Security Now! #518 - 07-28-15 HORNET: a Fix for TOR?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systematization of Vulnerability Discovery Knowledge: Review
Systematization of Vulnerability Discovery Knowledge Review Protocol Nuthan Munaiah and Andrew Meneely Department of Software Engineering Rochester Institute of Technology Rochester, NY 14623 {nm6061,axmvse}@rit.edu February 12, 2019 1 Introduction As more aspects of our daily lives depend on technology, the software that supports this technology must be secure. We, as users, almost subconsciously assume the software we use to always be available to serve our requests while preserving the confidentiality and integrity of our information. Unfortunately, incidents involving catastrophic software vulnerabilities such as Heartbleed (in OpenSSL), Stagefright (in Android), and EternalBlue (in Windows) have made abundantly clear that software, like other engineered creations, is prone to mistakes. Over the years, Software Engineering, as a discipline, has recognized the potential for engineers to make mistakes and has incorporated processes to prevent such mistakes from becoming exploitable vulnerabilities. Developers leverage a plethora of processes, techniques, and tools such as threat modeling, static and dynamic analyses, unit/integration/fuzz/penetration testing, and code reviews to engineer secure software. These practices, while effective at identifying vulnerabilities in software, are limited in their ability to describe the engineering failures that may have led to the introduction of vulnerabilities. Fortunately, as researchers propose empirically-validated metrics to characterize historical vulnerabilities, the factors that may have led to the introduction of vulnerabilities emerge. Developers must be made aware of these factors to help them proactively consider security implications of the code that they contribute. In other words, we want developers to think like an attacker (i.e. inculcate an attacker mindset) to proactively discover vulnerabilities. -
Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE of CONTENTS 2016 Internet Security Threat Report 2
Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE OF CONTENTS 2016 Internet Security Threat Report 2 CONTENTS 4 Introduction 21 Tech Support Scams Go Nuclear, 39 Infographic: A New Zero-Day Vulnerability Spreading Ransomware Discovered Every Week in 2015 5 Executive Summary 22 Malvertising 39 Infographic: A New Zero-Day Vulnerability Discovered Every Week in 2015 8 BIG NUMBERS 23 Cybersecurity Challenges For Website Owners 40 Spear Phishing 10 MOBILE DEVICES & THE 23 Put Your Money Where Your Mouse Is 43 Active Attack Groups in 2015 INTERNET OF THINGS 23 Websites Are Still Vulnerable to Attacks 44 Infographic: Attackers Target Both Large and Small Businesses 10 Smartphones Leading to Malware and Data Breaches and Mobile Devices 23 Moving to Stronger Authentication 45 Profiting from High-Level Corporate Attacks and the Butterfly Effect 10 One Phone Per Person 24 Accelerating to Always-On Encryption 45 Cybersecurity, Cybersabotage, and Coping 11 Cross-Over Threats 24 Reinforced Reassurance with Black Swan Events 11 Android Attacks Become More Stealthy 25 Websites Need to Become Harder to 46 Cybersabotage and 12 How Malicious Video Messages Could Attack the Threat of “Hybrid Warfare” Lead to Stagefright and Stagefright 2.0 25 SSL/TLS and The 46 Small Business and the Dirty Linen Attack Industry’s Response 13 Android Users under Fire with Phishing 47 Industrial Control Systems and Ransomware 25 The Evolution of Encryption Vulnerable to Attacks 13 Apple iOS Users Now More at Risk than 25 Strength in Numbers 47 Obscurity is No Defense -
Compromised Connections
COMPROMISED CONNECTIONS OVERCOMING PRIVACY CHALLENGES OF THE MOBILE INTERNET The Universal Declaration of Human Rights, the International Covenant on Civil and Political Rights, and many other international and regional treaties recognize privacy as a fundamental human right. Privacy A WORLD OF INFORMATION underpins key values such as freedom of expression, freedom of association, and freedom of speech, IN YOUR MOBILE PHONE and it is one of the most important, nuanced and complex fundamental rights of contemporary age. For those of us who care deeply about privacy, safety and security, not only for ourselves but also for our development partners and their missions, we need to think of mobile phones as primary computers As mobile phones have transformed from clunky handheld calling devices to nifty touch-screen rather than just calling devices. We need to keep in mind that, as the storage, functionality, and smartphones loaded with apps and supported by cloud access, the networks these phones rely on capability of mobiles increase, so do the risks to users. have become ubiquitous, ferrying vast amounts of data across invisible spectrums and reaching the Can we address these hidden costs to our digital connections? Fortunately, yes! We recommend: most remote corners of the world. • Adopting device, data, network and application safety measures From a technical point-of-view, today’s phones are actually more like compact mobile computers. They are packed with digital intelligence and capable of processing many of the tasks previously confined -
