2 Mechanical (HVAC) Engineering Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Basic Design Approach to Clean Room
www.PDHcenter.com PDH Course M143 www.PDHonline.org A Basic Design Guide for Clean Room Applications Course Content PART – I OVERVIEW Clean rooms are defined as specially constructed, environmentally controlled enclosed spaces with respect to airborne particulates, temperature, humidity, air pressure, airflow patterns, air motion, vibration, noise, viable (living) organisms, and lighting. Particulate control includes: !" Particulate and microbial contamination !" Particulate concentration and dispersion “Federal Standard 209E” defines a clean room as a room in which the concentration of airborne particles is controlled to specified limits. “British Standard 5295” defines a clean room as a room with control of particulate contamination, constructed and used in such a way as to minimize the introduction, generation and retention of particles inside the room and in which the temperature, humidity, airflow patterns, air motion and pressure are controlled. Today, many manufacturing processes require that spaces be designed to control particulate and microbial contamination while maintaining reasonable installation and operating costs. Clean rooms are typically used in manufacturing, packaging, and research facilities associated with these industries: 1. Semiconductor: This industry drives the state of the art clean room design, and this industry accounts for a significant number of all operating clean rooms. 2. Pharmaceutical: Clean rooms control living particles that would produce undesirable bacterial growth in the preparation of biological, pharmaceutical, and other medical products as well as in genetic engineering research. Page 1 of 61 www.PDHcenter.com PDH Course M143 www.PDHonline.org 3. Aerospace: The manufacturing and assembling of aerospace electronics, missiles and satellites were the first application of clean rooms. -
System 636 Flue Gas Venting Finds Home in HGTV Celebrity Scott Mcgillivray's New House
The Mechanical Pipeline System 636® Flue Gas Venting Finds Home in HGTV Celebrity PROJECT SUMMARY Scott McGillivray’s New House • Approx. 10,000 sq.ft. house cott McGillivray fixes homes on • 3 furnaces TV in front of a ginormous McGillivray approached IPEX audience but he’s not just another • 1 combination heating/ S to provide piping, conduit celebrity. Scott makes a living from his domestic hot water boiler expertise in construction with more than and venting for his home • All natural gas equipment 10 years of contracting experience (plus because of IPEX’s reputation vented with System 636® some charm thrown in there). PVC and CPVC piping for having a broad range of Based on his building material knowledge, top-notch products. he also promotes the use of vinyl products for residential applications as a member of the Vinyl Council of Canada. are fundamental aspects of the home’s construction. At Home North of Toronto With this in mind, McGillivray approached Scott’s company, The McGillivray IPEX to provide piping, conduit and venting Group, created a new show, Moving for his home because of IPEX’s reputation the McGillivrays, which documents the for providing a broad range of high-quality construction of Scott’s new house located themoplastic products. on a large lot north of Toronto, Ontario. Built on 2 acres of land, this dwelling is closer to “We supplied anything we manufacture the size of a small commercial building than that his house needed,” said Steve Barker, the average home. senior account manager at IPEX HomeRite Products, the residential arm of IPEX Inc. -
Operating Room Air Distribution Solutions Dennis Sikkema Director of Technical Sales and Training COPYRIGHT MATERIALS
