Ergodic Theory Approach to Chaos: Remarks and Computational Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Ergodic Theory Approach to Chaos: Remarks and Computational Aspects Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 2, 259–267 DOI: 10.2478/v10006-012-0019-4 ERGODIC THEORY APPROACH TO CHAOS: REMARKS AND COMPUTATIONAL ASPECTS ∗ ∗∗ PAWEŁ J. MITKOWSKI ,WOJCIECH MITKOWSKI ∗ Faculty of Electrical Engineering, Automatics, Computer Science and Electronics AGH University of Science and Technology, al. Mickiewicza 30/B-1, 30-059 Cracow, Poland e-mail: [email protected] ∗∗Department of Automatics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland e-mail: [email protected] We discuss basic notions of the ergodic theory approach to chaos. Based on simple examples we show some characteristic features of ergodic and mixing behaviour. Then we investigate an infinite dimensional model (delay differential equation) of erythropoiesis (red blood cell production process) formulated by Lasota. We show its computational analysis on the pre- viously presented theory and examples. Our calculations suggest that the infinite dimensional model considered possesses an attractor of a nonsimple structure, supporting an invariant mixing measure. This observation verifies Lasota’s conjecture concerning nontrivial ergodic properties of the model. Keywords: ergodic theory, chaos, invariant measures, attractors, delay differential equations. 1. Introduction man, 2001). Transformations (or flows) with an invariant measure display three main levels of irregular behaviour, In the literature concerning dynamical systems we can i.e., (ranging from the lowest to the highest) ergodicity, find many definitions of chaos in various approaches mixing and exactness. Between ergodicity and mixing we (Rudnicki, 2004; Devaney, 1987; Bronsztejn et al., 2004). can also distinguish light mixing, mild mixing and weak Our central issue here will be the ergodic theory appro- mixing (Lasota and Mackey, 1994; Silva, 2010) and, on ach. Ergodic theory in general has its origin in physical the level similar to exactness, the type of K-flows (or K- systems of a large number of particles, where microsco- property, K-automorphism) (cf. Rudnicki 1985a; 1985b; pic chaos leads to macroscopic (statistical) regularity. As 2004; Lasota and Mackey,1994). In this article we will the beginning of ergodic theory, the moment when Bolt- consider only ergodicity and mixing. First we formalize zmann formulated his famous ergodic hypothesis, in 1868 these notions and show some simple examples of ergodic (see, e.g., Nadzieja, 1996; Górnicki, 2001) or in 1871 and mixing transformations. Then in Section 3. we analy- (Lebowitz and Penrose, 1973), can probably be conside- ze an infinite dimensional system which additionally has red. For more information about the ergodic hypothesis, interesting medical (hematological) interpretations. consult also the works of Birkhoff and Koopman (1932) By {St}t≥0 we denote a semidynamical system or a as well as Dorfman (2001). semiflow on the metric space X, i.e., 2. Ergodic theory and chaos: Basic facts (i) S0(x)=x for all x ∈ X; + One of the most fundamental notions in ergodic theory (ii) St(St (x)) = St+t (x) for all x ∈ X,andt, t ∈ R ; is that of invariant measure (see Lasota and Mackey, 1994; Fomin et al., 1987; Bronsztejn et al., 2004; Rud- (iii) S : X × R+ → X is a continuous function of (t, x). nicki, 2004; Dawidowicz, 2007), which is a consequence of Liouville’s theorem (see, e.g., Szlenk, 1982; Landau By a measure on X we mean any probability measure de- and Lifszyc, 2007; Arnold, 1989; Nadzieja, 1996; Dorf- fined on the σ-algebra B(X) of Borel subsets of X.A 260 P.J. Mitkowski and W. Mitkowski measure μ is called invariant under a semiflow {St}t≥0, we can observe the result of the action of S on the en- −1 3 if μ(A)=μ(St (A)) for each t ≥ 0 and each A ∈B. semble of 10 points distributed randomly in the area [0, 0.1] × [0, 0.1]. The transformation (2) shifts the initial 2.1. Ergodicity. ABorelsetA is called invariant with area and does not spread the points over the space. When −1 respect to the semiflow {St}t≥0 if St (A)=A for all we measure the Euclidean distance during iterations be- t ≥ 0. We now denote by (S, μ) asemiflow{St}t≥0 with tween two arbitrarily chosen close points, we notice that an invariant measure μ.Thesemiflow(S, μ) is ergodic it is constant (Fig. 2(d)). Thus the popular criterion of cha- (we say also that the measure is ergodic) if the measure os, i.e., sensitivity to initial conditions, is not a property of μ(A) of any invariant set A equals 0 or 1. Let us now ergodic transformations. Their