Arachnida, Opiliones)

Total Page:16

File Type:pdf, Size:1020Kb

Arachnida, Opiliones) See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/299654983 Evolution of hyperflexible joints in sticky prey capture appendages of harvestmen (Arachnida, Opiliones) Article in Organisms Diversity & Evolution · April 2016 Impact Factor: 2.89 · DOI: 10.1007/s13127-016-0278-2 READS 84 4 authors: Jonas O. Wolff Jochen Martens Macquarie University Johannes Gutenberg-Universität Mainz 23 PUBLICATIONS 109 CITATIONS 217 PUBLICATIONS 2,288 CITATIONS SEE PROFILE SEE PROFILE Axel Schönhofer Stanislav Gorb Johannes Gutenberg-Universität Mainz Christian-Albrechts-Universität zu Kiel 36 PUBLICATIONS 196 CITATIONS 505 PUBLICATIONS 10,343 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Jochen Martens letting you access and read them immediately. Retrieved on: 22 June 2016 Org Divers Evol DOI 10.1007/s13127-016-0278-2 ORIGINAL ARTICLE Evolution of hyperflexible joints in sticky prey capture appendages of harvestmen (Arachnida, Opiliones) Jonas O. Wolff1 & Jochen Martens2 & Axel L. Schönhofer2 & Stanislav N. Gorb1 Received: 23 October 2015 /Accepted: 27 March 2016 # Gesellschaft für Biologische Systematik 2016 Abstract The rigid leg segments of arthropods are flexibly efficiency of the pedipalp as a means of prey capture, because connected by joints, which usually consist of two ball-and- in springtails detachable scales limit the action of the sticky bowl hinges, permitting a uniaxial pivoting up to 140°. secretion of pedipalpal setae. Here, we report the occurrence of hyperflexible joints (range of movements = 160–200°) in the pedipalps (second pair of Keywords Prey capture . Adhesion . Predator-prey appendages) of some harvestmen (Sabaconidae and interaction . Biomechanics . Torsion . Kinematics . Nemastomatidae), representing some of the most flexible leg Arachnida . Soil communities joints among arthropods. Hyperflexion is achieved by a reduc- tion of hinges and a strong constriction of the joint region. We demonstrate that hyperflexion occurs during prey capture and Introduction is used to clamp appendages of the prey, in addition to attach- ment by glue secreted by specialized setae. By means of high- The coevolution of predator and prey frequently leads to an speed video recordings, we found that in the Sabaconidae the increase in speed and efficacy of means of prey capture or tibiotarsal joint of the pedipalp can flex extremely rapidly defense (Dawkins and Krebs 1979;Vermeij1994;Abrams (<5 ms), limiting prey escape. This is the fastest reported 2000). In arthropod predators, there are numerous exam- predatory strike in arachnids and caused both by leverage ples of limb modifications that enhance the ability to over- and a click mechanism. By comparative analysis of different whelm and/or secure prey, including raptorial clamps (e.g., related taxa, we retraced joint evolution and found that mantids and amblypygids) (Ass 1973;Weygoldt2000), hyperflexion has independently evolved in Sabaconidae and capture baskets (e.g., dragonflies and asilids) (Gorb Nemastomatidae, with totally different joint kinematics. We 1999), sticky pads (e.g., solifuges) (Willemart et al. hypothesize that (rapid) hyperflexion evolved to enhance the 2011), snap-traps (trap-jaw ants) (Gronenberg et al. 1993), harpoons (mantis shrimps) (Murphy and Patek 2012), smashing clubs (mantis shrimps) (Patek and Electronic supplementary material The online version of this article Caldwell 2005), or even hydraulic pistols (snapping (doi:10.1007/s13127-016-0278-2) contains supplementary material, shrimps) (Versluis et al. 2000). The fastest movements which is available to authorized users. are enabled by a click mechanism, in which a high amount of energy is accumulated by the elastic deformation of a * Jonas O. Wolff [email protected] cuticular structure, which is suddenly released by a de- arresting or buckling mechanism. Such mechanisms have evolved both in predators like trap-jaw ants, which close 1 Functional Morphology and Biomechanics, Zoological Institute, Kiel their mandibles in less than 1 millisecond (Gronenberg University, Am Botanischen Garten 9, D-24118 Kiel, Germany et al. 1993), and in arthropods that are frequent targets of 2 Department of Evolutionary Biology, Institute of Zoology, Johannes predation, like springtails (Collembola) being capable of Gutenberg University Mainz, Joh.