Operating Room Air Distribution Solutions Dennis Sikkema Director of Technical Sales and Training COPYRIGHT MATERIALS This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited. Price Industries, Inc., 2017. Operating Room Solutions Table of Contents 1. Air Distribution Introduction 2. Operating Room Air Distribution – Types, Standards and Research 3. Sizing Examples and Opportunities 4. Ceilings 5. Wrap up/ Questions Operating Room Solutions Air Distribution Introduction Operating Room Solutions Air Distribution Introduction • Considerations for Air Distribution Products – Airborne Contamination Control – Cleanability – Comfort • Air Distribution strategies – Turbulent/Mixing Flow – Laminar Flow – Radial Flow – Displacement Ventilation Operating Room Solutions Air Distribution Introduction • Group A – Mounted in or near the ceiling projecting air horizontally • Square plaques • Double deflection grilles (sidewall mount) • Group B – Mounted in the floor with a vertical, non-spreading jet • Linear bar grilles (floor mounted) • Group C – Mounted in the floor with a vertical, spreading jet • Underfloor twist diffuser Operating Room Solutions Air Distribution Introduction • Group D – Mounted in or near the floor that project the air horizontally • Displacement diffusers Operating Room Solutions Air Distribution Introduction • Group E – Ceiling mounted vertical projection diffuser • Vertical slot diffuser • Air -
Mechanical General Requirements
UNIVERSITY OF WASHINGTON Mechanical Facilities Services Design Guide General Requirements Basis of Design This section applies to the general mechanical requirements for all Division 15 work. Background This section is intended to assist the Mechanical Engineer and other design team members during the design process by answering questions about how the University builds, operates, and maintains mechanical systems in buildings. If there are questions about this information or proposals of alternate solutions, discuss them with the Project Manager and Engineering Services. Programming Design facilities to minimize annual operating costs and future repair and replacement costs. This document is written primarily for the Seattle campus. Facility design standards can vary for the Tacoma campus, Bothell campus and off-site facilities. Review each project with the Project Manager and Engineering Services to determine exceptions to the Facilities Services Design Guide as appropriate. State these exceptions clearly in the Technical Program. The Central Power Plant (CPP) and West Campus Utility Plant (WCUP) provide utilities to the buildings adjacent to the utility tunnel system. This includes all buildings on the central, south, and southwest campuses and most of the buildings on the east campus and along Campus Parkway. Mechanical utilities from the CPP include steam, condensate return, central cooling water and compressed air. Mechanical utilities from the WCUP include central cooling water. Due to the capacity and hydraulics limitations of these system, verify the addition of new loads onto these systems with Engineering Services. Mechanical rooms need to be large enough to house the equipment and provide adequately sized access pathways for the repair, maintenance, and eventual replacement of the equipment. -
Critical Environments Engineering Guide
SECTION E Photo Courtesy of Bruce T. Martin© 2 011 Engineering Guide Critical Environments Please refer to the Price Engineer’s HVAC Handbook for more information on Critical Environments. Critical Environments Engineering Guide Introduction to Patient Care Areas Each different room type in the hospital environment requires a unique and strategic approach to air distribution and temperature control. Past and ongoing industry research continues to impact the thinking of HVAC engineers involved in the design of health care facilities or the development of governing standards. This section will help explain some of the key North American codes and standards for health care facility design as they relate to each space type, as well as the logic behind these design Neutral Pressure Space guidelines. Following these design standards, air distribution strategies are presented for PATIENT ROOM patient care areas, waiting rooms, operating rooms, and hospital pharmacies and labs. Corridor The many design examples included in this Negative chapter should serve to further clarify the key Pressure Space points presented in each section. The health care facility includes a number of different spaces, all with unique HVAC requirements. Well designed hospital HVAC Figure 1: Typical patient room systems should support asepsis control The variability in occupancy levels, solar/ with the discharge pattern of horizontal throw while also taking advantage of energy saving conduction loads through exterior walls, and diffusers. Lift rails or curtains may redirect technologies and strategies. Understanding equipment loads will generally facilitate the high velocity supply air directly at the the needs and goals of each space as well as need for reheat, VAV control, supplemental patient if positioned too close to the diffuser. -
