Parallel architectures Denis Barthou
[email protected] 1 Parallel architectures 2014-2015 D. Barthou 1- Objectives of this lecture ● Analyze and understand how parallel machines work ● Study modern parallel architectures ● Use this knowledge to write better code 2 Parallel architectures 2014-2015 D. Barthou Outline 1. Introduction 2. Unicore architecture Pipeline, OoO, superscalar, VLIW, branch prediction, ILP limit 3. Vectors Definition, vectorization 4. Memory and caches Principle, caches, multicores and optimization 5. New architectures and accelerators 3 Parallel architectures 2014-2015 D. Barthou 1- Parallelism Many services and machines are already parallel ● Internet and server infrastructures ● Data bases ● Games ● Sensor networks (cars, embedded equipment, …) ● ... What's new ? 4 Parallel architectures 2014-2015 D. Barthou 1- Parallelism Many services and machines are already parallel ● Internet and server infrastructures ● Data bases ● Games ● Sensor networks (cars, embedded equipment, …) ● ... What's new ? ● Parallelism everywhere ● Dramatic increase of parallelism inside a compute node 5 Parallel architectures 2014-2015 D. Barthou 1- Multicore/manycore Many core already there Nvidia Kepler: 192 cores Intel Tera chip, 2007 7,1 billion of transistors (80 cores) Intel SCC, 2010 (48 cores) Many Integrated Chips ou Xeon Phi (60 cores) 6 Parallel architectures 2014-2015 D. Barthou 1- Why so many cores ? Moore's law Every 18 mois, the number of transistors double, with the same cost (1965) Exponential law applies on: ● Processor performance, ● Memory & disk capacity ● Size of the wire ● Heat dissipated 7 Parallel architectures 2014-2015 D. Barthou 1- Moore's law, limiting factor: W W = CV2f 8 Parallel architectures 2014-2015 D. Barthou 1- Impacts ● No more increase in frequency ● Increase in core number 9 Parallel architectures 2014-2015 D.