathway in glioma development and progression" (2012). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 222. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/222 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Elucidating the IGFBP2 signaling pathway in glioma development and progression By Kristen M. Holmes, M.S. APPROVED: ___________________________ Wei Zhang, Ph.D.,
    [Show full text]