-von-Müller-Weg 6, catapulting rescue jumps with a take-off speed of 1.4 m/s D-55128 Mainz, Germany (Christian 1978). Springtails are, besides mites, a J.O. Wolff et al. ubiquitous and dominant part of soil arthropod communi- Material and methods ties and an important food source for arthropod predators (Hopkin 1997). Their catapult mechanism has been hy- Anatomical studies and phylogenetic analysis pothesized to be a result of an evolutionary Barms race^ between them and their predators (Hopkin 1997). For ex- Material ample, some ground beetles have evolved an antennal cap- ture basket that closes faster than the springtail can take off For anatomical studies, we used conserved material held in the (Bauer and Völlenkle 1976; Bauer 1982; Hintzpeter and private collections of the authors (f (females), m (males), juv Bauer 1986). However, speed is not only determined by (juveniles)): Caddidae: Caddo agilis BANKS 1892, Macon Co., the mechanism of movement generation, but also the time NC, USA, 2012, f, m; Acropsopilionidae: Acropsopilio of reaction, dependent on neuronal signal transmission. neozealandiae FORSTER 1948, South-Island, New Zealand, Thus, another predatory trick is the usage of sticky secre- 1990, f; Ischyropsalididae: Ischyropsalis luteipes SIMON tions, since these act directly on the prey without the ne- 1872, Cataluña, Spain, 2009, f, m, juv; Taracidae: cessity of a sensory feedback (Betz and Kölsch 2004). Hesperonemastoma modestum BANKS 1894, CA, USA, Viscid glue can be found in springtail hunting rove beetles 2011, f, m, juv; Sabaconidae: Sabacon simoni DRESCO 1952, (Bauer and Pfeiffer 1991; Schomann et al. 2008), mites Alpes-Maritimes, France, 2008, f, m, juv; Dicranolasmatidae: (Alberti 1973, 2010), harvestmen (Wolff et al. 2014, Dicranolasma pauper DAHL 1903, Trentino-Alto, Italy, 2014, 2016), and carnivorous plants (Verbeek and Boasson f, juv; Nemastomatidae: Mitostoma chrysomelas HERMANN 1993). However, the efficacy of glue is decreased by de- 1804, Mainz, Germany, 2014, f, m. tachable scales that help the springtail freeing from the glue trap (Bauer and Pfeiffer 1991; Wolff et al. 2014). Such scales evolved multiple times among springtails, in- Light microscopy (LM) dicating their role in defense from glue-using predators (Zhang et al. 2014). Light microscopical images of animals and their pedipalps In a previous study, we observed that the harvestman were made with a multifocus stereo microscope (Leica Mitostoma chrysomelas (Nemastomatidae) uses two M205 A, Leica Microsystems GmbH, Wetzlar, Germany) counter-strategies to reduce prey loss (Wolff et al. 2014). (1) equipped with a camera (Leica DFC420). The patello-tibial It stretches its legs to prevent ground contact and therefore joint and the tibiotarsal joint were studied in detail using dif- generation of opposing forces by the prey. (2) It highly flexes ferent illumination techniques. To understand the kinematics its tarsus against the tibia and thereby occasionally clamps of the joints, different specimens were studied that had their appendages of the prey in between. The latter must be based tibia and/or tarsus in a differently retracted/expanded state. on a more complex modification of the tibiotarsal joint, since arthropod leg joints usually do not exceed a range of motion (ROM) higher than 140° (extremes e.g., 120° in the femur- Scanning electron microscopy (SEM) patellar joint of spider walking legs (Parry and Brown 1959); 140° in the tibiotarsal joint in the raptorial legs of mantids Pedipalps were removed using fine forceps and dehydrated in (Corrette 1990)). In order to retrace the evolution of a series of increasing ethanol concentrations (80, 90, 100 and hyperflexibility (ROM > 160°), we comparatively studied 100 % on a molecular sieve), followed by critical point dry- the functional joint morphology in different representatives ing. Samples were glued on stubs using a carbon-rich double- of related harvestmen families, all of which are ground- sided adhesive tape. In some samples, the patella, tibia, and dwellers. The pedipalps of the monogeneric family tarsus were slightly pulled apart to uncover joint structures. Sabaconidae were of particular interest, since previous au- Specimens were sputter-coated with 10 nm Au-Pd and stud- thors remarked that the tarsus can be highly flexed against ied with a Hitachi S 4800 scanning