Atomistic Modeling of Nano Devices: from Qubits to Transistors

Total Page:16

File Type:pdf, Size:1020Kb

Atomistic Modeling of Nano Devices: from Qubits to Transistors Network for Computational Nanotechnology (NCN) Atomistic Modeling of Nano Devices: From Qubits to Transistors Rajib Rahman Purdue University The Future of Electronics? Optimization: Materials & Designs New Variables: Spins ITRS New Paradigms: Quantum Logic Challenge for device modeling? New Material, Design Spintronic Devices Quantum Bits 2D Material MTJ Quantum dot Tunnel FET Spin transistor NV center Unified approach for modeling? Enter “Atoms”! Atomistic Modeling Approach Group IV & III-Vs 2D TMDs Magnetic Materials Silicon Interactions in Atomic Basis: Spin-orbit, E-field, B-field, strain Conduction electrons Donors/Acceptors Valence holes 4 Impact on Experiments Less electrons Atomistic simulations were successful to match experimental results The Future of Electronics? Optimization: Materials & Designs New Variables: Spins . Historical Perspective New Paradigms: . Exchange Interaction Quantum Logic . Spin-orbit Quantum Computing 1982: Feynman proposed a model for quantum computing. 1 Qubit: Superposition 2 Qubit: Entanglement Quantum Annealing in AQC: arXiv 1512:02206 For N qubit, all 2N states are used in parallel. 30 qubit more powerful than a supercomputer. QC: Promises massive speedup for difficult problems! History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal - QDs 1998: Kane proposal – donors in Si Two promising proposals for semiconductor qubits! Kane’s Quantum Computer Wavefunction control (ON/OFF) Two Qubit Single Qubit Utilize Si:P for quantum computing! Wavefunction control. History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal – QDs 1998: Kane proposal – donors in Si 2008: Single donor states observed 2005: First QD qubit in GaAs. in transport. 2012: First QD qubit in Si. Single donors probed in experiments! 2008-2012: Addressing single donors with transport Deterministic dopant location Random dopant locations Control of donor wavefunction by fields! History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal – QDs 1998: Kane proposal – donors in Si 2005: First QD qubit in GaAs. 2008: Single donor states observed in transport. 2012: First QD qubit in Si. 2012: Deterministic single donor 2015: Two-qubit gate in Si. transistor. 2015: Realization of Kane A-gate. First electrically controlled donor qubit! 2007-2015: Implementation of Kane A-Gate Spin-orbit Stark Effect: Rahman et. Hyperfine Stark al. PRB 80, Effect 155301(2009). Expt. In Princeton Quantitative theory of donor spin control! History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal – QDs 1998: Kane proposal – donors in Si 2005: First QD qubit in GaAs. 2008: Single donor states observed in transport. 2012: First QD qubit in Si. 2012: Deterministic single donor 2015: Two-qubit gate in Si. transistor. 2016-: Challenge: Multi-qubit gates, all 2015: Realization of Kane A-gate. electrical control 2016-: Challenge: Kane J-gate NEMO3D: Collaborations NEMO3D: Tool of choice for developed with UNSW, Delft, donor qubits. Used in UNSW. Madison, Sandia. Quantum TCAD for Qubit Design Kane J-Gate: Problem 1 B. Kane, Nature, A J A A J A 393. (1998): 133-137. Two-Qubit Gate Operation Single-Qubit Operation Large Exchange Small exchange Tunable Exchange Problem 1: Fabrication and W Control Constraints • R~15-20 nm • Gate width 20 nm • Gate cross-talk R • Possibility of J-A to be shorted Stringent fabrication constraints on 2-qubit gate Kane J-gate: Problem 2 Problem 2: J-gate tuneability is weak Need distinct ON/OFF transition Kane’s J-gate 7 times Small J-tuneability ~7 times J-gate doesn’t tune exchange much! 16 Solutions for 2-qubit gate x Kane J-gate Detuning gates E-field Reduce gate density