Neutrino Astronomy with the Next-Generation Icecube Neutrino Observatory

Total Page:16

File Type:pdf, Size:1020Kb

Neutrino Astronomy with the Next-Generation Icecube Neutrino Observatory The IceCube-.en Collaboration Neutrino astronomy with the next-generation IceCube Neutrino Observatory Abstract The past decade has seen the rapid emergence of cosmic neutrinos as a new messenger to explore the most extreme environments of the universe. The discovery measurement of cosmic neutrinos, announced by IceCube in !"#, has opened a new window on astrophysics that holds the potential to answer fundamental $uestions associated with the high-energy universe, including: what are the sources in the &eV s(y and how do they drive particle acceleration; where are cosmic rays of extreme energies produced, and on which paths do they propagate through the universe; are there signatures of new physics at TeV*&eV energies and above? The planned advancements in neutrino telescope arrays in the next decade, in con,unction with continued progress in broad multimessenger astrophysics, promise to see the cosmic neutrino -eld move from the discovery era to the precision era and to a survey of the sources in the neutrino s(y. The planned detector upgrades to the IceCube Neutrino Observatory, culminating in IceCube- .en — an envisaged 01!!2 facility with anticipated operation in the next decade described in this white paper / are the cornerstone that will drive the evolution of neutrino astrophysics measurements. Contact: analysis3icecube.wisc.edu 4uly 2!"5 Neutrino astronomy with the next generation IceCube Neutrino Observatory M. G. Aartsenq,, M. Ackermannbk,, J. Adamsq,, J. A. Aguilarl,, M. Ahlersu,, M. Ahrensba,, C. Alispachaa,, K. Andeenan,, T. Andersonbh,, I. Ansseaul,, G. Antony,, C. Argüellesn,, T. C. Arlenbh,, J. Auffenberga,, S. Axanin,, P. Backesa,, H. Bagherpourq,, X. Baiax,, A. Balagopal V.ad,, A. Barbanoaa,, I. Bartosas,, B. Bastianbk,, V. Baumal,, S. Baurl,, R. Bayh,, J. J. Beattyt,s,, K.-H. Beckerbj,, J. Becker Tjusk,, S. BenZviaz,, D. Berleyr,, E. Bernardinibk,1, D. Z. Bessonae,2, G. Binderi,h,, D. Bindigbj,, E. Blaufussr,, S. Blotbk,, C. Bohmba,, M. Bohmerz,, M. Börnerv,, S. Böseral,, O. Botnerbi,, J. Böttchera,, E. Bourbeauu,, J. Bourbeauak,, F. Bradasciobk,, J. Braunak,, S. Bronaa,, J. Brostean-Kaiserbk,, A. Burgmanbi,, J. Buschera,, R. S. Busseap,, M. Bustamanteu,, T. Carveraa,, C. Chenf,, P. Chenbd,, E. Cheungr,, D. Chirkinak,, B. Clark1,, K. Clarkaf,, L. Classenap,, A. Colemanaq,, G. H. Collinn,, A. Connolly1,, J. M. Conradn,, P. Coppinm,, P. Corream,, D. F. Cowenbh,bg,, R. Crossaz,, P. Davef,, C. Deaconup,, J. P. A. M. de Andréw,, C. De Clercqm,, S. De Kockerem,, J. J. DeLaunaybh,, H. Dembinskiaq,, K. Deoskarba,, S. De Ridderab,, P. Desiatiak,, K. D. de Vriesm,, G. de Wasseigem,, M. de