electron microscope the tibia (Simon 1879; Shear 1975; Juberthie et al. 1981). In (Hitachi Ltd., Tokyo, Japan) at an acceleration voltage of fixative-preserved specimens of Sabaconidae, we often found 3.0 kV. the tibia and tarsus bent and twisted in an unusual manner. Glue secreting setae of M. chrysomelas before and after Previous authors wondered about the function of the uniquely being in contact with springtail cuticle were visualized by shaped pedipalps and setae in this family, but never observed Cryo-SEM. For that purpose, fresh specimens were attached their use during prey capture (Shear 1975, 1986;Juberthie to a sample holder using Tissue-Tek® compound, shock fro- et al. 1981). To reveal biological and mechanical
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • De Hooiwagens 1St Revision14
    Table of Contents INTRODUCTION ............................................................................................................................................................ 2 CHARACTERISTICS OF HARVESTMEN ............................................................................................................................ 2 GROUPS SIMILAR TO HARVESTMEN ............................................................................................................................. 3 PREVIOUS PUBLICATIONS ............................................................................................................................................. 3 BIOLOGY ......................................................................................................................................................................... 3 LIFE CYCLE ..................................................................................................................................................................... 3 MATING AND EGG-LAYING ........................................................................................................................................... 4 FOOD ............................................................................................................................................................................. 4 DEFENCE ........................................................................................................................................................................ 4 PHORESY,
    [Show full text]
  • Arachnid Types in the Zoological Museum, Moscow State University. I
    Arthropoda Selecta 25(3): 327–334 © ARTHROPODA SELECTA, 2016 Arachnid types in the Zoological Museum, Moscow State University. I. Opiliones (Arachnida) Òèïû ïàóêîîáðàçíûõ â Çîîëîãè÷åñêîì ìóçåå ÌÃÓ. I. Opiliones (Arachnida) Kirill G. Mikhailov Ê.Ã. Ìèõàéëîâ Zoological Museum MGU, Bolshaya Nikitskaya Str. 2, Moscow 125009 Russia. E-mail: [email protected] Зоологический музей МГУ, ул. Большая Никитская, 2, Москва 125009 Россия. KEY WORDS: arachnids, harvestmen, museum collections, types, holotypes, paratypes. КЛЮЧЕВЫЕ СЛОВА: паукообразные, сенокосцы, музейные коллекции, типы, голотипы, паратипы. ABSTRACT: A list is provided of 19 holotypes pod types, as well as most of the crustacean types have and 92 paratypes belonging to 25 species of Opiliones. never enjoyed published catalogues. They represent 14 genera and 5 families (Ischyropsali- Traditionally, the following handwritten informa- dae, Nemastomatidae, Phalangiidae, Sabaconidae, tion sources are accepted in the Museum, at least so Trogulidae) and are kept in the Zoological Museum of since the 1930’s: (1) department acquisition book (Fig. the Moscow State University. Other repositories hous- 1), (2) numerous inventory books on diverse inverte- ing the remaining types of the respective species are brate groups (see Fig. 2 for Opiliones), and (3) type listed as well. cards (Fig. 3). Regrettably, only a small part of this information has been digitalized. РЕЗЮМЕ: Представлен список 19 голотипов и This paper starts a series of lists/catalogues of arach- 92 паратипов, относящихся к 25 видам сенокосцев nid types kept at the Museum. The arachnid collection (Opiliones). Они принадлежат к 14 родам и 5 семей- considered was founded in the 1860’s and presently ствам (Ischyropsalidae, Nemastomatidae, Phalangiidae, contains more than 200,000 specimens of arachnids Sabaconidae, Trogulidae) и хранятся в Зоологичес- alone, Acari excluded [Mikhailov, 2016].