The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House
sustainability Article The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House Pau Chung Leng 1, Mohd Hamdan Ahmad 1,*, Dilshan Remaz Ossen 2, Gabriel H.T. Ling 1,* , Samsiah Abdullah 1, Eeydzah Aminudin 3, Wai Loan Liew 4 and Weng Howe Chan 5 1 Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] (P.C.L.); [email protected] (S.A.) 2 Department of Architecture Engineering, Kingdom University, Riffa 40434, Bahrain; [email protected] 3 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] 4 School of Professional and Continuing Education, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] 5 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] * Correspondence: [email protected] (M.H.A.); [email protected] (G.H.T.L.); Tel.: +60-19-731-5756 (M.H.A.); +60-14-619-9363 (G.H.T.L.) Received: 3 September 2019; Accepted: 24 September 2019; Published: 16 October 2019 Abstract: In Malaysia, terraced housing hardly provides thermal comfort to the occupants. More often than not, mechanical cooling, which is an energy consuming component, contributes to outdoor heat dissipation that leads to an urban heat island effect. Alternatively, encouraging natural ventilation can eliminate heat from the indoor environment. Unfortunately, with static outdoor air conditioning and lack of windows in terraced houses, the conventional ventilation technique does not work well, even for houses with an air well. Hence, this research investigated ways to maximize natural ventilation in terraced housing by exploring the air well configurations. -
Designing UFAD Systems Betterbricks Workshop, September 7-8, 2005
Designing UFAD Systems BetterBricks Workshop, September 7-8, 2005 Acknowledgments Designing Underfloor Air Course Development Distribution (UFAD) Systems Taylor Engineering Allan Daly Workshop for BetterBricks Pacific Gas & Electric Co. Cascadia Region of Green Building Council Puget Sound / Oregon Chapters of ASHRAE ASHRAE Seattle – Sept. 7, Portland – Sept. 8, 2005 Projects, Images Arup, Flack + Kurtz, Nailor Industries, Fred Bauman, P.E. EH Price, Tate Access Floors, Center for the Built Environment, York International University of California, Berkeley 2 Agenda 9:00-9:10 Opening Comments 9:10-9:30 Introduction 9:30-10:10 Diffusers and Stratification 10:10-10:50 Underfloor Plenums Introduction 10:50 -11:05 Break 11:05-11:45 Load Calculations, Energy 11:45-12:00 Comfort and IAQ 12:00 -1:00 Lunch 9:10 – 9:30 1:00-1:20 Horizontal and Vertical Distribution 1:20-1:35 Commissioning and Operations 1:35-1:50 Post-Occupancy Evaluations 1:50-2:05 How to Decide to Go with UFAD? 2:05-2:15 Wrap-Up, Conclusions 2:15 -2:30 Break 2:30-4:00 Panel Discussion 3 CBE Organization CBE Industry Partners Industry/University Cooperative Research Center (I/UCRC) Armstrong World Industries Skidmore Owings and Merrill Steelcase, Inc. National Science Foundation provides support and Arup* evaluation California Department of Syska Hennessy Group General Services Tate Access Floors Inc.* Industry Advisory Board shapes research agenda California Energy Commission Taylor Engineering Team: Semi-annual meetings emphasize interaction, shared goals • Taylor Engineering Charles M. Salter Associates and problem solving • Guttmann & Blaevoet E.H. Price Ltd. • Southland Industries • Swinerton Builders Flack + Kurtz, Inc. -
Boiler Replacement Project Drawings