Improve control 17 Solution: Detuning Gates (1,1) charge configuration (0,2) charge configuration Pulse from (1,1) towards (0, 2) Detuning gates ease fabrication & control Detuning based J-tuneability TCAD+NEMO+FCI 50 times 7 times A detuning gate improves J-tuneability by 1 order of magnitude in 1P-1P Boost J-tuneability even more? • STM approach 2P-1P • Detuning control • Modest field ranges (~ 4 MV/m) 5 orders of magnitude J-tuneability over Y. Wang, R. Rahman 4 MV/m in 2P-1P. Exchange Calculations: Atomistic Full Configuration Interaction Method Multi-electron Schrodinger equation in the basis of all Slater Determinants Coulomb interactions Exact solution Exchange interactions Correlations, Entanglement • General solution: Fields, interfaces i.e. device • Atomistic TB (1e – crystal+device) + FCI (e-e interaction) • Unprecedented: > 1 million atoms A. Tankasala, R. Rahman Full Configuration Interaction is an EXACT* method for many-electron problem Schemes for long distance coupling with exchange Indirect exchange: RKKY Donors coupled by dots over longer distance. Next nearest neighbor: Superexchange 3 dots: Vandersypen group 2016 Anti-ferromagnetic coupling Other types of exchange can be useful in qubits! 22 History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal – QDs 1998: Kane proposal – donors in Si 2005: First QD qubit in GaAs. 2008: First evidence of single donor states in transport. 2012: First QD qubit in Si. 2012: Realization of deterministic 2015: Two-qubit gate in Si. single donor transistor. 2016-: Challenge: Multi-qubit gates, all 2015: Realization of Kane A-gate. electrical control, spin lifetime 2016-: Challenge: Kane J-gate Spin-orbit in QDs may enable all electrical control! Spin-orbit Coupling in Si QDs SOC in Silicon . Small in bulk Si . Non-negligible SOC near interfaces . Effects observed in Rough Surface expts. Si MOS DQD (Sandia) Understanding SOC effects observed in experiments. Valley dependent spin splitting Energy Si QD: v+ hfv+ • Vertical E-field EVS • Two low lying valley states (v+, v-) hf v- v- • Spin splitting: hfv+= gv+μB and hfv- = gv-μB B-field fv± = ESR frequencies, gv± = valley g-factor, Experiments: Spin splitting different in each valley state! 25 ESR frequency in 2 expts. Vandersypen Group (Delft): Dzurak Group (UNSW): Nature Nanotechnology 9, 666– PRB 92, 201401(R) (2015) 670 (2014) Two expts. at odds! Why? fv- Bext along [110] fv- - fv+ fv+ fv- f v+ Bext along [110] f - f <0 , f < f v- v+ v- v+ fv- - fv+ >0 , fv- > fv+ Different sign of (fv- - fv+) in two experiments 26 ESR frequency with B-field angle Vandersypen group [010] [1-10] [-110] [110] B θ fv- - fv+ >0 , fv- > fv+ [-100] [100] [-1-10] [1-10] fv- - fv+ <0 , [0-10] f < f [110] v- v+ Explain anisotropy of valley g-factors! Experimental observation: fv- - fv+ changes sign with direction of magnetic field 27 Atomistic treatment of SOC fv- - fv+ changes sign: • In different experiments (same B direction) • With B direction Valley dependence of ESR frequency/ electron g-factor: • Intrinsic spin-orbit coupling in Si Atomistic treatment of SOC k.p theory assumes various SOC terms such as Rashba and Dresselhaus. SOC in orbital basis (p orbital for Si & III-Vs) Define interface geometry & various SOCs fall out automatically. No parameters. Atomistic SOC is comprehensive & general!28 Two cases: Smooth & Rough surface Real Si devices have interface steps (interface symmetry is modified): Wave-function in ideal interface Wave-function in tilted interface Interface steps Can interface steps/roughness affect spin splitting? Calculated ESR frequency vs B-field angle tilt angle Increasing tilt angle: • more steps seen by the dot Tilt 1.1° : 1 step Tilt 1.43° : 2 steps Tilt 1.9° : 3 steps Resolution: Two expts. Have different # of steps in the dot! Interface