    [Show full text]
  • Carinostoma Elegans New to the Slovakian Harvestmen Fauna (Opiliones, Dyspnoi, Nemastomatidae)
    Arachnologische Mitteilungen 48: 16-23 Karlsruhe, Dezember 2014 Carinostoma elegans new to the Slovakian harvestmen fauna (Opiliones, Dyspnoi, Nemastomatidae) Anna Šestáková & Ivan Mihál doi: 10.5431/aramit4804 Abstract. A new genus and species of small harvestman was found for the first time in Slovakia – Carinostoma elegans (Sørensen, 1894). One male and two females were collected in the Mlyňany arboretum of the Slovak Academy of Science (western Slovakia). Descriptions and photographs of both sexes of C. elegans are provided. Additional com- ments, and a map of distribution of all species of this genus, are provided. Keywords: arboretum, faunistics, harvestmen, new record, western Slovakia Zusammenfassung. Carinostoma elegans neu für die Weberknechtfauna der Slowakei (Opiliones, Dyspnoi, Nemastomatidae). Eine neue Weberknechtgattung und –art wurde erstmals in der Slowakische Republik nachge- wiesen – Carinostoma elegans (Sørensen, 1894). Ein Männchen und zwei Weibchen wurden im Mlyňany Arboretum der Slovakischen Akademie der Wissenschaften nachgewiesen. Beide Geschlechter sowie die Verbreitung der Art werden beschrieben und abgebildet. Altogether five species in three genera from the and the number of genera increases to 25 (Bezděčka family Nemastomatidae are known to occur in Slo- & Bezděčková 2011, Mihál & Astaloš 2011). As the vakia. During a brief zoological investigation into species is new to the Slovakian harvestmen fauna, we the arachnid fauna in the arboretum Mlyňany of provide a description of its morphology and compare the Slovak Academy of Science three specimens of its distribution to other species of the genus. a harvestman so far not known as a member of the Slovakian opilionid fauna were found. The specimens Methods were identified asCarinostoma elegans Sørensen, 1894.
    [Show full text]
  • (Arachnida, Opiliones) from Bitterfeld Amber
    A peer-reviewed open-access journal ZooKeys 16: 347-375 (2009) Bitterfeld amber harvestmen 347 doi: 10.3897/zookeys.16.224 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Fossil harvestmen (Arachnida, Opiliones) from Bitterfeld amber Jason A. Dunlop1, †, Plamen G. Mitov2, ‡ 1 Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany 2 Department of Zoology and Anthropology, Faculty of Biology, University of Sofi a, 8 Dragan Tsankov Blvd., 1164 Sofi a, Bulgaria † urn:lsid:zoobank.org:author:E5948D7A-CB52-4657-902F-4159627C78FC ‡ urn:lsid:zoobank.org:author:51489928-7A87-4E5C-B8DD-2395534A0405 Corresponding author: Jason A. Dunlop ([email protected]) Academic editor: Pavel Stoev | Received 4 March 2009 | Accepted 4 May 2009 | Published 29 July 2009 urn:lsid:zoobank.org:pub:DB5973A9-8CF6-400B-87C4-7A4521BD3117 Citation: Dunlop JA, Mitov PG (2009) Fossil harvestmen (Arachnida, Opiliones) from Bitterfeld amber. In: Stoev P, Dunlop J, Lazarov S (Eds) A life caught in a spider's web. Papers in arachnology in honour of Christo Deltshev. ZooKeys 16: 347-375. doi: 10.3897/zookeys.16.224 Abstract Fossil harvestmen (Arachnida, Opiliones, Dyspnoi and Eupnoi) are described from Bitterfeld amber, Sachsen-Anhalt, Germany deposited in the Museum für Naturkunde, Berlin. Th e exact age of this amber has been in dispute, but recent work suggests it is youngest Palaeogene (Oligocene: Chattian). Histricos- toma tuberculatum (Koch & Berendt, 1854), Caddo dentipalpus (Koch & Berendt, 1854), Dicranopalpus ramiger (Koch & Berendt, 1854) and Leiobunum longipes Menge, 1854 – all of which are also known from Eocene Baltic amber – are reported from Bitterfeld amber for the fi rst time.