Withj,, T. DeYoungw,, A. Diazn,, J. C. Díaz-Vélezak,, H. Dujmovicbc,, M. Dunkmanbh,, M. A. DuVernoisak,, E. Dvorakax,, B. Eberhardtak,, T. Ehrhardtal,, P. Ellerbh,, R. Engelad,, J. J. Evansam,, P. A. Evensonaq,, S. Faheyak,, K. Farragag,, A. R. Fazelyg,, J. Felder,, K. Filimonovh,, C. Finleyba,, A. Franckowiakbk,, E. Friedmanr,, A. Fritzal,, T. K. Gaisseraq,, J. Gallagheraj,, E. Ganstera,, D.Garcia-Fernandezbk,y,, S. Garrappabk,, A. Gartnerz,, L. Gerhardti,, R. Gernhaeuserz,, K. Ghorbaniak,, T. Glauchz,, T. Glüsenkampy,, A. Goldschmidti,, J. G. Gonzalezaq,, D. Grantw,, Z. Griffithak,, M. Gündera,, M. Gündüzk,, C. Haacka,, A. Hallgrenbi,, L. Halvea,, F. Halzenak,, K. Hansonak,, J. Haugenak,, A. Haungsad,, D. Hebeckerj,, D. Heeremanl,, P. Heixa,, K. Helbingbj,, R. Hellauerr,, F. Henningsenz,, S. Hickfordbj,, J. Hignightw,, G. C. Hillb,, K. D. Hoffmanr,, B. Hoffmannad,, R. Hoffmannbj,, T. Hoinkav,, B. Hokanson-Fasigak,, K. Holzapfelz,, K. Hoshinaak,be,, F. Huangbh,, M. Huberz,, T. Huberad,bk,, T. Huegead,, K. Hughesp,, K. Hultqvistba,, M. Hünnefeldv,, R. Hussainak,, S. Inbc,, N. Iovinel,, A. Ishiharao,, G. S. Japaridzee,, M. Jeongbc,, K. Jeroak,, B. J. P. Jonesd,, F. Jonskea,, R. Joppea,, O. Kalekiny,, D. Kangad,, W. Kangbc,, A. Kappesap,, D. Kappesseral,, T. Kargbk,, M. Karlz,, A. Karleak,, T. Katoriag,, U. Katzy,, M. Kauerak,, A. Keivanias,, J. L. Kelleyak,, A. Kheirandishak,, J. Kimbc,, T. Kintscherbk,, J. Kirylukbb,, T. Kittlery,, S. R. Kleini,h,, R. Koiralaaq,, H. Kolanoskij,, L. Köpkeal,, C. Kopperw,, S. Kopperbf,, D. J. Koskinenu,, M. Kowalskij,bk,, C. B. Kraussx,, K. Kringsz,, G. Krücklal,, N. Kulaczx,, N. Kurahashiaw,, A. Kyriacoub,, M. Labareab,, J. L. Lanfranchibh,, M. J. Larsonr,, U. Latifae,, F. Lauberbj,, J. P. Lazarak,, K. Leonardak,, A. Leszczynskaad,, M. Leuermanna,, Q. R. Liuak,, E. Lohfinkal,, J. LoSeccoat,, C. J. Lozano Mariscalap,, L. Luo,, F. Lucarelliaa,, J. Lünemannm,, W. Luszczakak,, Y. Lyui,, W. Y. Mabk,, J. Madsenay,, G. Maggim,, K. B. M. Mahnw,, 1also at Università di Padova, I-35131 Padova, Italy 2also at National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow 115409, Russia Y. Makinoo,, P. Mallika,, K. Mallotak,, S. Mancinaak,, S. Mandaliaag,, I. C. Mari¸sl,, S. Markaas,, Z. Markaas,, R. Maruyamaar,, K. Maseo,, R. Maunur,, F. McNallyai,, K. Meagherak,, M. Mediciu,, A. Medinat,, M. Meierv,, S. Meighen-Bergerz,, T. Mennev,, G. Merinoak,, T. Meuresl,, J. Micallefw,, G. Momentéal,, T. Montaruliaa,, R. W. Moorex,, R. Morseak,, M. Moulain,, P. Mutha,, R. Nagaio,, J. Nambd,, U. Naumannbj,, G. Neerw,, A. Nellesbk,y,, H. Niederhausenz,, S. C. Nowickix,, D. R. Nygreni,, A. Obertacke Pollmannbj,, M. Oehlerad,, A. Olivasr,, A. O’Murchadhal,, E. O’Sullivanba,, A. Palazzoao,, T. Palczewskii,h,, H. Pandyaaq,, D. V. Pankovabh,, L. Pappz,, N. Parkak,, P. Peifferal,, C. Pérez de los Herosbi,, T. C. Petersenu,, S. Philippena,, D. Pielothv,, E. Pinatl,, J. L. Pinfoldx,, A. Pizzutoak,, I. Plaisierbk,y,, M. Pluman,, A. Porcelliab,, P. B. Priceh,, G. T. Przybylskii,, C. Raabl,, A. Raissiq,, M. Rameezu,, L. Rauchbk,, K. Rawlinsc,, I. C. Reaz,, R. Reimanna,, B. Relethfordaw,, M. Renschlerad,, G. Renzil,, E. Resconiz,, W. Rhodev,, M. Richmanaw,, M. Riegelad,, S. Robertsoni,, M. Rongena,, C. Rottbc,, T. Ruhev,, D. Ryckboschab,, D. Rysewykw,, I. Safaak,, S. E. Sanchez