GENERAL NOTES OFFSET PIPING WHERE REQUIRED TO ALLOW CLEARANCE OF DUCTS, ELECTRICAL CONDUIT, OUTLET BOXES, BEAMS, ETC. TO AVOID INTERFERENCE WITH THE WORK OF OTHER TRADES. TO INCREASE HEAD ROOM UNDER PIPING OR TO IMPROVE THE APPEARANCE OF PIPE WORK, THIS CONTRACTOR SHALL OFFSET ANY PIPING AS DIRECTED BY THE ARCHITECT/ENGINEER AND SHALL PROPERLY DRAIN OF VENT SAME WHERE NECESSARY. MAKE ALLOWANCES IN THE BID THERETO. 02/04/2020 THIS CONTRACTOR SHALL FIELD VERIFY LOCATIONS FOR ALL DUCTWORK AND PIPING FOR DATE THE INSTALLATION PRIOR TO FABRICATION. THIS CONTRACTOR SHALL COORDINATE HIS WORK WITH THE OTHER CONTRACTORS ON THE PROJECT AND INSTALL MECHANICAL SYSTEMS IN A MANNER WHICH WILL CONFORM TO STRUCTURE, KEEP PASSAGEWAYS AND OPENINGS CLEAR, PRESERVE HEAD ROOM, CLEAR LIGHT FIXTURES AND NOT COVER UP JUNCTION BOXES. THIS CONTRACTOR SHALL MAKE OFFSETS BKB RJA 19590 IN PIPING OR DUCTWORK TO AVOID INTERFERENCE WITH OTHER TRADES, AT NO ADDITIONAL COST TO THE OWNER, WHEN SO DIRECTED BY THE ARCHITECT/ENGINEER. WHERE PIPING IS CONNECTED TO EQUIPMENT OR PLUMBING FIXTURES THAT ARE BEING BOILER REPLACEMENT REMOVED, THE PIPING SHALL BE REMOVED COMPLETELY (UNLESS NOTED OTHERWISE) FROM THE REMODELED SPACE AND CAPPED AT OR NEAR THE MAINS. PLUMBING PIPING THAT IS LOCATED IN A WALL TO BE REMOVED SHALL BE REMOVED (IF NOT ACTIVE) AND CAPPED AT NORTH DAKOTA DEPARTMENT OF TRANSPORTATION THE MAIN LINE OR OUT OF THE REMODELED SPACE. BISMARCK, NORTH DAKOTA PIPING VALVE & STANDARD ACCESSORY LEGEND ABBREVIATIONS DRAWN BY BY CHECKED JOBNO. BALL VALVE AD - ACCESS DOOR AFF - ABOVE FINISHED FLOOR BALL VALVE INDICATOR AFG - ABOVE FINISHED GRADE DESIGN TEAM DRAWING SHEETS BUTTERFLY VALVE ATC - AUTOMATIC TEMPERATURE GATE VALVE CONTROLS BDD - BACKDRAFT DAMPER PRAIRIE ENGINEERING, P.C. -
2.8 Mechanical Systems 2.8.1 General Considerations General
2.8 Mechanical Systems 2.8.1 General Considerations General Guidelines Intent This section explains the university's expectations regarding the design of effective mechanical systems. Daily operation of the building depends on durable and efficient mechanical systems. Resources Resources available to designers are the following: NC Building Code ASHRAE and SMACNA Guidebooks NC State Construction Manual Vendor's literature On-campus Facilities Design and Operations personnel Documentation Sufficient information must be included on the plans and specifications not only to construct the project with few or no change orders, but to allow future troubleshooting and expansion of design work. Paths of access to equipment should be shown on the drawings. Where two or more services are to occupy the same mechanical room, proper coordination is necessary. Designers are expected to field-verify all existing conditions, and not to rely on available prints. Design Criteria General Characteristics Designers engaged in providing the design of mechanical systems for campus buildings and grounds should plan energy efficient systems which are long-lived and easy to operate and maintain. The scope of new projects shall include any necessary campus utility extensions and relocations to serve the building being designed. When extensions and/or connections are made to the building, the designer should concentrate and run such utility lines under sidewalks or parallel to roads where they can be accessed in all weather conditions. All efforts should be made to avoid disturbance of any area within the drip line of trees when routing underground lines. Planning to Reduce Site Clutter The designer must take every effort to consolidate mechanical and electrical equipment on the building site. -
Green Mechanical Contractor Spring 2011
Cover Story By Dave Yates Holy Energy Conservation! offi ces and lounge were noisy, ineffi cient, and several were A steam boiler that runs 24/7 no longer operational. e 16 one-ton through-the-wall A/C units in the sanc- until somebody turns off its tuary incorporated a hot water coil for heating and, over time, the committee had learned to cover the exterior grills power is just one of the energy with cardboard during winter to avoid messy and costly freeze-damage from split coils. With another hot sum- hogs at this comprehensive mer approaching, and several non-functioning TTW A/C units, they were feeling the heat from the congregation to church retrofit project. fi nalize plans. During their three-year journey, they had met with several ome would classify the following story as green mechanical contractors and knew the church needed a