Efficient Sorting of Search Results by String Attributes

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Sorting of Search Results by String Attributes Efficient sorting of search results by string attributes Nicholas Sherlock Andrew Trotman Department of Computer Science Department of Computer Science University of Otago University of Otago Otago 9054 New Zealand Otago 9054 New Zealand [email protected] [email protected] Abstract It is sometimes required to order search In addition, the search engine must allocate memory results using textual document attributes such as to an index structure which allows it to efficiently re- titles. This is problematic for performance because trieve those post titles by document index, which, using of the memory required to store these long text a simplistic scheme with 4 bytes required per docu- strings at indexing and search time. We create a ment offset, would require an additional 50 megabytes method for compressing strings which may be used of storage. for approximate ordering of search results on textual For search terms which occur in many documents, attributes. We create a metric for analyzing its most of the memory allocated to storing text fields like performance. We then use this metric to show that, post titles must be examined during result list sorting. for document collections containing tens of millions of As 550 megabytes is vastly larger than the cache mem- documents, we can sort document titles using 64-bits ory available inside the CPU, sorting the list of docu- of storage per title to within 100 positions of error per ments by post title requires the CPU to load that data document. from main memory, which adds substantial latency to query processing and competes for memory bandwidth Keywords Information Retrieval, Web Documents, with other processes running on the same system. Digital Libraries In this paper, we examine several methods which can be used to reduce the memory requirements for 1 Introduction storing document attributes in a form suitable for sort- A document search engine typically takes a search ing. We examine the tradeoffs which can be made be- query provided by the user and generates a list of tween sorting accuracy and the memory required for documents which contain some or all of the terms storage at search time. We then demonstrate the ac- in the query. This list of documents is sorted in a curacy of our methods by applying them to a corpus particular order, defined by a “ranking function”. of 14.8 million discussion posts taken from an online Common ranking functions assign an importance to discussion forum called “Chicken Smoothie”, and 22 each term in the search query using some metric, then million posts from the online discussion forum at “An- for each term in the query, apply that importance to the cestry.com”. number of occurences of the term in each document to give each document a score. The list of documents is 2 Ranking then sorted using this score to present documents to the First, let us examine the way that the search engine cal- user with the highest scores first. culates ranking scores for documents. For each search There are several such ranking functions that are of term in the query, an index over the document collec- interest in search over online discussion forums. For ex- tion is consulted. This index maps the term onto a list ample, the online forum software “phpBB” offers users of document IDs which contain that term, along with the ability to order their results by document attributes extra information about that term’s appearance in each such as post time, author name, forum name, topic title, document (for example, a count of the number of times and post title. In the case of text fields like names that term appears in the document). This information is and titles, this is problematic, as it requires the search passed to a “ranking function”, which uses it to generate engine to have these fields available in text form for a ranking score for each document. comparison sorting at search time. This consumes a The scores generated by the ranking function for large amount of memory. For example, in a collection each term in the search query are combined together in of 14.8 million forum posts, simply storing the post a structure called the “accumulator”. The accumulator title for each post requires 500 megabytes of memory. can be represented as an array of integers of a fixed size, Proceedings of the 16th Australasian Document Comput- one integer for each document in the collection. Every ing Symposium, Canberra, Australia, 2 December 2011. element in the accumulator is initialised to zero at the Copyright for this article remains with the authors. beginning of the search. Then, the value returned from the ranking function for each term in the search query indexing time, the text attributes for each document are is typically added (using simple arithmetic addition) to extracted and stored in temporary memory. When the the value already present in the accumulator for that indexing of the document collection is complete, the document, to give a new score for the document. document attributes are sorted using a string compari- At the end of the search process, the search engine’s son function. Each document’s position in the list of accumulator is sorted in descending order, which brings sorted attributes then directly becomes its pregenerated the documents which the ranking function scored the ranking score. In this way, we generate a maximally- highest (which are hoped to be the “most relevant” doc- compact set of ranking scores for the document col- uments to the user’s information need, based on their lection (having exactly as many distinct values as there search query) to the front of the result list. are distinct attributes in the collection), which also per- fectly encodes the relative ordering of the documents 2.1 Pregenerated ranking in the sorted list of attribute text. If each integer in If a ranking function’s value does not depend on the the pregen is 32 bits large, approximately 4.3 billion content of the user’s query, then instead of computing distinct documents can be perfectly ranked using this it when a document is located at search time, it can method (232). be computed when the document index is first created This method has several drawbacks. Because every (at “indexing time”). This pregenerated ranking can be attribute of the documents which must be sorted needs stored as a file (a “pregen”) consisting of an array of to be available at the end of indexing time, we must integers, one for each document in the collection. When either allocate enough memory to store those values the search engine starts up, it can read each of its pregen (e.g. 550MB for post titles in the Chicken Smoothie files into memory. Then at search time, rather than corpus), or avoid allocating memory by storing those performing any computations to calculate the ranking values in some sort of disk structure (requiring at least score for a document, the search engine can simply read 1 gigabyte of additional disk I/O, as we must both write the precalculated value stored in the pregen and store the values to disk and read them in again). that value directly into its accumulator to be sorted. Another drawback is that each value in the gener- This technique allows the pregenerated ranking to take ated ranking is dependent on the attributes of every doc- advantage of the search engine’s existing implementa- ument in the collection. If a later change to the doc- tion of accumulator sorting. For example, the search en- ument collection results in the first post in the rank- gine may already implement special optimisations like ing being deleted (say, “aardvarks and apples”), every partial sorting of accumulators for the case where only pregenerated ranking function for the collection is now the top-K sorted documents are required[5]. invalid and must be recomputed. If a ranking function is particularly expensive to This is also a problem in distributed search, compute (compared to reading a precomputed value where a document collection may be split into several from memory), speed gains can be made at search chunks, with each chunk being indexed by a separate time, at the expense of the extra memory required to computer. The pregens created by each index will store the pregens. For example, one ranking function be incompatible, since they are based on different, which is expensive to compute, but independent of the incomplete fragments of the total document collection. user’s query, is Google’s PageRank algorithm[4]. This If, during searching, a search engine consults several ranking function essentially assigns a score to web such distributed indexes, and retrieves a list of documents based on how many incoming links they documents from each with corresponding scores from have. their pregens, it will be unable to merge those results If we could compute a compact pregenerated using just the values of the pregens to create a list ranking for each of the document attributes that our which is sorted by the ordering over the complete users want to sort on, we could improve the speed at collection. search time (by sorting the smaller pregen instead of A better method for generating pregens would the longer original strings) and reduce the memory be able to compute a ranking score for a document required to store those text attributes. For example, attribute immediately upon reading it (which would if we could fit the 14.8 million post titles in the eliminate the requirement to store those values until Chicken Smoothie collection into 64-bit integers, the end of indexing), and the computed value would be the pregenerated ranking would only require 110 independent of all other documents in the collection megabytes of memory to store.
