POLITECNICO DI TORINO Repository ISTITUZIONALE

Total Page:16

File Type:pdf, Size:1020Kb

POLITECNICO DI TORINO Repository ISTITUZIONALE POLITECNICO DI TORINO Repository ISTITUZIONALE A Quantum Computation Model for Molecular Nanomagnets Original A Quantum Computation Model for Molecular Nanomagnets / Cirillo, Giovanni Amedeo; Turvani, Giovanna; Graziano, Mariagrazia. - In: IEEE TRANSACTIONS ON NANOTECHNOLOGY. - ISSN 1536-125X. - 18(2019), pp. 1027-1039. [10.1109/TNANO.2019.2939910] Availability: This version is available at: 11583/2761452 since: 2019-12-05T12:10:15Z Publisher: IEEE Published DOI:10.1109/TNANO.2019.2939910 Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 October 2021 1 A quantum computation model for molecular nanomagnets Giovanni Amedeo Cirillo, Student Member, IEEE, Giovanna Turvani, and Mariagrazia Graziano, Member, IEEE Abstract—Molecular nanomagnets can be considered as serious states (encoding 0 and 1) at the same time [2]. Superposition candidates for the definition of a scalable and reliable quantum permits to define an equivalent parallel computation model, computing technology: information is encoded on their spins involving quantum algorithms faster than the corresponding and they ensure relaxation and decoherence times sufficiently long for the execution of tens of quantum operations. Among classical ones, in terms of computational costs. For example, these devices, Cr7Ni supramolecular complexes are extremely of a quantum computer is able to execute in polynomial time interest since they implement a universal set of quantum gates, prime factoring, which requires exponential time in Boolean- made of single-qubit gates and the two-qubit Controlled-phase based computation [3]. gate. A model for analyzing Cr7Ni molecules and a potential Many technologies have been proposed for implementing a quantum computer architecture are proposed: starting from the energy parameters required for spin manipulations, these systems quantum computer based on superconductivity [4]–[7], trapped have been proved to implement elementary quantum algorithms. ions [8], photons [9], [10], technologies (ultracold atoms Within this paper, two, three and four-qubit systems have been in optical lattices, thin-film superconductors, Semiconductor analyzed: the simulation of quantum operations and the analysis Heterostructures) for topological quantum computing [11], of dynamical non-idealities have been done in parallel. Our [12] and spin systems as quantum-dots [13], silicon [14]–[16] approach enables the definition of an operating point - in terms of magnetic driving fields and latency - in which the execution of and molecules [17]–[21], which can be as organic as inorganic elementary quantum algorithms is characterized by negligible [22]. Molecular quantum information is encoded on spin orien- errors. The proposed model has been entirely implemented tations and qubits are manipulated through magnetic resonance in MATLAB, thus obtaining a software infrastructure for the techniques. Many quantum algorithms have been executed on analysis of Cr7Ni molecules that can be extended to quantum apparatus for liquid-state NMR spectroscopy [23]–[30]. The systems with analogous Hamiltonian and behavior. molecules typically employed for NMR quantum information Index Terms—Molecular Nanomagnets, Quantum Computing processing usually encode information on nuclear spins of Architectures, Quantum Algorithms, Innovative Technology hydrogen, carbon and fluorine atoms. The main limitation of this technology is related to the scaling of the number of I. INTRODUCTION qubits, through the synthesis of more complex molecules with more spin qubits; for this reason, the analysis of alternative The high-power consumption due to leakage currents and molecular technologies for quantum computing would permit the technological limits of lithography-based techniques used to overcome these limitations. Among spin-qubit technologies, for fabrication are making the development of Complementary we focused our attention on molecular nanomagnets, that result Metal-Oxide-Semiconductor (CMOS) technology increasingly extremely interesting not only for the capability of scaling harder, with the consequent risk that the computation per- the number of qubits through supramolecular chemistry tech- formance scaling in the next decades cannot be ensured. In niques, but also for their long relaxation and decoherence order to overcome these limitations, two different approaches timescales, enabling the implementation of tens of quantum have been considered: on the one hand, research can focus operations with negligible errors. In particular with this work, on technologies which can inherit the CMOS role of leading Cr7Ni-Co-Cr7Ni molecular nanomagnets, which has been technology for the production of microprocessors based on proved to implement a universal set of quantum gates [31]- deterministic binary information and boolean logic [1] (the have been analyzed. Starting