Herrerax,, A. Sandrockv,, J. Sandroosal,, P. Sandstromak,, M. Santanderbf,, S. Sarkarav,, S. Sarkarx,, K. Sataleckabk,, M. Schaufela,, H. Schielerad,, P. Schlunderv,, T. Schmidtr,, A. Schneiderak,, J. Schneidery,, F. G. Schröderaq,ad,, L. Schumachera,, S. Sclafaniaw,, D. Seckelaq,, S. Seunarineay,, M. H. Shaevitzas,, S. Shefalia,, M. Silvaak,, D. Smithp,, R. Snihurak,, J. Soedingreksov,, D. Soldinaq,, S. Söldner-Remboldam,, M. Songr,, D. Southallp,, G. M. Spiczakay,, C. Spieringbk,, J. Stachurskabk,, M. Stamatikost,, T. Stanevaq,, R. Steinbk,, P. Steinmüllerad,, J. Stettnera,, A. Steueral,, T. Stezelbergeri,, R. G. Stokstadi,, A. Stößlo,, N. L. Strotjohannbk,, T. Stürwalda,, T. Stuttardu,, G. W. Sullivanr,, I. Taboadaf,, A. Taketabe,, H. K. M. Tanakabe,, F. Tenholtk,, S. Ter-Antonyang,, A. Terliukbk,, S. Tilavaq,, L. Tomankovak,, C. Tönnisbc,, J. Torres1,, S. Toscanol,, D. Tosiak,, A. Trettinbk,, M. Tselengidouy,, C. F. Tungf,, A. Turcatiz,, R. Turcottead,, C. F. Turleybh,, B. Tyak,, E. Ungerbi,, M. A. Unland Elorrietaap,, M. Usnerbk,, J. Vandenbrouckeak,, W. Van Driesscheab,, D. van Eijkak,, N. van Eijndhovenm,, S. Vanheuleab,, A. Viereggp,, J. van Santenbk,, D. Vebericad,, M. Vraegheab,, C. Walckba,, A. Wallaceb,, M. Wallraffa,, N. Wandkowskyak,, T. B. Watsond,, C. Weaverx,, A. Weindlad,, M. J. Weissbh,, J. Weldertal,, C. Wellingbk,y,, C. Wendtak,, J. Werthebachak,, B. J. Whelanb,, N. Whitehornah,, K. Wiebeal,, C. H. Wiebuscha,, L. Willeak,, D. R. Williamsbf,, L. Willsaw,, S. Wissel1,, M. Wolfz,, J. Woodak,, T. R. Woodx,, K. Woschnaggh,, G. Wredey,, S. Wrenam,, D. L. Xuak,, X. W. Xug,, Y. Xubb,, J. P. Yanezx,, G. Yodhac,, S. Yoshidao,, T. Yuanak,, M. Zöckleina, aIII. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany bDepartment of Physics, University of Adelaide, Adelaide, 5005, Australia cDept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA dDept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA eCTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA fSchool of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA gDept. of Physics, Southern University, Baton Rouge, LA 70813, USA hDept. of Physics, University of California, Berkeley, CA 94720, USA iLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA jInstitut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany kFakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany lUniversité Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium ii mVrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium nDept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA oDept. of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan pDept. of Physics and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA qDept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand rDept. of Physics, University of Maryland, College Park, MD 20742, USA sDept. of Astronomy, Ohio State University, Columbus, OH 43210, USA tDept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA uNiels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark vDept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany wDept. of Physics
Recommended publications
  • Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos
    Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos Markus Ahlers,1 Jaime Alvarez-Mu~niz,´ 2 Rafael Alves Batista,3 Luis Anchordoqui,4 Carlos A. Arg¨uelles,5 Jos´e Bazo,6 James Beatty,7 Douglas R. Bergman,8 Dave Besson,9, 10 Stijn Buitink,11 Mauricio Bustamante,1, 12, ∗ Olga Botner,13 Anthony M. Brown,14 Washington Carvalho Jr.,15 Pisin Chen,16 Brian A. Clark,17 Amy Connolly,7 Linda Cremonesi,18 Cosmin Deaconu,19 Valentin Decoene,20 Paul de Jong,21, 22 Sijbrand de Jong,23, 22 Peter B. Denton,24, y Krijn De Vries,25 Michele Doro,26 Michael A. DuVernois,27 Ke Fang,28 Christian Glaser,13 Peter Gorham,29 Claire Gu´epin,30 Allan Hallgren,13 Jordan C. Hanson,31 Tim Huege,32, 11 Martin H. Israel,33 Albrecht Karle,27 Spencer R. Klein,34, 35 Kumiko Kotera,20 Ilya Kravchenko,36 John Krizmanic,30, 37 John G. Learned,29 Olivier Martineau-Huynh,38 Peter M´esz´aros,39 Thomas Meures,27 Miguel A. Mostaf´a,39, 40 Katharine Mulrey,11 Kohta Murase,39, 40, 41 Jiwoo Nam,16 Anna Nelles,42, 43 Eric Oberla,44 Foteini Oikonomou,45 Angela V. Olinto,44 Yasar Onel,46 A. Nepomuk Otte,47 Sergio Palomares-Ruiz,48 Alex Pizzuto,27 Steven Prohira,7 Brian Rauch,49 Mary Hall Reno,46 Juan Rojo,50, 51 Andr´esRomero-Wolf,52 Ibrahim Safa,5, 27 Olaf Scholten,53, 25 Frank G. Schr¨oder,54, 32 Wayne Springer,55 Irene Tamborra,1, 12 Charles Timmermans,51, 23 Diego F. Torres,56 Jo~aoR.
    [Show full text]
  • Neutrino Astrophysics
    Neutrino Astrophysics Ryan Nichol UK Input to European Strategy Neutrino Astrophysics Ryan Nichol UK Input to European Strategy Highly cited papers • Higgs Discovery (2012) • Z discovery (1983) –1500+ – 8000+ citations –2000+ • SN1987a neutrinos (1987) • Atmospheric neutrino • Positron excess –1500+ oscillations (1998) [PAMELA] (2008) • Weak neutral current –5000+ citations –1900+ (1973) • Top quark discovery • Reactor neutrino theta_13 –1500+ (1995) (2012) • Charmomium (2003) –3000+ citations –1900+ –1400+ • Solar neutrino oscillations • b-quark discovery (1977) • B-Bbar oscillation (1987) (2002) –1900+ –1300+ –3000+ citations • W-discovery (1983) • nu_mu -> nu_e (2011) • Kaon CP violations (1964) –1800+ –1300+ –3000+ citations • Z width (2005) • Accelerator neutrino • Reactor antineutrino –1700+ oscillation (2002) [KamLAND] (2003) • Proton spin crisis (1989) –1100+ –2000+ citations –1700+ • Muon neutrino discovery • Gravitational Waves • LSND anomaly (2001) (1962) (2016) –1700+ –1100+ –2000+ citations • Parity non conservation • DAMA/Libra (2008-) • c-quark discovery (1974) (1957) –1000+ –2000+ citations –1600+ • Pentaquark [LEPS] (2003) • Solar neutrino • LUX Dark Matter (2013) –1000+ [Homestake] (1968-1998) –1500+ • Neutron EDM (2006) !3 –2000+ • g-2 (2006) –1000+ Highly cited papers • Higgs Discovery (2012) • Z discovery (1983) –1500+ – 8000+ citations –2000+ • SN1987a neutrinos (1987) • Atmospheric neutrino • Positron excess –1500+ oscillations (1998) [PAMELA] (2008) • Weak neutral current –5000+ citations –1900+ (1973) • Top quark
    [Show full text]
  • Radiochemical Solar Neutrino Experiments, "Successful and Otherwise"
    BNL-81686-2008-CP Radiochemical Solar Neutrino Experiments, "Successful and Otherwise" R. L. Hahn Presented at the Proceedings of the Neutrino-2008 Conference Christchurch, New Zealand May 25 - 31, 2008 September 2008 Chemistry Department Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Compact Program Booklet