The Dark Reality of Open Source Spotlight Report
SPOTLIGHT The Dark Reality of Open Source Through the Lens of Threat and Vulnerability Management RiskSense Spotlight Report • May 2020 Executive Summary Open sourCe software (OSS) has quiCkly transformed both And while Heartbleed and the Apache Struts how modern applications are built and the underlying code vulnerabilities are the household names of open source they rely on. Access to high-quality and powerful open vulnerabilities, they are far from the only examples. Open source software projects has allowed developers to quickly source software is increasingly being targeted by integrate new capabilities into their applications without cryptominers, ransomware, and leveraged in DDoS having to reinvent the wheel. As a result, it is now estimated attacks. Unfortunately, OSS vulnerabilities are often a that between 80% and 90% of the code in most modern blind spot for many enterprises, who may not always be applications is made up of open source components. aware of all the open source projects and dependencies Likewise, many of the very tools that have enabled the that are used in their applications. growth of DevOps and CI/CD such as Jenkins, Kubernetes, and Docker are themselves open source projects. With this in mind, we have focused this version of the RiskSense Spotlight report on vulnerabilities in some of OSS also allows organizations to reduce their software today’s most popular open source software, including costs, and is often key to digital transformation efforts more than 50 OSS projects and over 2,600 vulnerabilities. and the transition of services to the cloud. It is no We then used this dataset to provide a risk-based surprise then that a 2020 report from Red Hat found that analysis of open source software to reveal the following: 95% of organizations view open source software as strategically important to their business. -
Combat Top Security Vulnerabilities: HPE Tippingpoint Intrusion
Business white paper Combat top security vulnerabilities HPE TippingPoint intrusion prevention system Business white paper Page 2 The year 2014 marked a new pinnacle for hackers. Vulnerabilities were uncovered in some of the most widely deployed software in the world—some of it in systems actually intended to make you more secure. HPE TippingPoint next-generation intrusion prevention system (IPS) and next-generation firewall (NGFW) customers rely on us to keep their networks safe. And when it comes to cyber threats, every second matters. So how did HPE TippingPoint do? This brief highlights the top security vulnerabilities of 2014—the ones that sent corporate security executives scrambling to protect their businesses. And it describes how HPE TippingPoint responded to keep our customers safe. Heartbleed—HPE TippingPoint intrusion prevention system stops blood flow early Any vulnerability is concerning, but when a vulnerability is discovered in software designed to assure security, it leaves businesses exposed and vulnerable. That was the case with the Heartbleed vulnerability disclosed by the OpenSSL project on April 7, 2014. They found the vulnerability in versions of OpenSSL—the open-source cryptographic library widely used to encrypt Internet traffic. Heartbleed grew from a coding error that allowed remote attackers to read information from process memory by sending heartbeat packets that trigger a buffer over-read. As a demonstration of the vulnerability, the OpenSSL Project created a sample exploit that successfully stole private cryptography keys, user names and passwords, instant messages, emails, and business-critical documents and communications. We responded within hours to protect TippingPoint customers. On April 8, we released a custom filter package to defend against the vulnerability. -
Mind the Gap: Dissecting the Android Patch Gap | Ben Schlabs
Mind the Gap – Dissecting the Android patch gap Ben Schlabs <[email protected]> SRLabs Template v12 Corporate Design 2016 Allow us to take you on two intertwined journeys This talk in a nutshell § Wanted to understand how fully-maintained Android phones can be exploited Research § Found surprisingly large patch gaps for many Android vendors journey – some of these are already being closed § Also found Android exploitation to be unexpectedly difficult § Wanted to check thousands of firmwares for the presence of Das Logo Horizontal hundreds of patches — Pos / Neg Engineering § Developed and scaled a rather unique analysis method journey § Created an app for your own analysis 2 3 Android patching is a known-hard problem Patching challenges Patch ecosystems § Computer OS vendors regularly issue patches OS vendor § Users “only” have to confirm the installation of § Microsoft OS patches Patching is hard these patches § Apple Endpoints & severs to start with § Still, enterprises consider regular patching § Linux distro among the most effortful security tasks § “The moBile ecosystem’s diversity […] OS Chipset Phone Android contriButes to security update complexity and vendor vendor vendor phones inconsistency.” – FTC report, March 2018 [1] The nature of Telco § Das Logo HorizontalAndroid makes Patches are handed down a long chain of — Pos / Negpatching so typically four parties Before reaching the user much more § Only some devices get patched (2016: 17% [2]). difficult We focus our research on these “fully patched” phones Our research question – -