property is the dense tra- consider two simple examples. jectory (we formalize this fact in the last paragraph of this section). Example 1. Let S :[0, 2π) → [0, 2π) be a transformation One of the most important theorems in ergodic the- generating rotation through an angle φ on a circle with ory is the Birkhoff individual ergodic theorem (Birkhoff, unit radius (see Lasota and Mackey, 1994; Bronsztejn et 1931a; 1931b; Birkhoff and Koopman, 1932; Lasota and al., 2004; Devaney, 1987; Dorfman, 2001): Mackey, 1994, Fomin et al., 1987; Szlenk 1982; Dawi- dowicz, 2007; Nadzieja, 1996; Gornicki, 2001; Dorfman, S(x)=x + φ (mod 2π). (1) 2001). Here we cite a popular extension of this theorem (see Lasota and Mackey, 1994, p. 64; Fomin et al., 1987, If φ/2π is rational, we can find invariant sets which have p. 46). Recall that by (S, μ) we denote a semiflow {St}t≥0 S measure different from 0 or 1, and thus is not ergodic. with an invariant measure μ. However, if φ/2π is irrational, then S is ergodic (for a proof, see the work of Lasota and Mackey (1994,√ p. 75) Theorem 1. (Extension of the Birkhoff theorem) Let or Devaney (1987, p. 21)). If we take, e.g., φ = 2 and (S, μ) be ergodic. Then, for each μ-integrable function pick an arbitrary point on the circle, we can observe that f : X → R, the mean of f along the trajectory of S is successive iterations of this point under the action of S equal almost everywhere to the mean of f over the space will densely fill the whole available space (circle) (see Fig. X, that is, 1). 1 T 1 Example 2. To understand better the typical features of lim f(St(x)) dt = f(x) μ(dx), (3) T →∞ T 0 μ(X) X ergodic behaviour, let us consider the following transfor- mation (see Lasota and Mackey, 1994, p. 68): μ √ √ -almost everywhere. S(x, y)=( 2+x, 3+y)(1). mod (2) If we substitute f = 1A in Eqn. (3) (1A is the cha- racteristic function of A) (see Lasota and Mackey, 1994; This is an extension of the rotational transformation (1) Rudnicki, 2004; Dawidowicz, 2007), then the left-hand on the space [0, 1] × [0, 1] → [0, 1] × [0, 1].InFig.2 1 1 1 90 0.2 120 60 0.15 150 0.1 30 0 1 0 1 0 1 0.05 (a) (b) (c) −6 x 10 180 0 1 210 330 0 1 50 100 240 300 iteration 270 (d) Fig. 2. Iterations of the ergodic transformation (2) acting on an Fig. 1. Normalized (to the probability density function) round ensemble of 103 points randomly distributed in [0, 0.1]× histogram (bars inside the circle) showing that a single [0, 0.1]: 1st iteration (a), 2nd iteration (b), 3rd iteration point under√ the action of the ergodic transformation (1) (c), Euclidean metric between two arbitrarily chosen clo- with φ = 2 fills densely the whole circle. se points from the ensemble (d). Ergodic theory approach to chaos: Remarks and computational aspects 261 side of (3) is the mean time of visiting the set A and (see Lasota and Mackey, 1994, p. 57, pp. 65–68) the right-hand side is μ(A), and this corresponds to er- S(x, y)=(x + y,x +2y)(1). godicity in the sense of Boltzmann, which roughly spe- mod (5) aking is the mean time that a particle of a physical sys- This is an example of the Anosov diffeomorphism tem spends in some region and it is proportional to its (Anosov, 1963) (see also Bronsztejn et al., 2004, p. 903). natural probabilistic measure (Dawidowicz, 2007; Dorf- In Fig. 3 we can see the first the fifth and the tenth ite- man, 2001; Nadzieja, 1996; Górnicki, 2001; Birkhoff and ration of the mixing tranformation (5) acting on the en- Koopman, 1932; Lebowitz and Penrose, 1973) semble of 103 points distributed randomly in the area We can see that ergodic behaviour in the “pure” form [0, 0.1] × [0, 0.1]. The points are being spread over the does not need to be very irregular and unpredictable. In space and afterwards that transformation is literally mi- fact, an invariant and ergodic measure should have so- xing these points in the whole space. The Euclidean di- me additional properties to be interesting from the po- stance between close points first grows quickly and then int of view of dynamics. Briefly speaking, it should be fluctuates irregularly (Fig. 3 (d)). The difference between nontrivial—for example, we intuitively understand that to the ergodic transformation (2) (cf. Fig. 2) is noticeable. have interesting dynamics the measure should not be con- Typical for mixing is the sensitivity to initial conditions centrated on a single point. According to our knowled- (we will formalize this fact further on). ge, two approaches to this problem appear in the litera- ture. In the main ideas, both seem to be similar, but in We can say more about the chaoticity of mixing sys- the literature exist separately.