    - 1 - MONDAY, 5 SEPTEMBER 2011 WELCOME TO 12th International Conference on Topics in Astroparticle and Underground Physics 5 – 9 September 2011, Munich, Germany - 2 - structure of The ConferenCe SUNDAY, 4 SEP 2011 WEDNesDAY, 7 SEP 2011 Page 11 17:00 - 21:00 Registration/Reception 09:00 - 10:45 Plenary: Neutrinos 11:15 - 13:00 Plenary: Neutrinos MONDAY, 5 SEP 2011 Page 3 14:30 - 16:10 DM AM DBD/NM LE 09:00 - 10:10 Plenary: Cosmology 16:50 - 18:30 DM AM NO C 10:10 - 10:45 Plenary: Dark Matter 20:00 - 23:30 Conference Dinner 11:15 - 11:50 Plenary: Dark Matter 11:50 - 12:25 Plenary: Astrophysical Messengers THURSDAY, 8 SEP 2011 Page 14 12:25 - 13:00 Plenary: Underground Physics 09:00 - 10:45 Plenary: Astrophysical Messengers 14:30 - 16:10 DM AM DBD/NM LE 11:15 - 13:00 Plenary: Astrophysical Messengers 16:50 - 18:30 DM AM NO C 14:30 - 16:10 DM AM DBD/NM GW 16:50 - 18:30 DM LE DBD/NM GW TUesDAY, 6 seP 2011 Page 6 09:00 - 10:50 Plenary: Dark Matter FRIDAY, 9 seP 2011 Page 17 11:15 - 13:00 Plenary: Dark Matter 09:00 - 09:35 Plenary: Underground Physics 14:30 - 16:10 DM AM DBD/NM LE 09:35 - 10:45 Plenary: Astrophysical Messengers 16:50 - 18:30 DM AM NO C 11:15 - 12:25 Plenary: Astrophysical Messengers 18:30 - 20:00 Poster Session 12:25 - 13:00 Concluding Session DM Dark Matter NO Neutrino Oscillations AM Astrophysical Messengers DBD/NM Double Beta Decay, Neutrino Mass C Cosmology LE Low-Energy Neutrinos GW Gravitational Waves - 3 - MONDAY, 5 SEPTEMBER 2011 PLENARY SessION: CosmoloGY I Festsaal 09:00 CMB and Planck Francois Bouchet (IAP Paris)
    [Show full text]
  • Science Case for the Giant Radio Antenna Neutrino Detector
    Science Case for the Giant Radio Antenna Neutrino Detector Kumiko Kotera — Institut d’Astrophysique de Paris, UMR 7095 - CNRS, Université Pierre & Marie Curie, 98 bis boulevard Arago, 75014, Paris, France ; email: [email protected] “The title [of this book] is more of an expression of hope than a de- scription of the book’s contents [...]. As new ideas (theoretical and experimental) are explored, the observational horizon of neutrino as- trophysics may grow and the successor to this book may take on a different character, perhaps in a time as short as one or two decades.” John N. Bahcall, Neutrino Astrophysics, Cambridge University Press, 1989 igh-energy (> 1015 eV) neutrino as- progress in the fields of high-energy astro- tronomy will probe the working of physics and astroparticle physics. Addi- Hthe most violent phenomena in the tionally, they should contribute to unveil Universe. When most of the information fundamental neutrino properties. we have on the Universe stems from the observation of light, one essential strategy to undertake is to diversify our messengers. 1 Why neutrinos? The most energetic, mysterious and hardly understood astrophysical sources or events Neutrinos are unique messengers that let (fast-rotating neutron stars, supernova ex- us see deeper in objects, further in dis- plosions and remnants, gamma-ray bursts, tance, and pinpoint the exact location of outflows and flares from active galactic nu- their sources. clei, ...) are expected to be producers Neutrinos can escape much denser as- of high-energy non-thermal hadronic emis- trophysical environments than light, hence sion. Hence they should produce copious they enable us to explore processes in the amounts of high-energy neutrinos.