from these properties, we present so-called classical computers); on the other, new computing here a simulation and validation model, entirely developed paradigms - alternative to the classical one - can be analyzed. in MATLAB, for the analysis of the execution of quantum Quantum Computation belongs to this set: its unit of in- operations and algorithms with these molecules. This bottom- formation, named qubit, is physically mapped on a quantum up methodology can be further exploited for the investigation state (e.g. a spin) instead of a classical state as a voltage. of other molecular technologies that can be candidates for the Since quantum states are characterized by superposition, the definition of a future quantum computer architecture. After an qubit has a non-null probability of being in two different overview of quantum computation fundamentals and the state of the art for quantum computing with molecular nanomagnets, The authors are with the Electronics and Telecommunications Department of Politecnico di Torino, Torino, 10129, Italy (e- the Cr7Ni-qubit model is presented, focusing on the universal mail: giovanni [email protected]; [email protected]; maria- set of quantum gates of this technology. In SectionVa [email protected]). potential quantum computer architecture is proposed, with the Copyright (c) 2019 IEEE. Personal use of this material is permitted. However, permission to use this material for any other other purposes must be Cr7Ni complex behaving as a processing unit. An overview obtained from the IEEE by sending a request to [email protected]. of the implemented instructions, exploitable for simulating 2 elementary quantum algorithms up to four qubits, is reported. the azimuth angle. The two basis states j0i (θ = 0) and j1i In SectionVI non-idealities are analyzed, in order to define (θ = π) - corresponding to the states 0 and 1 of a classical a quasi-optimal operating point for the molecular processor. bit - lie at the poles of the sphere; in these cases the value of In Section VIII the results obtained from the simulation of a φ is irrelevant. Points on the same latitude have the same 2 2 three-qubit algorithm are reported. Future perspectives for the probabilities jc0j and jc1j . technology and modeling infrastructure are reported in Section Operations on a qubit correspond to moving the state vector, IX. thus eventually changing its probabilities of being j0i or j1i, through rotations of the Cartesian axes described by matrices II. BACKGROUND Rx(θ), Ry(θ), Rz(θ) [2]. They are related to the well-known The quantum unit of information is the qubit; it is encoded Pauli matrices σx, σy and σz - typically employed for the on a quantum physical system with two basis states - tipically description of two-level quantum systems - by the following named j0i and j1i - implemented in many ways, as spin equations: states of electrons, atomic energy levels, polarization states −i θ σ θ θ R (θ) = e 2 x;y;z = cos I + i sin σ ; of photons, or paths in an interferometer. In quantum circuit x;y;z 2 2 x;y;z and information theories the qubit is abstracted from physical θ θ π i details. The main difference between a qubit and a classical (σx;y;z) = e 2 Rx;y;z (θ) ; (2) bit is that the first is not confined to one of the states j0i and 1 2 where I is the identity matrix. For example, (σx) = j1i, but can be found in arbitrary superposition states π π i 4 π i 2 e Rx 2 and σz = e Rz(π). It must be observed that 1 0 c0 j i = c0 j0i + c1 j1i = c0 · + c1 · = (1) quantum gates implemented by real quantum computers are 0 1 c1 typically characterized by phase shifts of type eiφ that do where c0; c1 2 C are the probability amplitudes, each one as- not affect the final result. In fact, if a generic quantum gate sociated to one qubit basis state. The square magnitude of each eiφM is applied on the quantum state j i, resulting in a final 0 iφ iφ probability amplitude is equal to the probability of finding the state j i = e M j i = e j M i, the scalar term does 2 0 2 qubit in the corresponding state, thus jc0j = P (j i = j0i), not affect any probability j of the final state since 2 2 2 2 2 2 jc1j = P (j i = j1i) and jc0j + jc1j = 1. For these reasons, 0 iφ 2 j = je j · Mj = Mj . the qubit can be in two different states (encoding 0 and 1) According to the vector description of qubit, any quantum gate at the same time. The one-qubit model can be generalized involving k qubits can be described by a 2k ×2k unitary matrix to a quantum register of N qubits with 2N basis states N which modifies the probability amplitudes of a state vector of P2 −1 2 k j i = i=0 ci j ii, with jcij = P (j i = j ii) and length 2 . N P2 −1 2 i=0 jcij = 1. Superposition is the property permitting to quantum bits of being more powerful than their classical III. QUANTUM COMPUTING WITH MOLECULAR equivalents, since a higher degree of computing parallelism NANOMAGNETS can be exploited by employing qubits, given the same number N of information units.