    [Show full text]
  • Hesperonemastoma Smilax, N. Sp., a Remarkable New
    W.A. Shear – Hesperonemastoma smilax, n. sp., a remarkable new harvestman from a cave in West Virginia, with comments on other reported cave-dwelling and Hesperonemastoma species (Opiliones, Ischyropsalidoidea, Sabaconidae). Journal of Cave and Karst Studies, v. 72, no. 2, p. 105–110. DOI: 10.4311/jcks2009lsc0103 HESPERONEMASTOMA SMILAX, N. SP., A REMARKABLE NEW HARVESTMAN FROM A CAVE IN WEST VIRGINIA, WITH COMMENTS ON OTHER REPORTED CAVE-DWELLING HESPERONEMASTOMA SPECIES (OPILIONES, ISCHYROPSALIDOIDEA, SABACONIDAE) WILLIAM A. SHEAR Biology Department, Hampden-Sydney College, Hampden-Sydney, VA 23943, [email protected] Abstract: Hesperonemastoma smilax, n. sp., is a minute, highly troglomorphic harvestman described herein from a single male specimen collected in McClung’s Cave, Greenbrier County, West Virginia. Hesperonemastoma species described previously from caves are briefly discussed. H. packardi (Roewer), first collected in a shallow cave in Utah, is a widely distributed surface-dwelling species found mostly in riparian canyon habitats in northern Utah; it shows no troglomorphic adaptations. Hesperonemastoma inops (Packard), described from a cave in Kentucky, is not a species of Hesperonemastoma, but most likely a juvenile of Sabacon cavicolens (Packard), which was described from the same small cave. Hesperonemastoma pallidimaculosum (Goodnight and Goodnight) is a moderately adapted troglobiont known from two caves in Alabama. INTRODUCTION Goodnight and Goodnight (1945) described Nemastoma pallidimaculosum from Rock House Cave, Marshall Coun- Species of the harvestman (Opiliones) genus Hesper- ty, Alabama; below I report a new record from a cave in an onemastoma are distributed in three discrete regions: the adjacent Alabama county. The description of H. smilax,n. southern Appalachians of eastern North America, the sp., in this article is the first description of a new Rocky Mountains in Utah and Idaho, and the Pacific Hesperonemastoma species in 64 years.
    [Show full text]
  • Methyl-Ketones in the Scent Glands of Opiliones: a Chemical Trait of Cyphophthalmi Retrieved in the Dyspnoan Nemastoma Triste
    Chemoecology (2018) 28:61–67 https://doi.org/10.1007/s00049-018-0257-5 CHEMOECOLOGY ORIGINAL ARTICLE Methyl-ketones in the scent glands of Opiliones: a chemical trait of cyphophthalmi retrieved in the dyspnoan Nemastoma triste Miriam Schaider1 · Tone Novak2 · Christian Komposch3 · Hans‑Jörg Leis4 · Günther Raspotnig1,4 Received: 12 March 2018 / Accepted: 30 March 2018 / Published online: 6 April 2018 © The Author(s) 2018 Abstract The homologous and phylogenetically old scent glands of harvestmen—also called defensive or repugnatorial glands—rep- resent an ideal system for a model reconstruction of the evolutionary history of exocrine secretion chemistry (“phylogenetic chemosystematics”). While the secretions of Laniatores (mainly phenols, benzoquinones), Cyphophthalmi (naphthoquinones, chloro-naphthoquinones, methyl-ketones) and some Eupnoi (naphthoquinones, ethyl-ketones) are fairly well studied, one open question refers to the still largely enigmatic scent gland chemistry of representatives of the suborder Dyspnoi and the relation of dyspnoan chemistry to the remaining suborders. We here report on the secretion of a nemastomatid Dyspnoi, Nemastoma triste, which is composed of straight-chain methyl-ketones (heptan-2-one, nonan-2-one, 6-tridecen-2-one, 8-tridecen-2-one), methyl-branched methyl-ketones (5-methyl-heptan-2-one, 6-methyl-nonan-2-one), naphthoquinones (1,4-naphthoquinone, 6-methyl-1,4-naphthoquinone) and chloro-naphthoquinones (4-chloro-1,2-naphthoquinone, 4-chloro-6-methyl-1,2-naph- thoquinone). Chemically, the secretions of N. triste are remarkably reminiscent of those found in Cyphophthalmi. While naphthoquinones are widely distributed across the scent gland secretions of harvestmen (all suborders except Laniatores), methyl-ketones and chloro-naphthoquinones arise as linking elements between cyphophthalmid and dyspnoan scent gland chemistry.