    [Show full text]
  • Arxiv:1906.07209V1 [Astro-Ph.HE] 17 Jun 2019 Hole-Black Hole and Neutron Star-Neutron Star Mergers)
    POEMMA's target of opportunity sensitivity to cosmic neutrino transient sources Tonia M. Venters Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Mary Hall Reno Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA John F. Krizmanic CRESST/NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA University of Maryland, Baltimore County, Baltimore, MD 21250, USA Luis A. Anchordoqui Department of Physics, Graduate Center, City University of New York (CUNY), NY 10016, USA Department of Physics and Astronomy, Lehman College (CUNY), NY 10468, USA Department of Astrophysics, American Museum of Natural History, NY 10024, USA Claire Gu´epin Sorbonne Universit´e,CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France Angela V. Olinto Department of Astronomy & Astrophysics, KICP, EFI, The University of Chicago, Chicago, IL 60637, USA (Dated: June 19, 2019) We calculate the sensitivity of space-based cosmic neutrino detection from transient sources in the context of the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission using Target- of-Opportunity (ToO) observations. POEMMA uses two spacecraft each with a large Schmidt telescope to simultaneously view the optical signals generated by extensive air showers (EASs). POEMMA is designed for both ultrahigh-energy cosmic ray and very-high-energy neutrino mea- surements. POEMMA has significant neutrino sensitivity starting in the 10 PeV decade via mea- surements of Cherenkov signals from upward-moving EASs initiated by tau neutrinos interacting in the Earth. For ToO observations, POEMMA uses the ability to quickly repoint (90◦ in 500 seconds) each of the two spacecraft to the direction of the transient source.
    [Show full text]
  • Searching for Lightweight Dark Matter in Nova Near Detector
    Searching for Lightweight Dark Matter in NOvA Near Detector PoS(FPCP2017)056 Filip Jediný* Czech Technical University in Prague Brehova 7, Prague, Czech Republic E-mail: [email protected] Athanasios Hatzikoutelis University of Tennessee Knoxville Knoxville, TN, USA E-mail: [email protected] Sergey Kotelnikov Fermi National Accelerator Laboratory Kirk and Pine st., Batavia, IL, USA E-mail: [email protected] Biao Wang Southern Methodist University Dallas, TX, USA E-mail: [email protected] The NOvA long-baseline neutrino oscillation experiment is receiving record numbers of 120GeV protons on target from Fermilab's NuMI neutrino beam. We take advantage of our experiment’s sophisticated particle identification algorithms to search for Lightweight Dark Matter (LDM) in the first year of data from the Near Detector of NOvA (300-ton low-Z mass, placed off the beam axis) during the experiment’s first physics runs. Theoretical models of LDM predict that bellow- 10GeV candidates produced in the NuMI target might scatter or decay in the NOvA Near Detector. We simulate an example of the Neutral Vector Portal model with the sensitivity estimate of 10-39 cm2, which corresponds to O(10) LDM candidates per three years of data, looking at single electromagnetic showers between 5 and 15 GeV in a model independent way. The 15th International Conference on Flavor Physics & CP Violation 5-9 June, 2017 Prague, Czech Republic * Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Searching for LDM in NOvA ND Filip Jediný 1.