Recommended publications
  • Quantum Dots
    NMR Silicon quantum computing Quantum dots Practical realization of Quantum Computation QC implementation proposals Bulk spin Optical Atoms Solid state Resonance (NMR) Linear optics Cavity QED Trapped ions Optical lattices Electrons on He Semiconductors Superconductors Nuclear spin Electron spin Orbital state Flux Charge qubits qubits qubits qubits qubits http://courses.washington.edu/bbbteach/576/ 1 What is NMR (Nuclear magnetic resonance) ? NMR: study of the transitions between the Zeeman levels of an atomic nucleus in a magnetic field. • If put a system of nuclei with non-zero spin in E static magnetic field, there 2 E will be different energy RF 0 levels. 0 E2 E1 • If radio frequency wave with is applied, RF 0 E1 transitions will occur. Nuclear Energy Levels 2 Nuclear magnetic resonance NMR is one of the most important spectroscopic techniques available in molecular sciences since the frequencies of the NMR signal allow study of molecular structure. Basic idea: use nuclear spins of molecules as qubits Liquid NMR: rapid molecular motion in fluids greatly simplifies the NMR Hamiltonian as anisotropic interactions can be replaced by their isotropic averages, often zero. The signals are often narrow (high-resolution NMR). It is impossible to pick individual molecule. The combined signal from all molecules is detected (“bulk” NMR). Liquid Solution NMR Billions of molecules are used, each one a separate quantum computer. Most advanced experimental demonstrations to date, but poor scalability as molecule design gets difficult. Qubits are stored in nuclear spin of molecules and controlled by different frequencies of magnetic pulses. Vandersypen, 2000 Used to factor 15 experimentally.
    [Show full text]
  • Material Platforms for Defect Qubits and Single Photon Emitters
    Material Platforms for Defect Qubits and Single Photon Emitters Gang Zhang1, Yuan Cheng1, Jyh-Pin Chou2,3,*, Adam Gali4,5,* 1 Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore. 2 Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan. 3 Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China. 4 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary. 5 Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H- 1111 Budapest, Hungary. Author to whom correspondence should be addressed: [email protected] (Jyh-Pin Chou) and [email protected] (Adam Gali) Abstract Quantum technology has grown out of quantum information theory and now provides a valuable tool that researchers from numerous fields can add to their toolbox of research methods. To date, various systems have been exploited to promote the application of quantum information processing. The systems that can be used for quantum technology include superconducting circuits, ultra-cold atoms, trapped ions, semiconductor quantum dots, and solid-state spins and emitters. In this review, we will discuss the state of the art on material platforms for spin-based quantum technology, with a focus on the progress in solid- state spins and emitters in several leading host materials, including diamond, silicon carbide, boron nitride, silicon, two-dimensional semiconductors, and other materials. We will highlight how first- principles calculations can serve as an exceptionally robust tool for finding the novel defect qubits and single photon emitters in solids, through detailed predictions of the electronic, magnetic and optical properties.
    [Show full text]
  • PDF, 4MB Herunterladen
    Status of quantum computer development Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project 1.1 July 2019 First update containing both new material and improved readability, details summarized in chapters 1.6 and 2.11 1.2 June 2020 Second update containing new algorithmic developments, details summarized in chapters 1.6.2 and 2.12 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Office for Information Security 2020 Introduction Introduction This study discusses the current (Fall 2017, update early 2019, second update early 2020 ) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on applications in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the fields involved—mathematicians, computer scientists. These will find the treatment of their own field slightly superficial but benefit from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Aditi Misra-Spieldenner, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Office for Information Security.