Recommended publications
  • Ergodic Theory
    MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise).
    [Show full text]
  • MA427 Ergodic Theory
    MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different.
    [Show full text]
  • Conformal Fractals – Ergodic Theory Methods
    Conformal Fractals – Ergodic Theory Methods Feliks Przytycki Mariusz Urba´nski May 17, 2009 2 Contents Introduction 7 0 Basic examples and definitions 15 1 Measure preserving endomorphisms 25 1.1 Measurespacesandmartingaletheorem . 25 1.2 Measure preserving endomorphisms, ergodicity . .. 28 1.3 Entropyofpartition ........................ 34 1.4 Entropyofendomorphism . 37 1.5 Shannon-Mcmillan-Breimantheorem . 41 1.6 Lebesguespaces............................ 44 1.7 Rohlinnaturalextension . 48 1.8 Generalized entropy, convergence theorems . .. 54 1.9 Countabletoonemaps.. .. .. .. .. .. .. .. .. .. 58 1.10 Mixingproperties . .. .. .. .. .. .. .. .. .. .. 61 1.11 Probabilitylawsand Bernoulliproperty . 63 Exercises .................................. 68 Bibliographicalnotes. 73 2 Compact metric spaces 75 2.1 Invariantmeasures . .. .. .. .. .. .. .. .. .. .. 75 2.2 Topological pressure and topological entropy . ... 83 2.3 Pressureoncompactmetricspaces . 87 2.4 VariationalPrinciple . 89 2.5 Equilibrium states and expansive maps . 94 2.6 Functionalanalysisapproach . 97 Exercises ..................................106 Bibliographicalnotes. 109 3 Distance expanding maps 111 3.1 Distance expanding open maps, basic properties . 112 3.2 Shadowingofpseudoorbits . 114 3.3 Spectral decomposition. Mixing properties . 116 3.4 H¨older continuous functions . 122 3 4 CONTENTS 3.5 Markov partitions and symbolic representation . 127 3.6 Expansive maps are expanding in some metric . 134 Exercises .................................. 136 Bibliographicalnotes. 138 4
    [Show full text]
  • AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1
    AN INTRODUCTION TO DYNAMICAL BILLIARDS SUN WOO PARK 2 Abstract. Some billiard tables in R contain crucial references to dynamical systems but can be analyzed with Euclidean geometry. In this expository paper, we will analyze billiard trajectories in circles, circular rings, and ellipses as well as relate their charactersitics to ergodic theory and dynamical systems. Contents 1. Background 1 1.1. Recurrence 1 1.2. Invariance and Ergodicity 2 1.3. Rotation 3 2. Dynamical Billiards 4 2.1. Circle 5 2.2. Circular Ring 7 2.3. Ellipse 9 2.4. Completely Integrable 14 Acknowledgments 15 References 15 Dynamical billiards exhibits crucial characteristics related to dynamical systems. Some billiard tables in R2 can be understood with Euclidean geometry. In this ex- pository paper, we will analyze some of the billiard tables in R2, specifically circles, circular rings, and ellipses. In the first section we will present some preliminary background. In the second section we will analyze billiard trajectories in the afore- mentioned billiard tables and relate their characteristics with dynamical systems. We will also briefly discuss the notion of completely integrable billiard mappings and Birkhoff's conjecture. 1. Background (This section follows Chapter 1 and 2 of Chernov [1] and Chapter 3 and 4 of Rudin [2]) In this section, we define basic concepts in measure theory and ergodic theory. We will focus on probability measures, related theorems, and recurrent sets on certain maps. The definitions of probability measures and σ-algebra are in Chapter 1 of Chernov [1]. 1.1. Recurrence. Definition 1.1. Let (X,A,µ) and (Y ,B,υ) be measure spaces.
