Technological Intervention in Waste Management Dr
Total Page:16
File Type:pdf, Size:1020Kb
Technological Intervention in Waste Management Dr. Anurag Garg Centre for Environmental Science & Engineering Indian Institute of Technology Bombay, Mumbai in The Waste Management Conclave, Vikroli Organized by Godrej & Boyce Mfg. Co. Ltd. May 9, 2016 2 3 Municipal Solid Waste Generation (MT/day) in the State of Maharashtra ( 2012-2013) URL1 4 Classification of MSW MSW components Organic Inorganic (e.g. metals, inerts) Biodegradable Non-biodegradable (e.g. plascs) Readily degradable Slowly or par;ally (e.g. food waste) degradable (e.g. paper, tex;le) 5 General MSW Composition In Mumbai (in percent wet basis) MSW components Value Biodegradable fraction 62 Paper 7.5 Plastic 10 Glass 0.7 Metals 0.2 Inert (stones, bricks etc) 15 Miscellaneous (leather, cotton rubber, 4.6 bones etc) Moisture 54 C/N 39.04 High calorific value (HCV) (MJ/kg 7.47 URL 2, URL 3 6 MSW Generation and Disposal in Mumbai (HT, 15th Dec 2014) • Total MSW: 10,060 MT/day • Per capita generation: 450 g/day • Composition: ü Biodegradable wet waste = 54% ü Biodegradable dry waste = 15% ü Sand, stone and fine earth = 12% ü Paper, metal and other usable metals = 10% ü Plastic = 9% • Disposal: ü Deonar dumping ground ü Mulund dumping ground ü Kanjurmarg dumping ground 7 Waste Hierarchy – A Shift in Thinking 8 Energy Savings Of Recycling Material Relative energy needed to manufacture vs energy generated from incineration Newspaper 2.6 times Office paper 4.3 times Glass containers 30 times Tin cans 30 times Aluminum cans 350 times Plastics 3 – 5 times Textiles 5 – 8 times 9 Functional Elements of a Waste Management System • Waste generation • Waste handling and separation, storage and processing at the source • Collection • Separation, processing and transformation of solid waste • Transfer and transport • Disposal 10 Major Treatment Processes for MSW Major outputs Biological Composting Compost processes Anaerobic Biogas, digestion digestate Waste processing methods Incineration Heat, gases, ash Thermal processes Producer Gasification/ gas, solid Pyrolysis fuel, tar11 Prediction of MSW derived Refuse Derived Fuel Composition and its Performance Evaluation in Energy Recovery Processes - A Preliminary Study Components RDF Composition (%) Remarks Compostable (Yard waste, Food 21.6 Components scraps) contributing to Paper 7.5 biogenic fraction Plastics 35.5 = compostable + paper + wood + Rubber, leather and textiles 3.3 textile & leather Metals 0.7 Wood 3.8 RDF Quantity = Glass 0.4 2237000 kg/d = Other 27.2 Moisture content (%) 25.5 ~ 23% of MSW Calorific value 11.09 MJ/kg 12 Co-Combustion Scenarios RDF outlets Cement plant (1 Mt/y) Power plants (2780 MW) Scenario No. 1 2 3 4 5 6 7 RDF share (%) 0 25 30 40 0 4 4.5 Coal feed rate 25047 18786 17533 15028 1901216 1825167 1815661 (kg/h) RDF feed rate 0 6262 7514 10019 0 76049 85555 (kg/h) 13 Mass and Energy Flow Modelling for Cement Kilns 14 Comparison of Emissions in Different Combustion Scenarios Scenario 1 2 3 4 5 6 7 Net CO2 (RDF biogenic fraction 37535 34378 33752 32511 2847665 2809514 2804692 + transport) SO2 1.00 0.87 0.84 0.79 75.7 74.2 74.0 SO3 0.013 0.011 0.011 0.010 0.96 0.94 0.93 Net SOx 1.01 0.88 0.85 0.80 76.7 75.1 74.9 NO 19.6 16.3 15.6 14.3 1491.1 1450.5 1445.4 N2O 14.4 12.0 11.5 10.5 1093.5 1063.7 1060.0 Total NOx 54.4 45.9 44.3 41.2 4110.9 4010.5 3997.3 (including transport) HCl 0.2 1.4 1.7 2.2 16.6 31.3 33.1 CO 13.1 11.4 11.1 10.6 984.8 965.3 962.5 HC 0.81 0.70 0.68 0.65 60.73 59.53 59.35 Ash content 0.87 0.77 0.75 0.72 6.61 6.49 6.48 PM (transport) 2.7 2.4 2.3 2.2 203.5 199.5 198.9 * All values presented here in kg/h 15 Environmental Impacts of using RDF as Co-fuel in Cement Kiln 25 Coal + 25% RDF Coal + 30% RDF Coal + 40% RDF 20 15 10 % Reduction %Reduction 5 0 GW A WS GW – Global warming; A – Acidification and WS – winter smog 16 Change in Electricity/ Heat Production Reduction in Cement kiln Power plant production/ emissions Electricity/ heat 7 – 16 1.4 & 1.6 production (%) Global warming (%) 8 – 13 1.5 & 1.7 Acidification (%) 12 – 15 2.0 & 2.3 Winter smog (%) 13 – 20 2.0 & 2.3 17 Change in Electricity/ Heat Production Reduction in Cement kiln Power plant production/ emissions Electricity/ heat 7 – 16 1.4 & 1.6 production (%) Global warming (%) 8 – 13 1.5 & 1.7 Acidification (%) 12 – 15 2.0 & 2.3 Winter smog (%) 13 – 20 2.0 & 2.3 18 Development of Community Level Composting Bins – Decentralized Biodegradable Waste Management Purpose: • Reduce the time for biodegradation • Increased yield and better quality • Reduce need for waste transfer 19 Schematic Representation of Study 20 Temperature and Moisture Content Profiles in (a) Drum 1 (b) Drum 2 (c) Drum 3 60 70 60 70 55 60 55 60 50 50 50 50 45 40 45 (a) 40 40 30 40 30 (b) Temperature (°C) 35 20 35 20 Moisture content (%) Temperature (°C) Moisture content (%) 30 10 30 10 25 0 25 0 0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60 Time (days) Time (days) 60 70 55 (c) 60 50 50 45 40 40 30 35 20 Temperature (°C) 30 10 Moisture content (%) 25 0 0 6 12 18 24 30 36 42 48 54 60 Time (days) Ambient temperature Middle temperature 21 Botoom temperature Mass Reduction Comparison of Compost and Yield with and without Inoculum Parameters Compost 90 25 80 Mass Yield Without With 70 20 inoculum inoculum 60 15 50 TOM (%) 42.36 37.53 40 Yield (%) Mass (kg) 10 pH 7.1 7.3 30 20 5 EC (dS/m) 2.41 2.2 10 0 0 C/N rao 12.11 9.67 Feedstock Drum 1 Drum 2 Drum 3 Time taken to achieve 22 days 8 days thermophilic phase Time taken for ac;ve 55 days 39 days phase of composng GI (%) 80% 90% 22 Compost Characteristics Parameter Drum 1 Drum 2 Drum 3 PAS, FAI, Drum Drum Drum FAI, UK India 1 2 3 India (2011) (2007) (2007) Trace elements (mg/kg) pH 5.12 7.1 7.3 6.5-7.5 (0.2) (0.2) (0.1) B 70.05 68.05 49.93 (11.27) (33.65) (32.4) EC 2.11 2.41 2.2 ≤ 4 Ba 6.65 (0.28) 3.2 (0.1) 20.77 (dS/m) (0.8) (0.3) (0.1) (2.08) TOM 61.23 42.36 37.53 35-40% Co 0.55 (0.1) 0.1 (0) 1.05 (0.1) (%) (3.5) (2.18) (1.85) Cr 8.8 (0.07) 5.37 16 (0.14) 100 50 (0.88) C/N 14.68 12.11 9.67 ≤ 20 Cu 7.15 (0.21) 4.62 13.17 200 300 ratio (1.03) (1.24) (2.11) (0.32) (1.38) Ni 4.55 (0.1) 2.75 7.02 50 50 (0.28) (0.67) Pb 10.2 (0.14) 11.12 13.57 200 100 (1.09) (0.81) Sr 13.7 (1.27) 14.3 28.47 (0.42) (1.23) Zn 30.25 23.37 13.17 400 1000 (0.21) (1.52) (1.38) 23 MSWM Issues/ Challenges • Availability of MSW characterisation data covering seasonal variations • Improper segregation of waste • Need for proper waste management facility (with proper measures for monsoon season) and skilled manpower • Market uncertainty for the products generated from MSW processing • Redevelopment and scientific closure of existing landfills • Identification of hazardous and toxic consumer products requiring special waste management units • Public awareness 24 Opportunities • Volume reduction at the source of generation by producing compost or biogas • Possibility for generating energy from waste • Employment generation • Saving significant land space by processing the waste • Environmental protection by suppressing the generation of Greenhouse gas emissions 25 References • Srivastava et al., 2014. Urban solid waste management in developing world with emphasis on India: Challenges and Opportunities. Reviews in Environmental Science and Biotechnology, pages 17. (Available online) • URL 1. http://mpcb.gov.in/muncipal/pdf/Regionwise_MSW_Generation2014.pdf • URL 2. http://www.seas.columbia.edu/earth/wtert/sofos/DBSSRS_Article_- _WTE_INDIA_BRIEF_Revised.pdf • URL 3. CPCB (Central Pollution Control Board). Waste generation and composition. Accessed on 23rd March, 2011 from: http://cpcb.nic.in/wast/municipalwast/Waste_generation_Composition.pdf • Sharholy, M., Ahmad, K., Mahmood, G., Trivedi, R.C., 2008. Municipal solid waste management in Indian cities – A review. Waste Manage. 28, 459-467. • Hindustan Times, 15th December 2014. • Planning Commission Report, Volume I (2014) 26 Thank you very much E-mail: [email protected] Decentralized Systems 28 .