step affects both the magnitude and sign of (fv- - fv+) 30 Atomistic SOC: comparison with experiment Vandersypen group expt. [1-10] Steps inside the dot Micro-magnet: Extrinsic SOC [110] Close agreement between theory and expt. No adjustable parameters. R. Ferdous, L. Vandersypen, R. Rahman (in prep) 31 Physics of Si QDs Si QD spin qubit atomistic effects Valley Electron g-factor physics Spin-orbit Driving properties coupling Spin lifetime Interface condition Atomistic effects influence the properties of Si QD spin qubit The Future of Electronics? Optimization: Materials & Designs New Variables: Spins New Paradigms: Quantum Logic How can we scale supply voltage? Vdd Scaling S.S < 60 log Id mv/dec S.S > 60 mv/dec VG 0 VDD Need to make the I-V curve steeper. Steepness: MOSFET vs Tunnel FET log f(E) Vg↑ log Id Hot carriers e E S D SS≥60 mV/dec Metal Oxide MOSFET n+ p n+ Vg 0 Vdd log Id log Id log f(E) No hot carriers Ef TFET S G D SS<<60 mV/dec Metal Oxide i V p+ n+ 0 dd Vg Why 2D materials for TFET? Thinner the channel shorter the tunneling distance tsi ↓ λ↓ Thick channel Thin channel S G D G Metal S D Oxide Metal Oxide Thick p+ i n+ i Thin p+ n+ High On-current in 2D TFETs 36/27 Reduced thickness is good for TFETs! Atomistic simulation of 2D TMD devices MoS2 Atomic structure Band structure Device structure 1.76 eV M Γ K DFT guided TB Models of TMDs for transport simulations Comparison among TMD TFETs How good a TMD TFET can be? Atomistic simulation results Good SS, Low On-current Small bandgap and lighter effective mass TMDs make better TFETs Solution: Dielectric Engineered TFET (DE-TFET) Illustration Comments • Combination of low- Structure k and high-k dielectrics Electric field amplification • High electric field at the tunnel junction • High On-current Atomistic Simulation Patent 2015 Result H. Ilatikhameneh, G. Klimeck, R. Rahman 39 Atom to Device: Modeling Methods Atomistic Tight binding (spin-resolved) DFT Band Structure ~<200 atoms Bandstructure, wavefunctions First principles Novel Materials Semi-empirical Method TB Material
Recommended publications
  • Quantum Dots
    NMR Silicon quantum computing Quantum dots Practical realization of Quantum Computation QC implementation proposals Bulk spin Optical Atoms Solid state Resonance (NMR) Linear optics Cavity QED Trapped ions Optical lattices Electrons on He Semiconductors Superconductors Nuclear spin Electron spin Orbital state Flux Charge qubits qubits qubits qubits qubits http://courses.washington.edu/bbbteach/576/ 1 What is NMR (Nuclear magnetic resonance) ? NMR: study of the transitions between the Zeeman levels of an atomic nucleus in a magnetic field. • If put a system of nuclei with non-zero spin in E static magnetic field, there 2 E will be different energy RF 0 levels. 0 E2 E1 • If radio frequency wave with is applied, RF 0 E1 transitions will occur. Nuclear Energy Levels 2 Nuclear magnetic resonance NMR is one of the most important spectroscopic techniques available in molecular sciences since the frequencies of the NMR signal allow study of molecular structure. Basic idea: use nuclear spins of molecules as qubits Liquid NMR: rapid molecular motion in fluids greatly simplifies the NMR Hamiltonian as anisotropic interactions can be replaced by their isotropic averages, often zero. The signals are often narrow (high-resolution NMR). It is impossible to pick individual molecule. The combined signal from all molecules is detected (“bulk” NMR). Liquid Solution NMR Billions of molecules are used, each one a separate quantum computer. Most advanced experimental demonstrations to date, but poor scalability as molecule design gets difficult. Qubits are stored in nuclear spin of molecules and controlled by different frequencies of magnetic pulses. Vandersypen, 2000 Used to factor 15 experimentally.