    [Show full text]
  • Ergodic Theory, Fractal Tops and Colour Stealing 1
    ERGODIC THEORY, FRACTAL TOPS AND COLOUR STEALING MICHAEL BARNSLEY Abstract. A new structure that may be associated with IFS and superIFS is described. In computer graphics applications this structure can be rendered using a new algorithm, called the “colour stealing”. 1. Ergodic Theory and Fractal Tops The goal of this lecture is to describe informally some recent realizations and work in progress concerning IFS theory with application to the geometric modelling and assignment of colours to IFS fractals and superfractals. The results will be described in the simplest setting of a single IFS with probabilities, but many generalizations are possible, most notably to superfractals. Let the iterated function system (IFS) be denoted (1.1) X; f1, ..., fN ; p1,...,pN . { } This consists of a finite set of contraction mappings (1.2) fn : X X,n=1, 2, ..., N → acting on the compact metric space (1.3) (X,d) with metric d so that for some (1.4) 0 l<1 ≤ we have (1.5) d(fn(x),fn(y)) l d(x, y) ≤ · for all x, y X.Thepn’s are strictly positive probabilities with ∈ (1.6) pn =1. n X The probability pn is associated with the map fn. We begin by reviewing the two standard structures (one and two)thatare associated with the IFS 1.1, namely its set attractor and its measure attractor, with emphasis on the Collage Property, described below. This property is of particular interest for geometrical modelling and computer graphics applications because it is the key to designing IFSs with attractor structures that model given inputs.
    [Show full text]
  • Dynamical Systems and Ergodic Theory
    MATH36206 - MATHM6206 Dynamical Systems and Ergodic Theory Teaching Block 1, 2017/18 Lecturer: Prof. Alexander Gorodnik PART III: LECTURES 16{30 course web site: people.maths.bris.ac.uk/∼mazag/ds17/ Copyright c University of Bristol 2010 & 2016. This material is copyright of the University. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. Chapter 3 Ergodic Theory In this last part of our course we will introduce the main ideas and concepts in ergodic theory. Ergodic theory is a branch of dynamical systems which has strict connections with analysis and probability theory. The discrete dynamical systems f : X X studied in topological dynamics were continuous maps f on metric spaces X (or more in general, topological→ spaces). In ergodic theory, f : X X will be a measure-preserving map on a measure space X (we will see the corresponding definitions below).→ While the focus in topological dynamics was to understand the qualitative behavior (for example, periodicity or density) of all orbits, in ergodic theory we will not study all orbits, but only typical1 orbits, but will investigate more quantitative dynamical properties, as frequencies of visits, equidistribution and mixing. An example of a basic question studied in ergodic theory is the following. Let A X be a subset of O+ ⊂ the space X. Consider the visits of an orbit f (x) to the set A. If we consider a finite orbit segment x, f(x),...,f n−1(x) , the number of visits to A up to time n is given by { } Card 0 k n 1, f k(x) A .
    [Show full text]
  • STABLE ERGODICITY 1. Introduction a Dynamical System Is Ergodic If It
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 1, Pages 1{41 S 0273-0979(03)00998-4 Article electronically published on November 4, 2003 STABLE ERGODICITY CHARLES PUGH, MICHAEL SHUB, AND AN APPENDIX BY ALEXANDER STARKOV 1. Introduction A dynamical system is ergodic if it preserves a measure and each measurable invariant set is a zero set or the complement of a zero set. No measurable invariant set has intermediate measure. See also Section 6. The classic real world example of ergodicity is how gas particles mix. At time zero, chambers of oxygen and nitrogen are separated by a wall. When the wall is removed, the gasses mix thoroughly as time tends to infinity. In contrast think of the rotation of a sphere. All points move along latitudes, and ergodicity fails due to existence of invariant equatorial bands. Ergodicity is stable if it persists under perturbation of the dynamical system. In this paper we ask: \How common are ergodicity and stable ergodicity?" and we propose an answer along the lines of the Boltzmann hypothesis { \very." There are two competing forces that govern ergodicity { hyperbolicity and the Kolmogorov-Arnold-Moser (KAM) phenomenon. The former promotes ergodicity and the latter impedes it. One of the striking applications of KAM theory and its more recent variants is the existence of open sets of volume preserving dynamical systems, each of which possesses a positive measure set of invariant tori and hence fails to be ergodic. Stable ergodicity fails dramatically for these systems. But does the lack of ergodicity persist if the system is weakly coupled to another? That is, what happens if you have a KAM system or one of its perturbations that refuses to be ergodic, due to these positive measure sets of invariant tori, but somewhere in the universe there is a hyperbolic or partially hyperbolic system weakly coupled to it? Does the lack of egrodicity persist? The answer is \no," at least under reasonable conditions on the hyperbolic factor.
