Ergodic Theory of Chaos and Strange Attractors J.-P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invariant Measures for Hyperbolic Dynamical Systems
Invariant measures for hyperbolic dynamical systems N. Chernov September 14, 2006 Contents 1 Markov partitions 3 2 Gibbs Measures 17 2.1 Gibbs states . 17 2.2 Gibbs measures . 33 2.3 Properties of Gibbs measures . 47 3 Sinai-Ruelle-Bowen measures 56 4 Gibbs measures for Anosov and Axiom A flows 67 5 Volume compression 86 6 SRB measures for general diffeomorphisms 92 This survey is devoted to smooth dynamical systems, which are in our context diffeomorphisms and smooth flows on compact manifolds. We call a flow or a diffeomorphism hyperbolic if all of its Lyapunov exponents are different from zero (except the one in the flow direction, which has to be 1 zero). This means that the tangent vectors asymptotically expand or con- tract exponentially fast in time. For many reasons, it is convenient to assume more than just asymptotic expansion or contraction, namely that the expan- sion and contraction of tangent vectors happens uniformly in time. Such hyperbolic systems are said to be uniformly hyperbolic. Historically, uniformly hyperbolic flows and diffeomorphisms were stud- ied as early as in mid-sixties: it was done by D. Anosov [2] and S. Smale [77], who introduced his Axiom A. In the seventies, Anosov and Axiom A dif- feomorphisms and flows attracted much attention from different directions: physics, topology, and geometry. This actually started in 1968 when Ya. Sinai constructed Markov partitions [74, 75] that allowed a symbolic representa- tion of the dynamics, which matched the existing lattice models in statistical mechanics. As a result, the theory of Gibbs measures for one-dimensional lat- tices was carried over to Anosov and Axiom A dynamical systems. -
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Rufus Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms New edition of Lect. Notes in Math. 470, Springer, 1975. April 14, 2013 Springer Preface The Greek and Roman gods, supposedly, resented those mortals endowed with superlative gifts and happiness, and punished them. The life and achievements of Rufus Bowen (1947{1978) remind us of this belief of the ancients. When Rufus died unexpectedly, at age thirty-one, from brain hemorrhage, he was a very happy and successful man. He had great charm, that he did not misuse, and superlative mathematical talent. His mathematical legacy is important, and will not be forgotten, but one wonders what he would have achieved if he had lived longer. Bowen chose to be simple rather than brilliant. This was the hard choice, especially in a messy subject like smooth dynamics in which he worked. Simplicity had also been the style of Steve Smale, from whom Bowen learned dynamical systems theory. Rufus Bowen has left us a masterpiece of mathematical exposition: the slim volume Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer Lecture Notes in Mathematics 470 (1975)). Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems. The area discussed by Bowen came into existence through the merging of two apparently unrelated theories. -
Ergodic Theory
MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise). -
MA427 Ergodic Theory
MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different. -
Conformal Fractals – Ergodic Theory Methods
Conformal Fractals – Ergodic Theory Methods Feliks Przytycki Mariusz Urba´nski May 17, 2009 2 Contents Introduction 7 0 Basic examples and definitions 15 1 Measure preserving endomorphisms 25 1.1 Measurespacesandmartingaletheorem . 25 1.2 Measure preserving endomorphisms, ergodicity . .. 28 1.3 Entropyofpartition ........................ 34 1.4 Entropyofendomorphism . 37 1.5 Shannon-Mcmillan-Breimantheorem . 41 1.6 Lebesguespaces............................ 44 1.7 Rohlinnaturalextension . 48 1.8 Generalized entropy, convergence theorems . .. 54 1.9 Countabletoonemaps.. .. .. .. .. .. .. .. .. .. 58 1.10 Mixingproperties . .. .. .. .. .. .. .. .. .. .. 61 1.11 Probabilitylawsand Bernoulliproperty . 63 Exercises .................................. 68 Bibliographicalnotes. 73 2 Compact metric spaces 75 2.1 Invariantmeasures . .. .. .. .. .. .. .. .. .. .. 