Automating Patching of Vulnerable Open-Source Software Versions in Application Binaries
Automating Patching of Vulnerable Open-Source Software Versions in Application Binaries Ruian Duan:, Ashish Bijlani:, Yang Ji:, Omar Alrawi:, Yiyuan Xiong˚, Moses Ike:, Brendan Saltaformaggio,: and Wenke Lee: fruian, ashish.bijlani, yang.ji, alrawi, [email protected], [email protected] [email protected], [email protected] : Georgia Institute of Technology, ˚ Peking University Abstract—Mobile application developers rely heavily on open- while ensuring backward compatibility, and test for unin- source software (OSS) to offload common functionalities such tended side-effects. For the Android platform, Google has as the implementation of protocols and media format playback. initiated the App Security Improvement Program (ASIP) [21] Over the past years, several vulnerabilities have been found in to notify developers of vulnerable third-party libraries in popular open-source libraries like OpenSSL and FFmpeg. Mobile use. Unfortunately, many developers, as OSSPolice [15] and applications that include such libraries inherit these flaws, which LibScout [4] show, do not update or patch their application, make them vulnerable. Fortunately, the open-source community is responsive and patches are made available within days. However, which leaves end-users exposed. Android developers mainly mobile application developers are often left unaware of these use Java and C/C++ [1] libraries. While Derr et al. [14] flaws. The App Security Improvement Program (ASIP) isa show that vulnerable Java libraries can be fixed by library- commendable effort by Google to notify application developers level update, their C/C++ counterparts, which contain many of these flaws, but recent work has shown that many developers more documented security bugs in the National Vulnerability do not act on this information. -
Cyberwar: the ISIL Threat & Resiliency in Operational Technology
Cyberwar: The ISIL Threat & Resiliency in Operational Technology Thesis Presented to the Faculty of the Department of Information and Logistics Technology University of Houston In Partial Fulfillment of the Requirements for the Degree Master’s of Information Systems Security By Gregory S. Anderson May 2017 Cyberwar: The ISIL Threat & Resiliency in Operational Technology ____________________________________ Gregory S. Anderson Approved: Committee Chair: ____________________________________ Wm. Arthur Conklin, PhD Computer Information Systems and Information System Security Committee Member: ____________________________________ Chris Bronk, PhD Computer Information Systems and Information System Security Committee Member: ____________________________________ Paula deWitte, PhD Computer Information Systems and Information System Security ____________________________________ ____________________________________ Rupa Iyer, PhD Dan Cassler Associate Dean for Research and Graduate Interim Chair for Department of Information Studies, College of Technology and Logistics Technology THIS PAGE INTENTIONALLY LEFT BLANK Acknowledgments First, I would like to thank Dr. Chris Bronk and Dr. Art Conklin for their support and guidance throughout my time at the University of Houston. Their dedication to students is unparalleled for any other professor I have come across during my education. I would also like to thank my family for their ongoing encouragement and love. The fostering environment to peruse knowledge and “never settle for less” has been a constant inspiration throughout my life. Lastly, to my partner of 7 years, Lorelei. None of my achievements these past few years would have come to fruition without her continuous love, support, and willingness to sacrifice for the greater good is deeply appreciated. Thank you for being the most patient and steadfast person I have ever known, I love you. -
VULNERABLE by DESIGN: MITIGATING DESIGN FLAWS in HARDWARE and SOFTWARE Konoth, R.K
VU Research Portal VULNERABLE BY DESIGN: MITIGATING DESIGN FLAWS IN HARDWARE AND SOFTWARE Konoth, R.K. 2020 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Konoth, R. K. (2020). VULNERABLE BY DESIGN: MITIGATING DESIGN FLAWS IN HARDWARE AND SOFTWARE. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 07. Oct. 2021 VULNERABLE BY DESIGN: MITIGATING DESIGN FLAWS IN HARDWARE AND SOFTWARE PH.D. THESIS RADHESH KRISHNAN KONOTH VRIJE UNIVERSITEIT AMSTERDAM, 2020 Faculty of Science The research reported in this dissertation was conducted at the Faculty of Science — at the Department of Computer Science — of the Vrije Universiteit Amsterdam This work was supported by the MALPAY consortium, consisting of the Dutch national police, ING, ABN AMRO, Rabobank, Fox-IT, and TNO. -