    [Show full text]
  • Ergodic Theory of Chaotic Dynamical Systems
    Ergodic Theory of Chaotic Dynamical Systems Lai-Sang Young 1 2 This is the text of the author’s plenary lecture at the International Congress of Mathematical Physics in 1997 This article is about the ergodic theory of differentiable dynamical systems in finite dimensions. Limiting our discussions to discrete time, we are concerned with iterations of maps from Rn or finite dimensional manifolds to themselves. We consider only maps that generate chaotic dynamics, and our focus is on their statistical properties. Complex geometric behavior in dynamical systems was observed by Poincar´e, but no attempt was made to study it systematically until the 1960’s when Smale proposed the idea of a hyperbolic invariant set or “horseshoe” [37]: DEFINITION 1 A diffeomorphism f : M → M is said to be uniformly hyperbolic on a compact invariant set Λ if at each x ∈ Λ the tangent space splits into Df-invariant u s subspaces Ex and Ex with the following properties: ∃C ≥ 1 and λ> 1 independent of x n 1 n u n n s such that ∀n ≥ 0, |Dfx v| ≥ C− λ |v| for v ∈ Ex and |Dfx v| ≤ Cλ− |v| for v ∈ Ex. Hyperbolic sets were used as geometric models of complex behavior because hyper- bolicity implies a sensitive dependence on initial conditions: the orbits of most pairs of nearby points diverge exponentially fast in both forward and backward times. A system is said to satisfy Axiom A if all of its essential parts are uniformly hyperbolic (see [37]). In the 10 years or so since Smale’s invention of Axiom A, an ergodic theory for these systems emerged, due largely to Sinai [35] who first developed the theory for Anosov sys- tems and to Ruelle [32] who worked in the more general Axiom A setting using Markov partitions constructed by Bowen [7].
    [Show full text]
  • D. S. Ornstein Ergodic Theory, Randomness, and Dynamical
    270 BOOK REVIEWS ORNSTEIN, D. S., Ergodic Theory, Randomness, and Dynamical Systems (Yale University Press, 1975), £2-50. This book is an account of recent major advances in ergodic theory, due mainly to the author. In ergodic theory one considers invertible measure-preserving transforma- tions of a probability measure space; a natural problem is to classify these up to iso- morphism. In general this is hopelessly difficult, but recently much progress has been made for some important classes of transformations. The major breakthrough was Ornstein's proof in 1970 that the Bernoulli shifts were classified completely by an isomorphic invariant introduced by Kolmogorov in 1958, namely the entropy. (A Bernoulli shift is the shift transformation on the set of all 2-sided sequences of elements of a probability space {X, /J.) with the product measure. If/x is purely atomic and the measures of the atoms are p\,pi,... then the entropy of the shift is — 2/?( logp(. Otherwise it is infinite.) The techniques he developed enabled Ornstein and others to show that various classes of transformation are isomorphic to Bernoulli shifts and hence subject to the above classification. These include ergodic group automorphisms of the n-torus and various transformations arising from dynamical systems. Analogous results were found for flows (one-parameter groups of transformations). The results have some relevance to the theory of stationary stochastic processes—such a process induces a transformation on the underlying probability space, which is isomorphic to a Bernoulli shift provided the future is nearly independent of the past, in a sense which can be made precise.