75 2.2 Topological pressure and topological entropy . ... 83 2.3 Pressureoncompactmetricspaces . 87 2.4 VariationalPrinciple . 89 2.5 Equilibrium states and expansive maps . 94 2.6 Functionalanalysisapproach . 97 Exercises ..................................106 Bibliographicalnotes. 109 3 Distance expanding maps 111 3.1 Distance expanding open maps, basic properties . 112 3.2 Shadowingofpseudoorbits . 114 3.3 Spectral decomposition. Mixing properties . 116 3.4 H¨older continuous functions . 122 3 4 CONTENTS 3.5 Markov partitions and symbolic representation . 127 3.6 Expansive maps are expanding in some metric . 134 Exercises .................................. 136 Bibliographicalnotes. 138 4 -
Uniformly Hyperbolic Control Theory Christoph Kawan
HYPERBOLIC CONTROL THEORY 1 Uniformly hyperbolic control theory Christoph Kawan Abstract—This paper gives a summary of a body of work at the of control-affine systems with a compact and convex control intersection of control theory and smooth nonlinear dynamics. range. The main idea is to transfer the concept of uniform hyperbolicity, These results are grounded on the topological theory of central to the theory of smooth dynamical systems, to control- affine systems. Combining the strength of geometric control Colonius-Kliemann [7] which provides an approach to under- theory and the hyperbolic theory of dynamical systems, it is standing the global controllability structure of control systems. possible to deduce control-theoretic results of non-local nature Two central notions of this theory are control and chain that reveal remarkable analogies to the classical hyperbolic the- control sets. Control sets are the maximal regions of complete ory of dynamical systems. This includes results on controllability, approximate controllability in the state space. The definition of robustness, and practical stabilizability in a networked control framework. chain control sets involves the concept of "-chains (also called "-pseudo-orbits) from the theory of dynamical systems. The Index Terms—Control-affine system; uniform hyperbolicity; main motivation for this concept comes from the facts that (i) chain control set; controllability; robustness; networked control; invariance entropy chain control sets are outer approximations of control sets and (ii) chain control sets in general are easier to determine than control sets (both analytically and numerically). I. INTRODUCTION As examples show, chain control sets can support uniformly hyperbolic and, more generally, partially hyperbolic structures. -
Role of Nonlinear Dynamics and Chaos in Applied Sciences
v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. -
AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1
AN INTRODUCTION TO DYNAMICAL BILLIARDS SUN WOO PARK 2 Abstract. Some billiard tables in R contain crucial references to dynamical systems but can be analyzed with Euclidean geometry. In this expository paper, we will analyze billiard trajectories in circles, circular rings, and ellipses as well as relate their charactersitics to ergodic theory and dynamical systems. Contents 1. Background 1 1.1. Recurrence 1 1.2. Invariance and Ergodicity 2 1.3. Rotation 3 2. Dynamical Billiards 4 2.1. Circle 5 2.2. Circular Ring 7 2.3. Ellipse 9 2.4. Completely Integrable 14 Acknowledgments 15 References 15 Dynamical billiards exhibits crucial characteristics related to dynamical systems. Some billiard tables in R2 can be understood with Euclidean geometry. In this ex- pository paper, we will analyze some of the billiard tables in R2, specifically circles, circular rings, and ellipses. In the first section we will present some preliminary background. In the second section we will analyze billiard trajectories in the afore- mentioned billiard tables and relate their characteristics with dynamical systems. We will also briefly discuss the notion of completely integrable billiard mappings and Birkhoff's conjecture. 1. Background (This section follows Chapter 1 and 2 of Chernov [1] and Chapter 3 and 4 of Rudin [2]) In this section, we define basic concepts in measure theory and ergodic theory. We will focus on probability measures, related theorems, and recurrent sets on certain maps. The definitions of probability measures and σ-algebra are in Chapter 1 of Chernov [1]. 1.1. Recurrence. Definition 1.1. Let (X,A,µ) and (Y ,B,υ) be measure spaces. -