Extra Credit Homework CS 642: Information Security
Extra Credit Homework CS 642: Information Security December 10, 2014 This homework assignment is for extra credit. It can only make your grade go up, and you can turn in as much as you finish and still get bonus points (assuming the finished portions are correct). You may not work with a partner. It is due Dec 18, 2014 by midnight local time. 1 ShellShock Shellshock, also known as Bashdoor, is a Unix Bash vulnerability that was made public in September 2014. The bug affected a large number of Internet services since it allowed attackers to remotely execute arbitrary commands in vulnerable versions of Bash. In this problem, you need to finish the following tasks: • (Description) You should read materials about the Shellshock bug and what the error was in the source code of BASH. Provide a brief description (at most a few paragraphs) explaining the vulnerability and describe how to fix the bug. • (Impact) Security experts said that exploits against ShellShock were used to generate Botnets and trigger DDoS attacks. Provide a brief description of how that might work, given your knowledge of the vulnerability. • (Tester) You should write a script that tests whether a BASH environment is vulnerable. Provide the script and explain the details of your code (in a separate text file). 2 Heartbleed The Heartbleed bug, an OpenSSL encryption flaw, was made public in April 2014. The bug had huge consequences, as the vulnerable software was used widely among website servers. Millions of servers were in danger of information leaks. Heartbleed allows hackers to remotely retrieve swathes of process memory from the openssl process. -
Legacy of Heartbleed: MITM and Revoked Certificates
Legacy of Heartbleed: MITM and Revoked Certificates Alexey Busygin [email protected] NeoBIT Notable Private Key Leaks • 2010 – DigiCert Sdn Bhd. issued certificates with 512-bit keys • 2012 – Trustwave issued CA certificate for one of its customers DLP system • 2013 – DigiNotar CA was totally compromised • 2014 – Heartbleed bug caused certificate revocation storm. 500000+ certs to be revoked • 2015 – RSA-CRT private key leaks • 2017 – Cloudbleed bug in Cloudflare reverse proxies 2 Checking Certificate Revocation Status: Certificate Revocation Lists (CRL) • CAs publish CRLs – lists of revoked certificate serial numbers • Normally certificate contains URL of the corresponding CRL Why it’s not OK? CRLs are not appropriate for online checks: • Excess size (up to 1 MB) • Vulnerable to replay attacks 3 Checking Certificate Revocation Status: Online Certificate Status Protocol (OCSP) • CAs maintain OCSP responders answering with certificate revocation status • Normally certificate contains URL of the OCSP responder • OCSP provides optional replay attack protection Why it’s not OK? • Slows down connection establishment • Browsing history leaks to CA • OCSP responder is DDoS target 4 Checking Certificate Revocation Status: OCSP Stapling • No browsing history leaks • Choose one: o Replay attack protection o TLS server side OCSP response caching: Minimal impact on connection establishment time Reduced load on OCSP responder Why it’s not OK? • Stapled OCSP responses are optional and may be stripped by MITM • OCSP responder is DDoS target (if replay -
Heartbleed the Live Action Monologue
Heartbleed The Live Action Monologue Just over 40 slides / April 23rd, 2014 Cruft to Content ratio ~1:3 Rights of pictures per copyright holder/creator Ben Sapiro (CC-BY-SA), 2014 Ben Sapiro (CC-BY-SA), 2014 Ben Sapiro = @ironfog Ben Sapiro (CC-BY-SA), 2014 Standard Disclaimer ● My own opinion and views, not that of anyone else (most especially not my employer) ● I’m sorry in advance for whatever I may have done ● I’m sorry for whatever I did in the past ● I didn’t mean it that way (unless that way is correct and good) ● Go make your own informed decisions Ben Sapiro (CC-BY-SA), 2014 “Looking for a talking head…” Ben Sapiro (CC-BY-SA), 2014 OpenSSL = ... … an open-source implementation of the SSL and TLS protocols Ben Sapiro (CC-BY-SA), 2014 What’s a Heartbeat? “A HeartbeatRequest message can arrive almost at any time during the lifetime of a connection. Whenever a HeartbeatRequest message is received, it SHOULD be answered with a corresponding HeartbeatResponse message.” - RFC 6520 Ben Sapiro (CC-BY-SA), 2014 CVE-2014-0160 OpenSSL version 1.01(A-E) Ben Sapiro (CC-BY-SA), 2014 /* Enter response type, length and copy payload */ *bp++ = TLS1_HB_RESPONSE; s2n(payload, bp); memcpy(bp, pl, payload); User controlled What is not ● It is not a virus ● It is not a flaw in SSL or TLS ● It is not a flaw in any cipher suite ● It does not affect all web sites ● Does not directly impact other software outside of OpenSSL/LibSSL ● It is not an issue with all versions of OpenSSL ● It is not a BoF, ROP or any other voodoo Ben Sapiro (CC-BY-SA), 2014 XKCD