    [Show full text]
  • A Simple Introduction to Ergodic Theory
    A Simple Introduction to Ergodic Theory Karma Dajani and Sjoerd Dirksin December 18, 2008 2 Contents 1 Introduction and preliminaries 5 1.1 What is Ergodic Theory? . 5 1.2 Measure Preserving Transformations . 6 1.3 Basic Examples . 9 1.4 Recurrence . 15 1.5 Induced and Integral Transformations . 15 1.5.1 Induced Transformations . 15 1.5.2 Integral Transformations . 18 1.6 Ergodicity . 20 1.7 Other Characterizations of Ergodicity . 22 1.8 Examples of Ergodic Transformations . 24 2 The Ergodic Theorem 29 2.1 The Ergodic Theorem and its consequences . 29 2.2 Characterization of Irreducible Markov Chains . 41 2.3 Mixing . 45 3 Measure Preserving Isomorphisms and Factor Maps 47 3.1 Measure Preserving Isomorphisms . 47 3.2 Factor Maps . 51 3.3 Natural Extensions . 52 4 Entropy 55 4.1 Randomness and Information . 55 4.2 Definitions and Properties . 56 4.3 Calculation of Entropy and Examples . 63 4.4 The Shannon-McMillan-Breiman Theorem . 66 4.5 Lochs’ Theorem . 72 3 4 5 Hurewicz Ergodic Theorem 79 5.1 Equivalent measures . 79 5.2 Non-singular and conservative transformations . 80 5.3 Hurewicz Ergodic Theorem . 83 6 Invariant Measures for Continuous Transformations 89 6.1 Existence . 89 6.2 Unique Ergodicity . 96 7 Topological Dynamics 101 7.1 Basic Notions . 102 7.2 Topological Entropy . 108 7.2.1 Two Definitions . 108 7.2.2 Equivalence of the two Definitions . 114 7.3 Examples . 118 8 The Variational Principle 127 8.1 Main Theorem . 127 8.2 Measures of Maximal Entropy . 136 Chapter 1 Introduction and preliminaries 1.1 What is Ergodic Theory? It is not easy to give a simple definition of Ergodic Theory because it uses techniques and examples from many fields such as probability theory, statis- tical mechanics, number theory, vector fields on manifolds, group actions of homogeneous spaces and many more.
    [Show full text]
  • ERGODIC and SPECTRAL PROPERTIES an Interval Exchange
    STRUCTURE OF THREE-INTERVAL EXCHANGE TRANSFORMATIONS III: ERGODIC AND SPECTRAL PROPERTIES SEBASTIEN´ FERENCZI, CHARLES HOLTON, AND LUCA Q. ZAMBONI ABSTRACT. In this paper we present a detailed study of the spectral/ergodic properties of three- interval exchange transformations. Our approach is mostly combinatorial, and relies on the dio- phantine results in Part I and the combinatorial description in Part II. We define a recursive method of generating three sequences of nested Rokhlin stacks which describe the system from a measure- theoretic point of view and which in turn gives an explicit characterization of the eigenvalues. We obtain necessary and sufficient conditions for weak mixing which, in addition to unifying all previ- ously known examples, allow us to exhibit new examples of weakly mixing three-interval exchanges. Finally we give affirmative answers to two questions posed by W.A. Veech on the existence of three- interval exchanges having irrational eigenvalues and discrete spectrum. 1. INTRODUCTION An interval exchange transformation is given by a probability vector (α1, α2, . , αk) together with a permutation π of {1, 2, . , k}. The unit interval [0, 1) is partitioned into k sub-intervals of lengths α1, α2, . , αk which are then rearranged according to the permutation π. Katok and Stepin [20] used interval exchanges to exhibit a class of systems having simple continuous spectrum. Interval exchange transformations have been extensively studied by several people including Keane [21] [22], Keynes and Newton [23], Veech [31] to [36], Rauzy [28], Masur [24], Del Junco [14], Boshernitzan [5, 6], Nogueira and Rudolph [27], Boshernitzan and Carroll [7], Berthe,´ Chekhova, and Ferenczi [4], Chaves and Nogueira [10] and Boshernitzan and Nogueira [8].
    [Show full text]
  • An Introduction to Infinite Ergodic Theory, 1997 49 R
    http://dx.doi.org/10.1090/surv/050 Selected Titles in This Series 50 Jon Aaronson, An introduction to infinite ergodic theory, 1997 49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997 48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997 47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997 46 Stephen Lipscomb, Symmetric inverse semigroups, 1996 45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996 44 J. Amoros, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kahler manifolds, 1996 43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995 42 Ralph Preese, Jaroslav Jezek, and J. B. Nation, Free lattices, 1995 41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995 40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995 40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994 39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994 38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993 37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991 36 John B. Conway, The theory of subnormal operators, 1991 35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990 34 Victor Isakov, Inverse source problems, 1990 33 Vladimir G.
    [Show full text]