    [Show full text]
  • Time Evolution of Quantum Computer Michimasa Sugimura
    MASTER THESIS Time Evolution of Quantum Computer Michimasa Sugimura Department of Physics, Graduate College of Science and Engineering, Aoyama Gakuin University Supervisor: Naomichi Hatano 2001 論 文 要 旨 (和 文) 提 出 年 度 : 2001 年度 提 出 日 : 2 月 15 日 専 攻 : 物理学専攻 学 生 番 号 : 35100011 学 生 氏 名 : 杉村 充理 研究指導教員: 羽田野 直道 (論文題目) 算機の時間発展シミュレーションڐ量子 (内容の要旨) 算機は、1985年に Deutsch によって明確に定式化された、量子ڐ量子 算機の概念である。古典力学に従う従来のڐ力学の原理に基づく全く新しい 算要ڐ算機では、0または1のどちらかのみの状態をとるビットを基本のڐ 算機の0にあたるビットを2準位系ڐ算機では、古典ڐ素としている。量子 の基底状態、1にあたるものを第一励֬状態と対応させ、0と1の重ね合わ せ状態に拡張したビットを用いる。このビットは qubit と呼ばれている。ま 算にあたる操作を、ユニタリ-変換による量子状態ڐ算機ではそのڐた量子 の遷移として行う。このとき初期状態としてお互いに量子的な相関を持つ 算できるڐqubit を複数用意することによって、同時に重ね合わせ状態を並列 。算機の利点であるڐことが量子 算機の実現にあたっては、量子的な重ね合わせڐこの概念を利用した量子 状態を良ࡐに維持するために、環境系との相互作用によるデコヒ-レンス時 間がସいことが必要となる。この要求に対する新しい方法が1998年に Kane によって提案された。それはシリコン中にド-プした 31P の核スピンを qubit として用いることにより、qubit が環境系と相互作用することによる緩 和をේぐものである。この提案におけるゲート操作は NMR で行われている 方法と同様に外൉磁場によって誘֬されたゼ-マン分裂に、共鳴したݗ周波 磁場を照射することによって行う。 本研究では、Kane の提案した半導体量子コンピュータのゲート操作を数 値的に再現することをࠟみた。これを行う方法として、まず半導体デバイス 中にド-プされた 31P は水素་似原子であると仮定した。z ࡃ方向のৌ磁場中 における核-஢子系のスピンハミルトニアンに、ݗ周波磁場を時間に依存する 摂動として加え、エネルギー準位間の遷移確率を求めた。 ো山学院大学大学院理工学研究科 † † Academic Year of 2001, Submitted on February 22, 2002 Graduate College of Science and Engineering, Aoyama Gakuin University Master Thesis Time evolution of quantum computer Michimasa Sugimura (35100011) Supervisor : Naomichi Hatano Department of Physics Deutsch formulated in 1985 a new computer based on the quantum mechanics. In quantum computers, the ones and zeros of classical digital computers are replaced by the quantum state of a two-level system which is named qubit. Computation, i.e., a sequence of unitary transformations, simultaneously affects each element of the superposition, generating a massive parallel data processing, albeit within one piece of quantum hardware. Practical of quantum computer, requires preventing decoherence (uncontrolled interaction of a quantum system with its surrounding environment) in order to maintain the superposition.