    [Show full text]
  • Material Platforms for Defect Qubits and Single Photon Emitters
    Material Platforms for Defect Qubits and Single Photon Emitters Gang Zhang1, Yuan Cheng1, Jyh-Pin Chou2,3,*, Adam Gali4,5,* 1 Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore. 2 Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan. 3 Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China. 4 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary. 5 Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H- 1111 Budapest, Hungary. Author to whom correspondence should be addressed: [email protected] (Jyh-Pin Chou) and [email protected] (Adam Gali) Abstract Quantum technology has grown out of quantum information theory and now provides a valuable tool that researchers from numerous fields can add to their toolbox of research methods. To date, various systems have been exploited to promote the application of quantum information processing. The systems that can be used for quantum technology include superconducting circuits, ultra-cold atoms, trapped ions, semiconductor quantum dots, and solid-state spins and emitters. In this review, we will discuss the state of the art on material platforms for spin-based quantum technology, with a focus on the progress in solid- state spins and emitters in several leading host materials, including diamond, silicon carbide, boron nitride, silicon, two-dimensional semiconductors, and other materials. We will highlight how first- principles calculations can serve as an exceptionally robust tool for finding the novel defect qubits and single photon emitters in solids, through detailed predictions of the electronic, magnetic and optical properties.
    [Show full text]
  • PDF, 4MB Herunterladen
    Status of quantum computer development Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project 1.1 July 2019 First update containing both new material and improved readability, details summarized in chapters 1.6 and 2.11 1.2 June 2020 Second update containing new algorithmic developments, details summarized in chapters 1.6.2 and 2.12 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Office for Information Security 2020 Introduction Introduction This study discusses the current (Fall 2017, update early 2019, second update early 2020 ) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on applications in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the fields involved—mathematicians, computer scientists. These will find the treatment of their own field slightly superficial but benefit from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Aditi Misra-Spieldenner, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Office for Information Security.
    [Show full text]
  • Time Evolution of Quantum Computer Michimasa Sugimura
    MASTER THESIS Time Evolution of Quantum Computer Michimasa Sugimura Department of Physics, Graduate College of Science and Engineering, Aoyama Gakuin University Supervisor: Naomichi Hatano 2001 論 文 要 旨 (和 文) 提 出 年 度 : 2001 年度 提 出 日 : 2 月 15 日 専 攻 : 物理学専攻 学 生 番 号 : 35100011 学 生 氏 名 : 杉村 充理 研究指導教員: 羽田野 直道 (論文題目) 算機の時間発展シミュレーションڐ量子 (内容の要旨) 算機は、1985年に Deutsch によって明確に定式化された、量子ڐ量子 算機の概念である。古典力学に従う従来のڐ力学の原理に基づく全く新しい 算要ڐ算機では、0または1のどちらかのみの状態をとるビットを基本のڐ 算機の0にあたるビットを2準位系ڐ算機では、古典ڐ素としている。量子 の基底状態、1にあたるものを第一励֬状態と対応させ、0と1の重ね合わ せ状態に拡張したビットを用いる。このビットは qubit と呼ばれている。ま 算にあたる操作を、ユニタリ-変換による量子状態ڐ算機ではそのڐた量子 の遷移として行う。このとき初期状態としてお互いに量子的な相関を持つ 算できるڐqubit を複数用意することによって、同時に重ね合わせ状態を並列 。算機の利点であるڐことが量子 算機の実現にあたっては、量子的な重ね合わせڐこの概念を利用した量子 状態を良ࡐに維持するために、環境系との相互作用によるデコヒ-レンス時 間がସいことが必要となる。この要求に対する新しい方法が1998年に Kane によって提案された。それはシリコン中にド-プした 31P の核スピンを qubit として用いることにより、qubit が環境系と相互作用することによる緩 和をේぐものである。この提案におけるゲート操作は NMR で行われている 方法と同様に外൉磁場によって誘֬されたゼ-マン分裂に、共鳴したݗ周波 磁場を照射することによって行う。 本研究では、Kane の提案した半導体量子コンピュータのゲート操作を数 値的に再現することをࠟみた。これを行う方法として、まず半導体デバイス 中にド-プされた 31P は水素་似原子であると仮定した。z ࡃ方向のৌ磁場中 における核-஢子系のスピンハミルトニアンに、ݗ周波磁場を時間に依存する 摂動として加え、エネルギー準位間の遷移確率を求めた。 ো山学院大学大学院理工学研究科 † † Academic Year of 2001, Submitted on February 22, 2002 Graduate College of Science and Engineering, Aoyama Gakuin University Master Thesis Time evolution of quantum computer Michimasa Sugimura (35100011) Supervisor : Naomichi Hatano Department of Physics Deutsch formulated in 1985 a new computer based on the quantum mechanics. In quantum computers, the ones and zeros of classical digital computers are replaced by the quantum state of a two-level system which is named qubit. Computation, i.e., a sequence of unitary transformations, simultaneously affects each element of the superposition, generating a massive parallel data processing, albeit within one piece of quantum hardware. Practical of quantum computer, requires preventing decoherence (uncontrolled interaction of a quantum system with its surrounding environment) in order to maintain the superposition.