sys- or combating global warming or even as saving tem-wide renovation. And that’s where you and I begin our the planet. I would simply call it a common-sense trip through this process. e property committee requested approach to energy conservation while designing a proposal to replace their systems. During our initial visit, an HVAC system’s replacement to take advantage we’ll discover the following: Sof today’s effi cient and reliable equipment. is one garners no Federal tax credit because it involves a church. Come A 1964 STEAM BOILER along for a trip through this process — from inception to e steam boiler, replaced in 1964, is fi ring at 1.8 million- delivery — and I’ll share with you the process I use and some Btuh. -
Mechanical Equipment Rooms Safety and Best Practices
Mechanical Equipment Rooms Safety and Best Practices Because every life has a purpose... Mechanical Equipment Rooms Importance of monitoring refrigerant and combustible gases within Mechanical Rooms A building’s mechanical room is the hub of its heating, ventilation and air conditioning system. This can include central utility plants, boiler and chiller rooms, mechanical and electrical rooms and fuel rooms. The equipment within these rooms has the potential to leak harmful combustible or toxic gases, including costly and environmentally harmful refrigerant gases. Refrigerant gas is considered a toxic gas and although refrigerants have low toxicity, at high concentrations they can displace oxygen. Oxygen deficiency can cause serious injury or death to workers. Furthermore, these chemicals are controlled substances by the Environmental Protection Agency, which means not only are they dangerous to worker health and safety, but they are harmful to the environment. Many of these refrigerants are categorized as ozone depleting substances and are highly monitored. Gas monitors satisfy the requirements for equipment room emissions included in EPA regulations. In addition to the Environmental Protection Agency, there are specific requirements of ASHRAE standard 15 and applicable local building codes. ASHRAE 15 states: • Each machinery room shall contain a detector located where a refrigerant leak would concentrate. • The detector shall trigger an audible and visual alarm both inside and outside the mechanical room and activate mechanical ventilation. For economic reasons refrigerant leak detection is encouraged due to costs associated with refrigerant leaks. The Complete Solution The Chillgard® 5000 is the most selective and sensitive refrigerant leak detector on the market. With the ability to read down Sample line to 1 ppm, this monitor provides the earliest Relay wiring response to leaks. -
Prediction of Room Air Diffusion with Reduced
PREDICTION OF ROOM AIR DIFFUSION FOR REDUCED DIFFUSER FLOW RATES A Thesis by KAVITA GANGISETTI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering PREDICTION OF ROOM AIR DIFFUSION FOR REDUCED DIFFUSER FLOW RATES A Thesis by KAVITA GANGISETTI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, David Claridge Michael Pate Committee Members, Hamn- Ching Chen Jelena Srebric Head of Department, Dennis O‟Neal December 2010 Major Subject: Mechanical Engineering iii ABSTRACT Prediction of Room Air Diffusion for Reduced Diffuser Flow Rates. (December 2010) Kavita Gangisetti, B.Tech. Jawaharlal Nehru Technological University, Hyderabad, India Co-Chairs of Advisory Committee: Dr. David E. Claridge Dr. Michael Pate With the ever-increasing availability of high performance computing facilities, numerical simulation through Computational Fluid Dynamics (CFD) is increasingly used to predict the room air distribution. CFD is becoming an important design and analytical tool for investigating ventilation inside the system and thus to increase thermal comfort and improve indoor air quality. The room air supply diffuser flow rates can be reduced for less loading with the help of a variable air volume unit. The reduction in supply flow rate reduces the energy consumption for the unoccupied and reduced load conditions. The present research is to study the comfort consequences for reduced diffuser flow rates and loading and to identify the hot and cold spots inside a room.