    [Show full text]
  • Information and Computation: Classical and Quantum Aspects
    Reviews of Modern Physics to apperar Information and Computation: Classical and Quantum Aspects A. Galindo† and M.A. Mart´ın-Delgado‡ Departamento de F´ısica T´eorica I. Facultad de Ciencias F´ısicas. Universidad Complutense. 28040 Madrid. Spain. Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental realizations for quantum computers and future prospects. PACS numbers: 03.67.-a, 03.67.Lx CONTENTS A.The Ion-Trap QC 58 B.NMR Liquids: Quantum Ensemble Computation 61 I.Introduction 1 C.Solid-State Quantum Computers 66 II.Classical Information 2 XII.Conclusions 70 A.The Theorems of Shannon 2 Acknowledgments 71 B.Classical Error Correction 4 List of Symbols and Acronyms 71 III.Quantum Information 6 Appendix: Computational Complexity 72 A.Entanglement and Information 8 A.Classical Complexity Classes 72 B.Quantum Coding and Schumacher’s Theorem 10 B.Quantum Complexity Classes 74 C.Capacities of a Quantum Channel 11 References 74 D.Quantum Error Correction 11 E.Entanglement Distillation 13 IV.Quantum Teleportation 15 I.
    [Show full text]
  • Realistic Read-Out and Control for Si:P Based Quantum Computers
    Realistic read-out and control for Si:P based quantum computers by Matthew James Testolin BSc(Hons) Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy School of Physics The University of Melbourne Australia August, 2008 Abstract This thesis identifies problems with the current operation proposals for Si:P based solid-state quantum computing architectures and outlines realistic alter- natives as an effective fix. The focus is qubit read-out and robust two-qubit control of the exchange interaction in the presence of both systematic and environmental errors. We develop a theoretical model of the doubly occupied D− read-out state found in Si:P based nuclear spin architectures. We test our theory by using it to determine the binding energy of the D− state, comparing to known re- sults. Our model can be used in detailed calculations of the adiabatic read-out protocol proposed for these devices. Regarding this protocol, preliminary cal- culations suggest the small binding energy of the doubly occupied read-out state will result in a state dwell-time less than that required for measurement using a single electron transistor (SET). We propose and analyse an alterna- tive approach to single-spin read-out using optically induced spin to charge transduction, showing that the top gate biases required for qubit selection are significantly less than those demanded by the adiabatic scheme, thereby in- + creasing the D D− lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed. On the topic of robust two-qubit control, we demonstrate how by using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known.
    [Show full text]
  • Atomistic Modeling of Nano Devices: from Qubits to Transistors
    Network for Computational Nanotechnology (NCN) Atomistic Modeling of Nano Devices: From Qubits to Transistors Rajib Rahman Purdue University The Future of Electronics? Optimization: Materials & Designs New Variables: Spins ITRS New Paradigms: Quantum Logic Challenge for device modeling? New Material, Design Spintronic Devices Quantum Bits 2D Material MTJ Quantum dot Tunnel FET Spin transistor NV center Unified approach for modeling? Enter “Atoms”! Atomistic Modeling Approach Group IV & III-Vs 2D TMDs Magnetic Materials Silicon Interactions in Atomic Basis: Spin-orbit, E-field, B-field, strain Conduction electrons Donors/Acceptors Valence holes 4 Impact on Experiments Less electrons Atomistic simulations were successful to match experimental results The Future of Electronics? Optimization: Materials & Designs New Variables: Spins . Historical Perspective New Paradigms: . Exchange Interaction Quantum Logic . Spin-orbit Quantum Computing 1982: Feynman proposed a model for quantum computing. 1 Qubit: Superposition 2 Qubit: Entanglement Quantum Annealing in AQC: arXiv 1512:02206 For N qubit, all 2N states are used in parallel. 30 qubit more powerful than a supercomputer. QC: Promises massive speedup for difficult problems! History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal - QDs 1998: Kane proposal – donors in Si Two promising proposals for semiconductor qubits! Kane’s Quantum Computer Wavefunction control (ON/OFF) Two Qubit Single Qubit Utilize Si:P for quantum computing! Wavefunction control. History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal – QDs 1998: Kane proposal – donors in Si 2008: Single donor states observed 2005: First QD qubit in GaAs. in transport. 2012: First QD qubit in Si. Single donors probed in experiments! 2008-2012: Addressing single donors with transport Deterministic dopant location Random dopant locations Control of donor wavefunction by fields! History: Semiconductor Quantum Computing 1998: Loss, Divincenzo proposal – QDs 1998: Kane proposal – donors in Si 2005: First QD qubit in GaAs.
    [Show full text]
  • A Non-Adiabatic Controlled Not Gate for the Kane Solid State Quantum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE A Non-Adiabatic Controlled Not Gate for the Kane Solid provided by CERN Document Server State Quantum Computer C. Wellard†, L.C.L. Hollenberg†∗ and H.C.Pauli∗. † School of Physics, University of Melbourne, 3010, AUSTRALIA. ∗ Max-Planck-Institut f¨ur Kernphysik, Heidelberg D69029, GERMANY. The method of iterated resolvents is used to obtain an effective Hamiltonian for neighbouring qubits in the Kane solid state quantum computer. In contrast to the adiabatic gate processes inherent in the Kane proposal we show that free evolution of the qubit-qubit system, as generated by this effective Hamiltonian, combined with single qubit operations, is sufficient to produce a controlled-NOT (c-NOT) gate. Thus the usual set of universal gates can be obtained on the Kane quantum computer without the need for adiabatic switching of the controllable parameters as prescribed by Kane [1]. Both the fidelity and gate time of this non-adiabatic c-NOT gate are determined by numerical simulation. 1 I. INTRODUCTION 1 31 In the Kane proposal for a solid state quantum computer a series of spin 2 P nuclei in a silicon substrate are used as qubits [1]. The interaction between these qubits is mediated by valence electrons weakly bound to the nuclei, such that at energies much lower than these electrons binding energy the system Hamiltonian is given by H = µ B(σz + σz ) g µ B(σz + σz ) B 1e 2e − n n 1n 2n + A1~σ1e:~σ1n + A2~σ2e:~σ2n + J~σ1e:~σ2e: (1) The interaction strengths A1 , A2 as well as J are controllable by means of voltage biases applied to “A” and “J” gates respectively [1,2].
    [Show full text]
  • Benchmarking ZX-Calculus Circuit Optimization Against Qiskit
    Association for Computing Machinery Student Research Competition, Finalist Round Lia Yeh Benchmarking ZX-Calculus Circuit Optimization Against Qiskit Transpilation Lia Yeh{y, Emma (Maitreyee) Dasgupta+y, Erick Winstony {University of California, Santa Barbara; +The University of Chicago; yIBM Q Abstract Quantum hardware and algorithms researchers alike have expressed the critical need for and short- age of expertise in quantum programming languages, compilation, and computer architecture. We design, implement, and benchmark quantum compilation and visualization in PyZX 1, a Python tool for the ZX-calculus, applied to Qiskit 2, the most widely-used quantum programming language. We demonstrate correct circuit optimization by our Qiskit transpiler pass on 1000 two qubit Randomized Benchmarking circuits, reducing gate count of 29% of the circuits further than Qiskit’s default transpiler. Section I: Problem and Motivation Quantum computers can efficiently simulate quantum systems, phenomena impossible to efficiently simu- late using classical computers 3. The computational capabilities of experimentally realized quantum com- puters, across many quantum hardware platforms, has scaled at an exponential rate in recent years. Fol- lowing quantum supremacy 4 (the demonstration and confirmation of correctness of a quantum algorithm execution vastly outperforming the best-known runnable classical algorithm), quantum computing’s next challenge is to run useful quantum algorithms on near-term quantum devices, as in Figure 1. The vast applications for realizable quantum computation include material science, quantum chemistry, quantum gravity, machine learning, cryptography, drug discovery, optimization, and quantum sensing 5. Figure 1: Reprinted from 6. What would the organization of quantum toolflows look like? As a technology decades from its full theorized potential, the challenge of full-stack quantum computation is in inventing layers upon layers of abstraction bridging quantum algorithms and scalable quantum hardware.
    [Show full text]
  • P283 QC Studie-V 1 0.Pdf
    Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project Federal Offce for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Offce for Information Security 2017 Introduction Introduction This study discusses the current (Fall 2017) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on application in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the felds involved—mathematicians, computer scientists. These will fnd the treatment of their own feld slightly superfcial but beneft from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Offce for Information Security. Any use outside the limits defned by the copyright law without approval by the BSI is not permitted and punishable. This covers reproduction, translation, micro flming, and storing and processing in electronic systems. BSI-Reference BSI Title: Entwicklungsstand Quantencomputer BSI Project Number: 283 Federal Office for Information Security 3 Table of Contents Table of Contents Introduction........................................................................................................................................................................................
    [Show full text]
  • Shi Uchicago 0330D 15559.Pdf
    THE UNIVERSITY OF CHICAGO COMPILATION, OPTIMIZATION AND VERIFICATION OF NEAR-TERM QUANTUM COMPUTING A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS BY YUNONG SHI CHICAGO, ILLINOIS DECEMBER 2020 Copyright c 2020 by Yunong Shi All Rights Reserved TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . x ACKNOWLEDGMENTS . xi ABSTRACT . xiii 1 THESIS OVERVIEW . 1 1.1 Breaking Abstractions in the Quantum Computing Stack . .1 1.2 Reliable Quantum Software by Formal Verification . .3 2 INTRODUCTION TO QUANTUM COMPUTING . 5 2.1 Quantum Computing Basics . .5 2.2 Quantum Algorithms . .7 2.2.1 Shor’s algorithm . .7 2.2.2 Grover algorithm . .9 2.2.3 Quantum simulation . 11 2.2.4 Variational Quantum Eigensolver . 12 2.2.5 Quantum Approximation Optimization Algorithm . 13 2.3 Quantum Architectures . 14 2.3.1 The DiVincenzo criteria . 14 2.3.2 Superconducting QIP platform . 15 2.3.3 Trapped ion QIP platform . 16 2.4 Software Stack of Near-term Quantum Computing . 17 3 OPTIMIZED QUANTUM COMPILATION OF AGGREGATED INSTRUCTIONS . 19 3.1 Quantum Compilation . 19 3.1.1 Solovay Kitaev theorem . 20 3.1.2 Other compilation methods . 23 3.2 Quantum Control . 25 3.2.1 Basic Lie algebra . 26 3.2.2 Controllability . 27 3.2.3 The KAK decomposition . 28 3.2.4 Quantum optimal control using numerical methods . 29 3.3 Breaking the Abstraction of ISA using Aggregated Instructions . 31 3.4 Compilation Methodology . 32 3.4.1 An example of QAOA circuit .
    [Show full text]
  • A Non-Adiabatic Controlled Not Gate for the Kane Solid State Quantum Computer
    A Non-Adiabatic Controlled Not Gate for the Kane Solid State Quantum Computer C. Wellard†, L.C.L. Hollenberg†∗ and H.C.Pauli∗. † School of Physics, University of Melbourne, 3010, AUSTRALIA. ∗ Max-Planck-Institut f¨ur Kernphysik, Heidelberg D69029, GERMANY. The method of iterated resolvents is used to obtain an effective Hamiltonian for neighbouring qubits in the Kane solid state quantum computer. In contrast to the adiabatic gate processes inherent in the Kane proposal we show that free evolution of the qubit-qubit system, as generated by this effective Hamiltonian, combined with single qubit operations, is sufficient to produce a controlled-NOT (c-NOT) gate. Thus the usual set of universal gates can be obtained on the Kane quantum computer without the need for adiabatic switching of the controllable parameters as prescribed by Kane [1]. Both the fidelity and gate time of this non-adiabatic c-NOT gate are determined by numerical simulation. arXiv:quant-ph/0108103v1 23 Aug 2001 1 I. INTRODUCTION 1 31 In the Kane proposal for a solid state quantum computer a series of spin 2 P nuclei in a silicon substrate are used as qubits [1]. The interaction between these qubits is mediated by valence electrons weakly bound to the nuclei, such that at energies much lower than these electrons binding energy the system Hamiltonian is given by z z z z H = µBB(σ1e + σ2e) − gnµnB(σ1n + σ2n) + A1~σ1e.~σ1n + A2~σ2e.~σ2n + J~σ1e.~σ2e. (1) The interaction strengths A1 , A2 as well as J are controllable by means of voltage biases applied to “A” and “J” gates respectively [1,2].
    [Show full text]