    [Show full text]
  • Information and Computation: Classical and Quantum Aspects
    Reviews of Modern Physics to apperar Information and Computation: Classical and Quantum Aspects A. Galindo† and M.A. Mart´ın-Delgado‡ Departamento de F´ısica T´eorica I. Facultad de Ciencias F´ısicas. Universidad Complutense. 28040 Madrid. Spain. Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental realizations for quantum computers and future prospects. PACS numbers: 03.67.-a, 03.67.Lx CONTENTS A.The Ion-Trap QC 58 B.NMR Liquids: Quantum Ensemble Computation 61 I.Introduction 1 C.Solid-State Quantum Computers 66 II.Classical Information 2 XII.Conclusions 70 A.The Theorems of Shannon 2 Acknowledgments 71 B.Classical Error Correction 4 List of Symbols and Acronyms 71 III.Quantum Information 6 Appendix: Computational Complexity 72 A.Entanglement and Information 8 A.Classical Complexity Classes 72 B.Quantum Coding and Schumacher’s Theorem 10 B.Quantum Complexity Classes 74 C.Capacities of a Quantum Channel 11 References 74 D.Quantum Error Correction 11 E.Entanglement Distillation 13 IV.Quantum Teleportation 15 I.
    [Show full text]
  • Realistic Read-Out and Control for Si:P Based Quantum Computers
    Realistic read-out and control for Si:P based quantum computers by Matthew James Testolin BSc(Hons) Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy School of Physics The University of Melbourne Australia August, 2008 Abstract This thesis identifies problems with the current operation proposals for Si:P based solid-state quantum computing architectures and outlines realistic alter- natives as an effective fix. The focus is qubit read-out and robust two-qubit control of the exchange interaction in the presence of both systematic and environmental errors. We develop a theoretical model of the doubly occupied D− read-out state found in Si:P based nuclear spin architectures. We test our theory by using it to determine the binding energy of the D− state, comparing to known re- sults. Our model can be used in detailed calculations of the adiabatic read-out protocol proposed for these devices. Regarding this protocol, preliminary cal- culations suggest the small binding energy of the doubly occupied read-out state will result in a state dwell-time less than that required for measurement using a single electron transistor (SET). We propose and analyse an alterna- tive approach to single-spin read-out using optically induced spin to charge transduction, showing that the top gate biases required for qubit selection are significantly less than those demanded by the adiabatic scheme, thereby in- + creasing the D D− lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed. On the topic of robust two-qubit control, we demonstrate how by using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known.
    [Show full text]
  • A Non-Adiabatic Controlled Not Gate for the Kane Solid State Quantum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE A Non-Adiabatic Controlled Not Gate for the Kane Solid provided by CERN Document Server State Quantum Computer C. Wellard†, L.C.L. Hollenberg†∗ and H.C.Pauli∗. † School of Physics, University of Melbourne, 3010, AUSTRALIA. ∗ Max-Planck-Institut f¨ur Kernphysik, Heidelberg D69029, GERMANY. The method of iterated resolvents is used to obtain an effective Hamiltonian for neighbouring qubits in the Kane solid state quantum computer. In contrast to the adiabatic gate processes inherent in the Kane proposal we show that free evolution of the qubit-qubit system, as generated by this effective Hamiltonian, combined with single qubit operations, is sufficient to produce a controlled-NOT (c-NOT) gate. Thus the usual set of universal gates can be obtained on the Kane quantum computer without the need for adiabatic switching of the controllable parameters as prescribed by Kane [1]. Both the fidelity and gate time of this non-adiabatic c-NOT gate are determined by numerical simulation. 1 I. INTRODUCTION 1 31 In the Kane proposal for a solid state quantum computer a series of spin 2 P nuclei in a silicon substrate are used as qubits [1]. The interaction between these qubits is mediated by valence electrons weakly bound to the nuclei, such that at energies much lower than these electrons binding energy the system Hamiltonian is given by H = µ B(σz + σz ) g µ B(σz + σz ) B 1e 2e − n n 1n 2n + A1~σ1e:~σ1n + A2~σ2e:~σ2n + J~σ1e:~σ2e: (1) The interaction strengths A1 , A2 as well as J are controllable by means of voltage biases applied to “A” and “J” gates respectively [1,2].
    [Show full text]
  • Benchmarking ZX-Calculus Circuit Optimization Against Qiskit
    Association for Computing Machinery Student Research Competition, Finalist Round Lia Yeh Benchmarking ZX-Calculus Circuit Optimization Against Qiskit Transpilation Lia Yeh{y, Emma (Maitreyee) Dasgupta+y, Erick Winstony {University of California, Santa Barbara; +The University of Chicago; yIBM Q Abstract Quantum hardware and algorithms researchers alike have expressed the critical need for and short- age of expertise in quantum programming languages, compilation, and computer architecture. We design, implement, and benchmark quantum compilation and visualization in PyZX 1, a Python tool for the ZX-calculus, applied to Qiskit 2, the most widely-used quantum programming language. We demonstrate correct circuit optimization by our Qiskit transpiler pass on 1000 two qubit Randomized Benchmarking circuits, reducing gate count of 29% of the circuits further than Qiskit’s default transpiler. Section I: Problem and Motivation Quantum computers can efficiently simulate quantum systems, phenomena impossible to efficiently simu- late using classical computers 3. The computational capabilities of experimentally realized quantum com- puters, across many quantum hardware platforms, has scaled at an exponential rate in recent years. Fol- lowing quantum supremacy 4 (the demonstration and confirmation of correctness of a quantum algorithm execution vastly outperforming the best-known runnable classical algorithm), quantum computing’s next challenge is to run useful quantum algorithms on near-term quantum devices, as in Figure 1. The vast applications for realizable quantum computation include material science, quantum chemistry, quantum gravity, machine learning, cryptography, drug discovery, optimization, and quantum sensing 5. Figure 1: Reprinted from 6. What would the organization of quantum toolflows look like? As a technology decades from its full theorized potential, the challenge of full-stack quantum computation is in inventing layers upon layers of abstraction bridging quantum algorithms and scalable quantum hardware.
    [Show full text]
  • P283 QC Studie-V 1 0.Pdf
    Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project Federal Offce for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Offce for Information Security 2017 Introduction Introduction This study discusses the current (Fall 2017) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on application in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the felds involved—mathematicians, computer scientists. These will fnd the treatment of their own feld slightly superfcial but beneft from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Offce for Information Security. Any use outside the limits defned by the copyright law without approval by the BSI is not permitted and punishable. This covers reproduction, translation, micro flming, and storing and processing in electronic systems. BSI-Reference BSI Title: Entwicklungsstand Quantencomputer BSI Project Number: 283 Federal Office for Information Security 3 Table of Contents Table of Contents Introduction........................................................................................................................................................................................
    [Show full text]
  • Shi Uchicago 0330D 15559.Pdf
    THE UNIVERSITY OF CHICAGO COMPILATION, OPTIMIZATION AND VERIFICATION OF NEAR-TERM QUANTUM COMPUTING A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS BY YUNONG SHI CHICAGO, ILLINOIS DECEMBER 2020 Copyright c 2020 by Yunong Shi All Rights Reserved TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . x ACKNOWLEDGMENTS . xi ABSTRACT . xiii 1 THESIS OVERVIEW . 1 1.1 Breaking Abstractions in the Quantum Computing Stack . .1 1.2 Reliable Quantum Software by Formal Verification . .3 2 INTRODUCTION TO QUANTUM COMPUTING . 5 2.1 Quantum Computing Basics . .5 2.2 Quantum Algorithms . .7 2.2.1 Shor’s algorithm . .7 2.2.2 Grover algorithm . .9 2.2.3 Quantum simulation . 11 2.2.4 Variational Quantum Eigensolver . 12 2.2.5 Quantum Approximation Optimization Algorithm . 13 2.3 Quantum Architectures . 14 2.3.1 The DiVincenzo criteria . 14 2.3.2 Superconducting QIP platform . 15 2.3.3 Trapped ion QIP platform . 16 2.4 Software Stack of Near-term Quantum Computing . 17 3 OPTIMIZED QUANTUM COMPILATION OF AGGREGATED INSTRUCTIONS . 19 3.1 Quantum Compilation . 19 3.1.1 Solovay Kitaev theorem . 20 3.1.2 Other compilation methods . 23 3.2 Quantum Control . 25 3.2.1 Basic Lie algebra . 26 3.2.2 Controllability . 27 3.2.3 The KAK decomposition . 28 3.2.4 Quantum optimal control using numerical methods . 29 3.3 Breaking the Abstraction of ISA using Aggregated Instructions . 31 3.4 Compilation Methodology . 32 3.4.1 An example of QAOA circuit .