Arxiv:0705.0033V3 [Math.DS]
ERGODIC THEORY: RECURRENCE NIKOS FRANTZIKINAKIS AND RANDALL MCCUTCHEON Contents 1. Definition of the Subject and its Importance 3 2. Introduction 3 3. Quantitative Poincaré Recurrence 5 4. Subsequence Recurrence 7 5. Multiple Recurrence 11 6. Connections with Combinatorics and Number Theory 14 7. Future Directions 17 References 19 Almost every, essentially: Given a Lebesgue measure space (X, ,µ), a property P (x) predicated of elements of X is said to hold for almostB every x X, if the set X x: P (x) holds has zero measure. Two sets A, B are∈ essentially disjoint\ { if µ(A B) =} 0. ∈B Conservative system: Is an∩ infinite measure preserving system such that for no set A with positive measure are A, T −1A, T −2A, . pairwise essentially disjoint.∈ B (cn)-conservative system: If (cn)n∈N is a decreasing sequence of posi- tive real numbers, a conservative ergodic measure preserving transforma- 1 tion T is (cn)-conservative if for some non-negative function f L (µ), ∞ n ∈ n=1 cnf(T x)= a.e. arXiv:0705.0033v3 [math.DS] 4 Nov 2019 ∞ PDoubling map: If T is the interval [0, 1] with its endpoints identified and addition performed modulo 1, the (non-invertible) transformation T : T T, defined by Tx = 2x mod 1, preserves Lebesgue measure, hence induces→ a measure preserving system on T. Ergodic system: Is a measure preserving system (X, ,µ,T ) (finite or infinite) such that every A that is T -invariant (i.e. T −B1A = A) satisfies ∈B either µ(A) = 0 or µ(X A) = 0. (One can check that the rotation Rα is ergodic if and only if α is\ irrational, and that the doubling map is ergodic.) Ergodic decomposition: Every measure preserving system (X, ,µ,T ) can be expressed as an integral of ergodic systems; for example,X one can 2000 Mathematics Subject Classification. -
Dissipative Dynamical Systems and Their Attractors
Dissipative dynamical systems and their attractors Grzegorz ukaszewicz, University of Warsaw MIM Qolloquium, 05.11.2020 Plan of the talk Context: conservative and dissipative systems 3 Basic notions 10 Important problems of the theory. G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 2 / 14 Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Let us compare the above problems Example 1. -
Energy Cycle for the Lorenz Attractor
Energy cycle for the Lorenz attractor Vinicio Pelino, Filippo Maimone Italian Air Force, CNMCA Aeroporto “De Bernardi”, Via di Pratica Di Mare, I-00040 Pratica di Mare (Roma) Italy In this note we study energetics of Lorenz-63 system through its Lie-Poisson structure. I. INTRODUCTION In 1955 E. Lorenz [1] introduced the concept of energy cycle as a powerful instrument to understand the nature of atmospheric circulation. In that context conversions between potential, kinetic and internal energy of a fluid were studied using atmospheric equations of motion under the action of an external radiative forcing and internal dissipative processes. Following these ideas, in this paper we will illustrate that chaotic dynamics governing Lorenz-63 model can be described introducing an appropriate energy cycle whose components are kinetic, potential energy and Casimir function derived from Lie-Poisson structure hidden in the system; Casimir functions, like enstrophy or potential vorticity in fluid dynamical context, are very useful in analysing stability conditions and global description of a dynamical system. A typical equation describing dissipative-forced dynamical systems can be written in Einstein notation as: x&ii=−Λ+{xH, } ijji x f i = 1,2...n (1) Equations (1) have been written by Kolmogorov, as reported in [2], in a fluid dynamical context, but they are very common in simulating natural processes as useful in chaos synchronization [3]. Here, antisymmetric brackets represent the algebraic structure of Hamiltonian part of a system described by function H , and a cosymplectic matrix J [4], {}F,G = J ik ∂ i F∂ k G . (2) Positive definite diagonal matrix Λ represents dissipation and the last term f represents external forcing. -
Transformations)
TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof.