AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1

Total Page:16

File Type:pdf, Size:1020Kb

AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1 AN INTRODUCTION TO DYNAMICAL BILLIARDS SUN WOO PARK 2 Abstract. Some billiard tables in R contain crucial references to dynamical systems but can be analyzed with Euclidean geometry. In this expository paper, we will analyze billiard trajectories in circles, circular rings, and ellipses as well as relate their charactersitics to ergodic theory and dynamical systems. Contents 1. Background 1 1.1. Recurrence 1 1.2. Invariance and Ergodicity 2 1.3. Rotation 3 2. Dynamical Billiards 4 2.1. Circle 5 2.2. Circular Ring 7 2.3. Ellipse 9 2.4. Completely Integrable 14 Acknowledgments 15 References 15 Dynamical billiards exhibits crucial characteristics related to dynamical systems. Some billiard tables in R2 can be understood with Euclidean geometry. In this ex- pository paper, we will analyze some of the billiard tables in R2, specifically circles, circular rings, and ellipses. In the first section we will present some preliminary background. In the second section we will analyze billiard trajectories in the afore- mentioned billiard tables and relate their characteristics with dynamical systems. We will also briefly discuss the notion of completely integrable billiard mappings and Birkhoff's conjecture. 1. Background (This section follows Chapter 1 and 2 of Chernov [1] and Chapter 3 and 4 of Rudin [2]) In this section, we define basic concepts in measure theory and ergodic theory. We will focus on probability measures, related theorems, and recurrent sets on certain maps. The definitions of probability measures and σ-algebra are in Chapter 1 of Chernov [1]. 1.1. Recurrence. Definition 1.1. Let (X,A,µ) and (Y ,B,υ) be measure spaces. A map T : X ! Y is measure-preserving if it satisfies the following two properties: 1 2 SUN WOO PARK (1) For each open set B 2 B, T −1(B) 2 A (2) µ(T −1(B))=υ(B) We will now prove the probabilistic version of Poincar´eRecurrence Theorem. Theorem 1.2 (Poincar´eRecurrence Theorem). Given a measure space (X,A,µ), let T: X ! X be a measure-preserving map. Given A 2 A, define A0 as the set of n points a 2 A such that T (a) 2 A for infinitely many n ≥ 0. Then A0 2 A and µ(A0)=µ(A). j Proof. Let Bn := fa 2 A j T (a) 2= A for all j ≥ ng. Notice that 1 A0 = An [n=1 Bn Thus, it suffices to show that Bn 2 A and µ(Bn)=0 for every n ≥ 1. Since −j Bn = An [j≥n T (A) it is clear that Bn 2 A. This implies −j −j Bn ⊂ [j≥0T (A)n [j≥n T (A) Observe that −j −n −j [j≥0T (A) = T ([j≥nT (A)) Since T is a measure-preserving map, −j −j µ([j≥0T (A)) = µ([j≥nT (A)) Thus, µ(Bn) = 0. The above theorem shows that under a measure-preserving map almost every point of a measurable set is recurrent. 1.2. Invariance and Ergodicity. Definition 1.3. Let (X,A) be a measurable space and let T : X ! X be a mea- surable map. A measure µ is T-invariant if for every A 2 A, µ(T −1(A)) = µ(A) Definition 1.4. Let T be a measure preserving map on a probability space (X,A,µ). T is ergodic if every T -invariant set has measure 0 or 1. We now state one of the most important theorems in ergodic theory. The proof of the theorem is in Chapter 2 of Chernov [1]. Theorem 1.5 (Birkhoff-Khinchin). Given a probability space (X,A,µ), let T :X ! X be a measure preserving map. If f:X ! R is in L1(X,A,µ), the limit n 1 X f~(x) := lim f(T j(x)) n!1 n + 1 j=0 exists for almost every x 2 X, and the function f(~x) is T-invariant, integrable, and Z Z f~dµ = f dµ X X The function f~ is called the time average of f. Using the theorem, we can prove the following useful proposition. The proof of the proposition is also in Chapter 2 of Chernov [1]. AN INTRODUCTION TO DYNAMICAL BILLIARDS 3 Proposition 1.6. Given a probability space (X,A,µ), the following statements are equivalent: (1) T is ergodic. (2) If f 2 Lp(X) for a positive integer p, then f is constant almost everywhere. (3) For every A,B 2 A, we have n−1 1 X lim µ(T −n(A) \ (B)) = µ(A)µ(B) n!1 n m=0 1 ~ R (4) For every f 2 L (X) we have f(x) = X f dµ almost everywhere. We will use the proposition in understanding ergodicity of irrational rotations on the circle, one of the examples in dynamical systems which is important for understanding billiard trajectories in circles. 1.3. Rotation. We now state how ergodicity and invariance of measures can be used in rational and irrational rotations on the circle. Dynamical systems deal with understanding the rules of a time-dependent mathematical object. We can describe the time-dependence of an object by iterations of a map on the object. Define a mapping T : [0,1] ! [0,1] such that T a(x) = x + a (mod 1) where x 2 [0,1] and a 2 R. Here x denotes the initial position and a denotes the angle of rotation along the circle. Then the n iterations of the map T can be expressed as n follows: T a (x) = x + na (mod 1) = m + r (mod 1) where m 2 Z and r 2 [0,1]. It is clear that T is measure-preserving. Proposition 1.7. Every orbit of the mapping T a(x) is dense in [0,1] if a 2 RnQ. n Proof. First we will show that each T a (x) is distinct. For two distinct natural i j numbers i and j assume T a(x) = T a(x) + k for some positive integer k. In other words, x + ia = x + ja + k. So, a(i − j) is a natural number. Since a is irrational, i = j, a contradiction. Divide the interval [0,1] into n intervals, each with length 1/n. Notice that the n n + 1 terms x, T a(x), :::T a (x) are distinct. Then by pigeon hole principle there i j exists an interval that includes at least two of the terms T a(x) and T a(x) for i 6= j. Thus for every positive integer n there exist two distinct natural numbers i and i j j such that jT a(x)−T a(x)j < 1/n. Now we prove that every neighborhood of an arbitrary point y in [0,1] contains m the term T a (x). Without loss of generality we can show that every neighborhood of m the initial term x contains the term T a (x). Notice that Ta is a measure-preserving map with respect to the lebesgue measure µ. In other words, the euclidean distance between two points of the interval is invariant under iterations of the map Ta; so, the following holds for natural numbers i, j, and n. i−j j i−j j i j d(Ta (x); x) = d(Ta (Ta (x);Ta (x)) = d(Ta(x);Ta (x)) < 1=n i−j Thus every neighborhood of the initial term x contains the term T a (x). Hence every orbit of Ta is dense in [0,1]. Now we prove one of the important characteristics of Ta. Theorem 1.8. T is ergodic if and only if a 2 RnQ. 4 SUN WOO PARK Proof. Assume a is irrational. Define f to be an arbitrary T -invariant function in L2(X) where X is the interval [0,1]. We claim that f is constant almost everywhere. The Fourier expansion of f in L2(X) is as follows. 1 X 2πinx cne n=−∞ Similarly, the Fourier expansion of f◦T in L2(X) is as follows. 1 1 X 2πin(x+a) X 2πina 2πinx cne = cne e n=−∞ n=−∞ Since f is T -invariant, f◦T is same as f, which implies 1 X 2πinx 2πina e cn(1 − e ) = 0 n=−∞ Since the elements of the series e2πinx form an orthonormal basis of the Hilbert 2πina 2πina space, all coefficients cn(1-e ) are zero. Since a is irrational, 1-e is not 0. Thus, every Fourier series coefficient is equal to 0. This shows that f is constant. Hence, T is ergodic by proposition 1.6. Now assume T is ergodic. We can prove by contrapositive that if a is rational, then T is not ergodic. Observe the Fourier expansion of f−f◦T in L2(X). Since a is rational, 1-e2πina is 0 for some integer n. Hence not all coefficients of the Fourier series are zero, which implies that there exists a function f in L2(X) such that f is not constant. Thus, T is not ergodic by proposition 1.6. 2. Dynamical Billiards (This section follows Chapter 4 of Chernov [1] and Chapter 4 of Tabachnikov [3].) Dynamical Billiards focuses on the characteristics of billiard trajectory in respect to time. In this section we focus on some of the simple forms of smooth billiard tables on 2-dimensional euclidean space. We start the section with an overview of dynamical billiards. Definition 2.1. A billiard table Q 2 R2 is an open bounded connected domain such that its boundary @Q is a finite union of smooth compact curves.
Recommended publications
  • From Deterministic Dynamics to Thermodynamic Laws II: Fourier's
    FROM DETERMINISTIC DYNAMICS TO THERMODYNAMIC LAWS II: FOURIER'S LAW AND MESOSCOPIC LIMIT EQUATION YAO LI Abstract. This paper considers the mesoscopic limit of a stochastic energy ex- change model that is numerically derived from deterministic dynamics. The law of large numbers and the central limit theorems are proved. We show that the limit of the stochastic energy exchange model is a discrete heat equation that satisfies Fourier's law. In addition, when the system size (number of particles) is large, the stochastic energy exchange is approximated by a stochastic differential equation, called the mesoscopic limit equation. 1. Introduction Fourier's law is an empirical law describing the relationship between the thermal conductivity and the temperature profile. In 1822, Fourier concluded that \the heat flux resulting from thermal conduction is proportional to the magnitude of the tem- perature gradient and opposite to it in sign" [14]. The well-known heat equation is derived based on Fourier's law. However, the rigorous derivation of Fourier's law from microscopic Hamiltonian mechanics remains to be a challenge to mathemati- cians and physicist [3]. This challenge mainly comes from our limited mathematical understanding to nonequilibrium statistical mechanics. After the foundations of sta- tistical mechanics were established by Boltzmann, Gibbs, and Maxwell more than a century ago, many things about nonequilibrium steady state (NESS) remains un- clear, especially the dependency of key quantities on the system size N. There have been several studies that aim to derive Fourier's law from the first principle. A large class of models [29, 31, 12, 11, 10] use anharmonic chains to de- scribe heat conduction in insulating crystals.
    [Show full text]
  • Ergodic Theory
    MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise).
    [Show full text]
  • MA427 Ergodic Theory
    MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different.
    [Show full text]
  • Ergodic Theory Plays a Key Role in Multiple Fields Steven Ashley Science Writer
    CORE CONCEPTS Core Concept: Ergodic theory plays a key role in multiple fields Steven Ashley Science Writer Statistical mechanics is a powerful set of professor Tom Ward, reached a key milestone mathematical tools that uses probability the- in the early 1930s when American mathema- ory to bridge the enormous gap between the tician George D. Birkhoff and Austrian-Hun- unknowable behaviors of individual atoms garian (and later, American) mathematician and molecules and those of large aggregate sys- and physicist John von Neumann separately tems of them—a volume of gas, for example. reconsidered and reformulated Boltzmann’ser- Fundamental to statistical mechanics is godic hypothesis, leading to the pointwise and ergodic theory, which offers a mathematical mean ergodic theories, respectively (see ref. 1). means to study the long-term average behavior These results consider a dynamical sys- of complex systems, such as the behavior of tem—whetheranidealgasorothercomplex molecules in a gas or the interactions of vi- systems—in which some transformation func- brating atoms in a crystal. The landmark con- tion maps the phase state of the system into cepts and methods of ergodic theory continue its state one unit of time later. “Given a mea- to play an important role in statistical mechan- sure-preserving system, a probability space ics, physics, mathematics, and other fields. that is acted on by the transformation in Ergodicity was first introduced by the a way that models physical conservation laws, Austrian physicist Ludwig Boltzmann laid Austrian physicist Ludwig Boltzmann in the what properties might it have?” asks Ward, 1870s, following on the originator of statisti- who is managing editor of the journal Ergodic the foundation for modern-day ergodic the- cal mechanics, physicist James Clark Max- Theory and Dynamical Systems.Themeasure ory.
    [Show full text]
  • Conformal Fractals – Ergodic Theory Methods
    Conformal Fractals – Ergodic Theory Methods Feliks Przytycki Mariusz Urba´nski May 17, 2009 2 Contents Introduction 7 0 Basic examples and definitions 15 1 Measure preserving endomorphisms 25 1.1 Measurespacesandmartingaletheorem . 25 1.2 Measure preserving endomorphisms, ergodicity . .. 28 1.3 Entropyofpartition ........................ 34 1.4 Entropyofendomorphism . 37 1.5 Shannon-Mcmillan-Breimantheorem . 41 1.6 Lebesguespaces............................ 44 1.7 Rohlinnaturalextension . 48 1.8 Generalized entropy, convergence theorems . .. 54 1.9 Countabletoonemaps.. .. .. .. .. .. .. .. .. .. 58 1.10 Mixingproperties . .. .. .. .. .. .. .. .. .. .. 61 1.11 Probabilitylawsand Bernoulliproperty . 63 Exercises .................................. 68 Bibliographicalnotes. 73 2 Compact metric spaces 75 2.1 Invariantmeasures . .. .. .. .. .. .. .. .. .. .. 75 2.2 Topological pressure and topological entropy . ... 83 2.3 Pressureoncompactmetricspaces . 87 2.4 VariationalPrinciple . 89 2.5 Equilibrium states and expansive maps . 94 2.6 Functionalanalysisapproach . 97 Exercises ..................................106 Bibliographicalnotes. 109 3 Distance expanding maps 111 3.1 Distance expanding open maps, basic properties . 112 3.2 Shadowingofpseudoorbits . 114 3.3 Spectral decomposition. Mixing properties . 116 3.4 H¨older continuous functions . 122 3 4 CONTENTS 3.5 Markov partitions and symbolic representation . 127 3.6 Expansive maps are expanding in some metric . 134 Exercises .................................. 136 Bibliographicalnotes. 138 4
    [Show full text]
  • Propagation of Rays in 2D and 3D Waveguides: a Stability Analysis with Lyapunov and Reversibility Fast Indicators G
    Propagation of rays in 2D and 3D waveguides: a stability analysis with Lyapunov and Reversibility fast indicators G. Gradoni,1, a) F. Panichi,2, b) and G. Turchetti3, c) 1)School of Mathematical Sciences and Department of Electrical and Electronic Engineering, University of Nottingham, United Kingdomd) 2)Department of Physics and Astronomy , University of Bologna, Italy 3)Department of Physics and Astronomy, University of Bologna, Italy. INDAM National Group of Mathematical Physics, Italy (Dated: 13 January 2021) Propagation of rays in 2D and 3D corrugated waveguides is performed in the general framework of stability indicators. The analysis of stability is based on the Lyapunov and Reversibility error. It is found that the error growth follows a power law for regular orbits and an exponential law for chaotic orbits. A relation with the Shannon channel capacity is devised and an approximate scaling law found for the capacity increase with the corrugation depth. We investigate the propagation of a ray in a 2D wave guide whose boundaries are two parallel horizontal lines, with a periodic corrugation on the upper line. The reflection point abscissa on the lower line and the ray horizontal I. INTRODUCTION velocity component after reflection are the phase space coordinates and the map connecting two consecutive re- The equivalence between geometrical optics and mechanics flections is symplectic. The dynamic behaviour is illus- was established in a variational form by the principles of Fer- trated by the phase portraits which show that the regions mat and Maupertuis. If a ray propagates in a uniform medium of chaotic motion increase with the corrugation amplitude.
    [Show full text]
  • © 2020 Alexandra Q. Nilles DESIGNING BOUNDARY INTERACTIONS for SIMPLE MOBILE ROBOTS
    © 2020 Alexandra Q. Nilles DESIGNING BOUNDARY INTERACTIONS FOR SIMPLE MOBILE ROBOTS BY ALEXANDRA Q. NILLES DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Doctoral Committee: Professor Steven M. LaValle, Chair Professor Nancy M. Amato Professor Sayan Mitra Professor Todd D. Murphey, Northwestern University Abstract Mobile robots are becoming increasingly common for applications such as logistics and delivery. While most research for mobile robots focuses on generating collision-free paths, however, an environment may be so crowded with obstacles that allowing contact with environment boundaries makes our robot more efficient or our plans more robust. The robot may be so small or in a remote environment such that traditional sensing and communication is impossible, and contact with boundaries can help reduce uncertainty in the robot's state while navigating. These novel scenarios call for novel system designs, and novel system design tools. To address this gap, this thesis presents a general approach to modelling and planning over interactions between a robot and boundaries of its environment, and presents prototypes or simulations of such systems for solving high-level tasks such as object manipulation. One major contribution of this thesis is the derivation of necessary and sufficient conditions of stable, periodic trajectories for \bouncing robots," a particular model of point robots that move in straight lines between boundary interactions. Another major contribution is the description and implementation of an exact geometric planner for bouncing robots. We demonstrate the planner on traditional trajectory generation from start to goal states, as well as how to specify and generate stable periodic trajectories.
    [Show full text]
  • (2020) Physics-Enhanced Neural Networks Learn Order and Chaos
    PHYSICAL REVIEW E 101, 062207 (2020) Physics-enhanced neural networks learn order and chaos Anshul Choudhary ,1 John F. Lindner ,1,2,* Elliott G. Holliday,1 Scott T. Miller ,1 Sudeshna Sinha,1,3 and William L. Ditto 1 1Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, North Carolina 27607, USA 2Physics Department, The College of Wooster, Wooster, Ohio 44691, USA 3Indian Institute of Science Education and Research Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO 140 306, Punjab, India (Received 26 November 2019; revised manuscript received 22 May 2020; accepted 24 May 2020; published 18 June 2020) Artificial neural networks are universal function approximators. They can forecast dynamics, but they may need impractically many neurons to do so, especially if the dynamics is chaotic. We use neural networks that incorporate Hamiltonian dynamics to efficiently learn phase space orbits even as nonlinear systems transition from order to chaos. We demonstrate Hamiltonian neural networks on a widely used dynamics benchmark, the Hénon-Heiles potential, and on nonperturbative dynamical billiards. We introspect to elucidate the Hamiltonian neural network forecasting. DOI: 10.1103/PhysRevE.101.062207 I. INTRODUCTION dynamical systems. But from stormy weather to swirling galaxies, natural dynamics is far richer and more challeng- Newton wrote, “My brain never hurt more than in my ing. In this article, we exploit the Hamiltonian structure of studies of the moon (and Earth and Sun)” [1]. Unsurprising conservative systems to provide neural networks with the sentiment, as the seemingly simple three-body problem is in- physics intelligence needed to learn the mix of order and trinsically intractable and practically unpredictable.
    [Show full text]
  • Ballistic Electron Transport in Graphene Nanodevices and Billiards
    Ballistic Electron Transport in Graphene Nanodevices and Billiards Dissertation (Cumulative Thesis) for the award of the degree Doctor rerum naturalium of the Georg-August-Universität Göttingen within the doctoral program Physics of Biological and Complex Systems of the Georg-August University School of Science submitted by George Datseris from Athens, Greece Göttingen 2019 Thesis advisory committee Prof. Dr. Theo Geisel Department of Nonlinear Dynamics Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Stephan Herminghaus Department of Dynamics of Complex Fluids Max Planck Institute for Dynamics and Self-Organization Dr. Michael Wilczek Turbulence, Complex Flows & Active Matter Max Planck Institute for Dynamics and Self-Organization Examination board Prof. Dr. Theo Geisel (Reviewer) Department of Nonlinear Dynamics Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Stephan Herminghaus (Second Reviewer) Department of Dynamics of Complex Fluids Max Planck Institute for Dynamics and Self-Organization Dr. Michael Wilczek Turbulence, Complex Flows & Active Matter Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Ulrich Parlitz Biomedical Physics Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Stefan Kehrein Condensed Matter Theory, Physics Department Georg-August-Universität Göttingen Prof. Dr. Jörg Enderlein Biophysics / Complex Systems, Physics Department Georg-August-Universität Göttingen Date of the oral examination: September 13th, 2019 Contents Abstract 3 1 Introduction 5 1.1 Thesis synopsis and outline.............................. 10 2 Fundamental Concepts 13 2.1 Nonlinear dynamics of antidot superlattices..................... 13 2.2 Lyapunov exponents in billiards............................ 20 2.3 Fundamental properties of graphene......................... 22 2.4 Why quantum?..................................... 31 2.5 Transport simulations and scattering wavefunctions................
    [Show full text]
  • Ergodic Theory, Fractal Tops and Colour Stealing 1
    ERGODIC THEORY, FRACTAL TOPS AND COLOUR STEALING MICHAEL BARNSLEY Abstract. A new structure that may be associated with IFS and superIFS is described. In computer graphics applications this structure can be rendered using a new algorithm, called the “colour stealing”. 1. Ergodic Theory and Fractal Tops The goal of this lecture is to describe informally some recent realizations and work in progress concerning IFS theory with application to the geometric modelling and assignment of colours to IFS fractals and superfractals. The results will be described in the simplest setting of a single IFS with probabilities, but many generalizations are possible, most notably to superfractals. Let the iterated function system (IFS) be denoted (1.1) X; f1, ..., fN ; p1,...,pN . { } This consists of a finite set of contraction mappings (1.2) fn : X X,n=1, 2, ..., N → acting on the compact metric space (1.3) (X,d) with metric d so that for some (1.4) 0 l<1 ≤ we have (1.5) d(fn(x),fn(y)) l d(x, y) ≤ · for all x, y X.Thepn’s are strictly positive probabilities with ∈ (1.6) pn =1. n X The probability pn is associated with the map fn. We begin by reviewing the two standard structures (one and two)thatare associated with the IFS 1.1, namely its set attractor and its measure attractor, with emphasis on the Collage Property, described below. This property is of particular interest for geometrical modelling and computer graphics applications because it is the key to designing IFSs with attractor structures that model given inputs.
    [Show full text]
  • Dynamical Systems and Ergodic Theory
    MATH36206 - MATHM6206 Dynamical Systems and Ergodic Theory Teaching Block 1, 2017/18 Lecturer: Prof. Alexander Gorodnik PART III: LECTURES 16{30 course web site: people.maths.bris.ac.uk/∼mazag/ds17/ Copyright c University of Bristol 2010 & 2016. This material is copyright of the University. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. Chapter 3 Ergodic Theory In this last part of our course we will introduce the main ideas and concepts in ergodic theory. Ergodic theory is a branch of dynamical systems which has strict connections with analysis and probability theory. The discrete dynamical systems f : X X studied in topological dynamics were continuous maps f on metric spaces X (or more in general, topological→ spaces). In ergodic theory, f : X X will be a measure-preserving map on a measure space X (we will see the corresponding definitions below).→ While the focus in topological dynamics was to understand the qualitative behavior (for example, periodicity or density) of all orbits, in ergodic theory we will not study all orbits, but only typical1 orbits, but will investigate more quantitative dynamical properties, as frequencies of visits, equidistribution and mixing. An example of a basic question studied in ergodic theory is the following. Let A X be a subset of O+ ⊂ the space X. Consider the visits of an orbit f (x) to the set A. If we consider a finite orbit segment x, f(x),...,f n−1(x) , the number of visits to A up to time n is given by { } Card 0 k n 1, f k(x) A .
    [Show full text]
  • Ergodic Theory Approach to Chaos: Remarks and Computational Aspects
    Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 2, 259–267 DOI: 10.2478/v10006-012-0019-4 ERGODIC THEORY APPROACH TO CHAOS: REMARKS AND COMPUTATIONAL ASPECTS ∗ ∗∗ PAWEŁ J. MITKOWSKI ,WOJCIECH MITKOWSKI ∗ Faculty of Electrical Engineering, Automatics, Computer Science and Electronics AGH University of Science and Technology, al. Mickiewicza 30/B-1, 30-059 Cracow, Poland e-mail: [email protected] ∗∗Department of Automatics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland e-mail: [email protected] We discuss basic notions of the ergodic theory approach to chaos. Based on simple examples we show some characteristic features of ergodic and mixing behaviour. Then we investigate an infinite dimensional model (delay differential equation) of erythropoiesis (red blood cell production process) formulated by Lasota. We show its computational analysis on the pre- viously presented theory and examples. Our calculations suggest that the infinite dimensional model considered possesses an attractor of a nonsimple structure, supporting an invariant mixing measure. This observation verifies Lasota’s conjecture concerning nontrivial ergodic properties of the model. Keywords: ergodic theory, chaos, invariant measures, attractors, delay differential equations. 1. Introduction man, 2001). Transformations (or flows) with an invariant measure display three main levels of irregular behaviour, In the literature concerning dynamical systems we can i.e., (ranging from the lowest to the highest) ergodicity, find many definitions of chaos in various approaches mixing and exactness. Between ergodicity and mixing we (Rudnicki, 2004; Devaney, 1987; Bronsztejn et al., 2004). can also distinguish light mixing, mild mixing and weak Our central issue here will be the ergodic theory appro- mixing (Lasota and Mackey, 1994; Silva, 2010) and, on ach.
    [Show full text]