    [Show full text]
  • A Non-Adiabatic Controlled Not Gate for the Kane Solid State Quantum Computer
    A Non-Adiabatic Controlled Not Gate for the Kane Solid State Quantum Computer C. Wellard†, L.C.L. Hollenberg†∗ and H.C.Pauli∗. † School of Physics, University of Melbourne, 3010, AUSTRALIA. ∗ Max-Planck-Institut f¨ur Kernphysik, Heidelberg D69029, GERMANY. The method of iterated resolvents is used to obtain an effective Hamiltonian for neighbouring qubits in the Kane solid state quantum computer. In contrast to the adiabatic gate processes inherent in the Kane proposal we show that free evolution of the qubit-qubit system, as generated by this effective Hamiltonian, combined with single qubit operations, is sufficient to produce a controlled-NOT (c-NOT) gate. Thus the usual set of universal gates can be obtained on the Kane quantum computer without the need for adiabatic switching of the controllable parameters as prescribed by Kane [1]. Both the fidelity and gate time of this non-adiabatic c-NOT gate are determined by numerical simulation. arXiv:quant-ph/0108103v1 23 Aug 2001 1 I. INTRODUCTION 1 31 In the Kane proposal for a solid state quantum computer a series of spin 2 P nuclei in a silicon substrate are used as qubits [1]. The interaction between these qubits is mediated by valence electrons weakly bound to the nuclei, such that at energies much lower than these electrons binding energy the system Hamiltonian is given by z z z z H = µBB(σ1e + σ2e) − gnµnB(σ1n + σ2n) + A1~σ1e.~σ1n + A2~σ2e.~σ2n + J~σ1e.~σ2e. (1) The interaction strengths A1 , A2 as well as J are controllable by means of voltage biases applied to “A” and “J” gates respectively [1,2].
    [Show full text]
  • Tailoring Quantum Architectures to Implementation Style: a Quantum Computer for Mobile and Persistent Qubits
    Tailoring Quantum Architectures to Implementation Style: A Quantum Computer for Mobile and Persistent Qubits Eric Chi, Stephen A. Lyon, Margaret Martonosi Dept. of Electrical Engineering, Princeton University {echi,lyon,mrm}@princeton.edu ABSTRACT for realizing quantum bits (qubits) and operations. Quantum com- In recent years, quantum computing (QC) research has moved from puter (QC) implementations share many common characteristics; the realm of theoretical physics and mathematics into real imple- most notably, all physical implementations must contend with de- mentations [9]. With many different potential hardware implemen- coherence: the accumulation of noise-induced errors over time and tations, quantum computer architecture is a rich field with an op- via imperfect operations. However, QC implementations vary sig- portunity to solve interesting new problems and to revisit old ones. nificantly in many parameters, including the susceptibility of qubits This paper presents a QC architecture tailored to physical imple- to decoherence and the relative speeds of qubit communication and mentations with highly mobile and persistent quantum bits (qubits). operation. These varying parameters lead to QC architectures with Implementations with qubit coherency times that are much longer starkly different design emphases. than operation times and qubit transportation times that are orders Meaningful quantum computation necessarily involves opera- of magnitude faster than operation times lend greater flexibility to tions acting on multiple qubits, and quantum algorithms are de- the architecture. This is particularly true in the placement and lo- signed assuming the QC performs many of these operations in par- cality of individual qubits. For concreteness, we assume a phys- allel. Because multiple-qubit operations require their operand qubits ical device model based on electron-spin qubits on liquid helium to be physically proximate, QC architectures must be designed to (eSHe) [15].
    [Show full text]