    [Show full text]
  • Description of a New Cladolasma (Opiliones: Nemastomatidae: Ortholasmatinae) Species from China
    Zootaxa 3691 (4): 443–452 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3691.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:B1249CAB-0BD6-4D05-B8B9-4C1A84531737 Description of a new Cladolasma (Opiliones: Nemastomatidae: Ortholasmatinae) species from China CHAO ZHANG & FENG ZHANG1 The Key Laboratory of Invertebrate Systematics and Application, Hebei University, Baoding, Hebei 071002, China. E-mail:opil- [email protected] 1Corresponding author. E-mail: [email protected] Abstract The harvestmen genus Cladolasma Suzuki, 1963, previously known only from Japan and Thailand, is here reported from China for the first time. A new species, Cladolasma damingshan sp. nov., is described on the basis of a single male spec- imen collected from Daming Mountain, Guangxi, China. The new species is distinct from C. parvulum Suzuki, 1963 and C. angka (Schwendinger & Gruber, 1992) in lacking keels around the eyes; and from the known males of C. parvulum in the arrangement of large spines on the penial glans. The finding also represents the first record of Nemastomatidae and Ortholasmatinae for China. Key words: harvestmen, taxonomy, Dendrolasma, Daming Mountain Introduction The nemastomatid harvestmen subfamily Ortholasmatinae Shear and Gruber, 1983 currently contains five genera and 19 species in Southeast and East Asia, North and Central America (Schönhofer 2013; Shear 2006, 2010; Shear & Gruber 1983). Four of its genera (Dendrolasma Banks, 1894; Martensolasma Shear, 2006; Ortholasma Banks, 1894; and Trilasma Goodnight & Goodnight, 1942) are distributed in North America (Canada, the United States, Mexico and Honduras).
    [Show full text]
  • Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas
    Special Publications Museum of Texas Tech University Number xx67 xx17 XXXX July 20182010 Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas James C. Cokendolpher and Robert G. Holmberg Front cover: Opilio parietinus in copula (male on left with thicker legs and more spines) from Baptiste Lake, Athabasca County, Alberta. Photograph by Robert G. Holmberg. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 67 Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas JAMES C. COKENDOLPHER AND ROBERT G. HOLMBERG Layout and Design: Lisa Bradley Cover Design: Photograph by Robert G. Holmberg Production Editor: Lisa Bradley Copyright 2018, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 17 July 2018 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 67 Series Editor: Robert D. Bradley Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas James C.
    [Show full text]
  • Book of Abstracts
    organized by: European Society of Arachnology Welcome to the 27th European Congress of Arachnology held from 2nd – 7th September 2012 in Ljubljana, Slovenia. The 2012 European Society of Arachnology (http://www.european-arachnology.org/) yearly congress is organized by Matjaž Kuntner and the EZ lab (http://ezlab.zrc-sazu.si) and held at the Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, 1000 Ljubljana, Slovenia. The main congress venue is the newly renovated Atrium at Novi Trg 2, and the additional auditorium is the Prešernova dvorana (Prešernova Hall) at Novi Trg 4. This book contains the abstracts of the 4 plenary, 85 oral and 68 poster presentations arranged alphabetically by first author, a list of 177 participants from 42 countries, and an abstract author index. The program and other day to day information will be delivered to the participants during registration. We are delighted to announce the plenary talks by the following authors: Jason Bond, Auburn University, USA (Integrative approaches to delimiting species and taxonomy: lesson learned from highly structured arthropod taxa); Fiona Cross, University of Canterbury, New Zealand (Olfaction-based behaviour in a mosquito-eating jumping spider); Eileen Hebets, University of Nebraska, USA (Interacting traits and secret senses – arach- nids as models for studies of behavioral evolution); Fritz Vollrath, University of Oxford, UK (The secrets of silk). Enjoy your time in Ljubljana and around in Slovenia. Matjaž Kuntner and co-workers: Scientific and program committee: Matjaž Kuntner, ZRC SAZU, Slovenia Simona Kralj-Fišer, ZRC SAZU, Slovenia Ingi Agnarsson, University of Vermont, USA Christian Kropf, Natural History Museum Berne, Switzerland Daiqin Li, National University of Singapore, Singapore Miquel Arnedo, University of Barcelona, Spain Organizing committee: Matjaž Gregorič, Nina Vidergar, Tjaša Lokovšek, Ren-Chung Cheng, Klemen Čandek, Olga Kardoš, Martin Turjak, Tea Knapič, Urška Pristovšek, Klavdija Šuen.
    [Show full text]
  • Opiliones: Nemastomatidae), the Second Species of the Genus from the Dinaric Karst
    European Journal of Taxonomy 717: 90–107 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.717.1103 www.europeanjournaloftaxonomy.eu 2020 · Kozel P. et al.. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:69DF8A05-F8E2-4EEC-9A52-4018F22E81ED Nemaspela borkoae sp. nov. (Opiliones: Nemastomatidae), the second species of the genus from the Dinaric Karst Peter KOZEL 1,*, Teo DELIĆ 2 & Tone NOVAK 3 1,3 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia. 1 Karst Research Institute ZRC IZRK SAZU, Titov trg 2, SI-6230 Postojna, Slovenia. 2 SubBio Lab, Department of Biology, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:8C33627F-2D3D-4723-A059-B87462535460 2 urn:lsid:zoobank.org:author:D38183EA-6034-4634-8DD1-45FF9C73D2B4 3 urn:lsid:zoobank.org:author:F6B51342-4296-473E-A3E8-AB87B0655F49 Abstract. Nemaspela Šilhavý, 1966 (Opiliones: Nemastomatidae) is a genus of exclusively troglobiotic harvestmen species inhabiting caves in the Crimea, Caucasus and Balkan Peninsula. In this paper, Nemaspela borkoae sp. nov., recently found in four caves in Montenegro, is described. The new species is characterized by its small body, 1.5–2.1 mm long, and very long, thin appendages, with legs II about 15 times as long as the body. Although very similar, Nemaspela ladae Karaman, 2013 and N.
    [Show full text]
  • Arachnida: Opiliones) İlkay ÇORAK ÖCAL1, *, Nazife YIĞIT KAYHAN2
    June, 2018; 2 (1): 8-16 e-ISSN 2602-456X DOI: 10.31594/commagene.395576 Research Article / Araştırma Makalesi External Morphology of Pyza taurica Gruber, 1979 (Arachnida: Opiliones) İlkay ÇORAK ÖCAL1, *, Nazife YIĞIT KAYHAN2 1, *Department of Biology, Faculty of Science, Çankırı Karatekin University, 18200 Çankırı / TURKEY 2Department of Biology, Faculty of Science and Arts, University of Kırıkkale, 71450 Kırıkkale / TURKEY Received: 02.12.2017 Accepted: 02.02.2018 Available online: 19.02.2018 Published: 30.06.2018 Abstract: The harvestmen species Pyza taurica Gruber, 1979 (Opilionida, Nemastomatidae) is endemic to Anatolia. In this study, external morphology of P. taurica was investigated in detail by using scanning electron microscope (SEM). Cuticular structures and sense organs on the segments of legs, pedipalps, chelicerae, and the dorsal integument of male specimens of P. taurica are investigated and depicted, in particular, characters of taxonomic and systematic importance. Such studies are needed especially for understanding the functional anatomy and morphology of opilionids. Keywords: Pyza taurica, Nemastomatidae, Opiliones, harvestmen, external morphology, scanning electron microscopy, endemic. Pyza taurica'nın Gruber, 1979 Dış Morfolojisi (Arachnida: Opiliones) Özet: Pyza taurica Gruber, 1979 (Opilionida, Nemastomatidae) otbiçen türü Anadolu’ya özgüdür. Bu çalışmada, P. taurica'nın dış morfolojisi ayrıntılı olarak taramalı elektron mikroskopu (SEM) kullanılarak araştırılmıştır. Özellikle taksonomik ve sistematik önem taşıyan
    [Show full text]