    [Show full text]
  • Pos(ICRC2021)048
    ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE ONLINE ICRC 2021Berlin | Germany THE ASTROPARTICLE PHYSICS CONFERENCE th Berlin37 International| Germany Cosmic Ray Conference 12–23 July 2021 Rapporteur ICRC 2021: Neutrinos and Muons PoS(ICRC2021)048 0,1, Anna Nelles ∗ 0DESY, Platanenallee 6, 15738 Zeuthen, Germany 1ECAP, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany E-mail: [email protected] This contribution attempts to summarize the status of the field of neutrinos from the cosmos as presented at the ICRC 2021, the first online-only edition of this conference. This rapporteur report builds on 212 contributions with pre-recorded talks and posters, as well as 11 discussion sessions. Furthermore, many of the session conveners provided valuable input to this summary. 37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany ∗Presenter © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Rapporteur: Neutrinos and Muons Anna Nelles The field of neutrino astronomy already provides exciting results, however,it is still dominated by very low statistics in astrophysical neutrino detections. The most transformative results have been discussed in the multi-messenger context [1] and clearly neutrinos are becoming a target of opportunity for all experiments with a potential sensitivity to them. The neutrino field itself is booming with new ideas for detectors and has reached a maturity in which detailed data analysis and systematic detector calibration are the order of business. To summarize the sentiment: the community is doing their homework to get ready for many more neutrinos, which the broader community is excited about.
    [Show full text]
  • Arxiv:1903.01609V2 [Astro-Ph.IM] 24 Jun 2019 the Origin of Ultra-High Energy Cosmic Rays (Uhecrs) Is One of the Biggest Mysteries in Astroparticle Physics
    Targeting ultra-high energy neutrinos with the ARIANNA experiment A. Ankera, S. W. Barwicka, H. Bernhoffb, D. Z. Bessonc,d, Nils Bingeforse, G. Gaswinta, C. Glasera,∗, A. Hallgrene, J. C. Hansonf, R. Lahmanna,g, U. Latifc, J. Namh, A. Novikovc,d, S. R. Kleini, S. A. Kleinfelderj, A. Nellesk,l, M. P. Paula, C. Persichillia, S. R. Shivelya, J. Tatara,m, E. Ungere, S.-H. Wangh, G. Yodha aDepartment of Physics and Astronomy, University of California, Irvine, CA 92697, USA bUppsala University Department of Engineering Sciences, Division of Electricity, Uppsala, SE-752 37 Sweden cDepartment of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA dNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia eUppsala University Department of Physics and Astronomy, Uppsala, SE-752 37, Sweden fWhittier College Department of Physics, Whittier, CA 90602, USA gECAP, Friedrich-Alexander Universit¨atErlangen-N¨urnberg, 91058 Erlangen, Germany hDepartment of Physics and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan iLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA jDepartment of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA kDESY, 15738 Zeuthen, Germany lHumbolt-Universit¨atzu Berlin, Institut f¨urPhysik, 12489 Berlin, Germany mResearch Cyberinfrastructure Center, University of California, Irvine, CA 92697 USA Abstract The measurement of ultra-high energy (UHE) neutrinos (E > 1016 eV) opens a new field of astronomy with the potential to reveal the sources of ultra-high energy cosmic rays especially if combined with observations in the electromagnetic spectrum and gravitational waves. The ARIANNA pilot detector explores the detection of UHE neutrinos with a surface array of independent radio detector stations in Antarctica which allows for a cost-effective instrumentation of large volumes.
    [Show full text]
  • Neutrino Book
    The challenge of neutrinos Preparing the Gargamelle bubble chamber at CERN in 1969. In 1973 the chamber took the first historic photographs of neutral current interactions. (Photo CERN 409.9.69) Neutrino book Gargamelle and Neutral Currents - The Story of a Vital Discovery by Andre Rousset Andre Rousset's book (in French - Gargamelle et les Courants Neutres - Ecole des Mines de Paris) tells the story of Gargamelle and the discov­ ery at CERN in 1973 of neutral currents, the cornerstone of the electroweak theory. This vital discov­ ery helped to give credence to the Standard Model of particle physics. Rousset is both an observer and one of the key figures in the story. His book is lively and well docu­ mented; in it he uses archive material to ensure the accuracy of his infor­ mation on dates, choices and deci­ sions. ously" to the project was probably in an interesting manner the theo­ After an introduction to particle what swung the decision. rists' "green light", giving the go- physics which puts into perspective Construction took five years, during ahead to the experimentalists. In fact, the electroweak theory unifying weak which many problems were encoun­ the European collaboration (Aachen, and electromagnetic interactions, tered, right up to the fault in the main Brussels, CERN, Ecole Polytechni­ Rousset comes straight to the point. part of the chamber which caused que, Milan, Orsay, UC London) was From the late 1950s onwards he was delays and, a few years later, was to divided between a study of the quark- involved in the construction of the prove fatal to the detector.
    [Show full text]
  • Ultra-High-Energy Cosmic-Ray Nuclei and Neutrinos in Models of Gamma-Ray Bursts and Extragalactic Propagation
    Ultra-high-energy cosmic-ray nuclei and neutrinos in models of gamma-ray bursts and extragalactic propagation DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach: Physik Spezialisierung: Theoretische Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M.Sc. Jonas Heinze Präsidentin der Humboldt-Universität zu Berlin: Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakultät: Prof. Dr. Elmar Kulke Gutachter: 1. PD Dr. Walter Winter 2. Prof. Dr. Thomas Lohse 3. Prof. Dr. Günter Sigl Tag der mündlichen Prüfung: 27. Januar 2020 Selbständigkeitserklärung Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröf- fentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 42/2018 am 11.07.2018, angegebenen Hilfsmittel angefertigt habe. Abstract Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles observed in the Uni- verse. Their energy spectrum, chemical composition and arrival directions are observed in extensive air-shower (EAS) experiments, notably the Pierre Auger Observatory (Auger) and Telescope Array (TA). While the astrophysical sources of UHECRs have not yet been uniquely identified, there are strong indications for an extragalactic origin. The interpretation of theob- servations requires both simulations of UHECR acceleration and energy losses inside the source environment as well as interactions during extragalactic propagation. Due to their extreme en- ergies, UHECR will interact with photons in these environments, producing a flux of secondary neutrinos. The IceCube observatory has detected a neutrino flux of astrophysical origin, which likely consists of neutrinos from astrophysical sources and not of neutrinos produced during extragalactic propagation of UHECRs (so-called ‘cosmogenic’ neutrinos).
    [Show full text]
  • Calibration and Monitoring for the Borexino Solar Neutrino Experiment
    Calibration and Monitoring for the Borexino Solar Neutrino Experiment Dissertation submitted to the Faculdade de Ciências da Universidade de Lisboa for the degree of Ph.D. in Physics by José Carvalho Maneira Advisors: Prof. Amélia Maio Prof. Gianpaolo Bellini (University of Milan) Lisbon, November 2001 To my parents and my brother. “The first question I ask myself when something doesn't seem to be beautiful is why do I think it's not beautiful. And very shortly you discover that there is no reason.” John Cage Summary One of the major open issues in Elementary Particle Physics today, the phenomenon of Neutrino Oscillations is a natural consequence of a non-zero neutrino mass and a non-diagonal leptonic mixing matrix. Even if the Standard Model extension to accommodate neutrino oscillations is relatively trivial, a non- zero neutrino mass and mixing is widely considered as a doorway for the Unified Theory of the fundamental interactions. In fact, Super Symmetry naturally explains small neutrino masses through the well-known “see-saw” mechanism. From the experimental point of view, neutrino oscillations are a privileged way of studying the neutrino mass spectrum, since small mass splittings can lead to large and measurable phase differences between interfering quantum-mechanical amplitudes. This is particularly true for Solar Neutrino Experiments, since the large distance between source and detector (1.5´1011 m) allows for a good sensitivity to very small mass differences (down to about 10-11 eV2), not available with the present accelerator and reactor experiments. In fact, the first indication for the possibility of Neutrino Oscillations came from the first measurements of Solar Neutrinos, more than thirty years ago.
    [Show full text]