Recommended publications
  • Specification for JSON Abstract Data Notation Version
    Standards Track Work Product Specification for JSON Abstract Data Notation (JADN) Version 1.0 Committee Specification 01 17 August 2021 This stage: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.html https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.pdf Previous stage: https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.pdf Latest stage: https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.pdf Technical Committee: OASIS Open Command and Control (OpenC2) TC Chair: Duncan Sparrell ([email protected]), sFractal Consulting LLC Editor: David Kemp ([email protected]), National Security Agency Additional artifacts: This prose specification is one component of a Work Product that also includes: JSON schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/schemas/jadn-v1.0.json JADN schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/schemas/jadn-v1.0.jadn Abstract: JSON Abstract Data Notation (JADN) is a UML-based information modeling language that defines data structure independently of data format.
    [Show full text]
  • Understanding JSON Schema Release 2020-12
    Understanding JSON Schema Release 2020-12 Michael Droettboom, et al Space Telescope Science Institute Sep 14, 2021 Contents 1 Conventions used in this book3 1.1 Language-specific notes.........................................3 1.2 Draft-specific notes............................................4 1.3 Examples.................................................4 2 What is a schema? 7 3 The basics 11 3.1 Hello, World!............................................... 11 3.2 The type keyword............................................ 12 3.3 Declaring a JSON Schema........................................ 13 3.4 Declaring a unique identifier....................................... 13 4 JSON Schema Reference 15 4.1 Type-specific keywords......................................... 15 4.2 string................................................... 17 4.2.1 Length.............................................. 19 4.2.2 Regular Expressions...................................... 19 4.2.3 Format.............................................. 20 4.3 Regular Expressions........................................... 22 4.3.1 Example............................................. 23 4.4 Numeric types.............................................. 23 4.4.1 integer.............................................. 24 4.4.2 number............................................. 25 4.4.3 Multiples............................................ 26 4.4.4 Range.............................................. 26 4.5 object................................................... 29 4.5.1 Properties...........................................
    [Show full text]
  • [MS-LISTSWS]: Lists Web Service Protocol
    [MS-LISTSWS]: Lists Web Service Protocol Intellectual Property Rights Notice for Open Specifications Documentation . Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions. Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation. No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting [email protected].
    [Show full text]
  • V10.5.0 (2013-07)
    ETSI TS 126 234 V10.5.0 (2013-07) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (3GPP TS 26.234 version 10.5.0 Release 10) 3GPP TS 26.234 version 10.5.0 Release 10 1 ETSI TS 126 234 V10.5.0 (2013-07) Reference RTS/TSGS-0426234va50 Keywords LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • FIDO Technical Glossary
    Client to Authenticator Protocol (CTAP) Implementation Draft, February 27, 2018 This version: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id- 20180227.html Previous Versions: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/ Issue Tracking: GitHub Editors: Christiaan Brand (Google) Alexei Czeskis (Google) Jakob Ehrensvärd (Yubico) Michael B. Jones (Microsoft) Akshay Kumar (Microsoft) Rolf Lindemann (Nok Nok Labs) Adam Powers (FIDO Alliance) Johan Verrept (VASCO Data Security) Former Editors: Matthieu Antoine (Gemalto) Vijay Bharadwaj (Microsoft) Mirko J. Ploch (SurePassID) Contributors: Jeff Hodges (PayPal) Copyright © 2018 FIDO Alliance. All Rights Reserved. Abstract This specification describes an application layer protocol for communication between a roaming authenticator and another client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the details of how such transport layer connections should be set up, in a manner that meets the requirements of the application layer protocol. Table of Contents 1 Introduction 1.1 Relationship to Other Specifications 2 Conformance 3 Protocol Structure 4 Protocol Overview 5 Authenticator API 5.1 authenticatorMakeCredential (0x01) 5.2 authenticatorGetAssertion (0x02) 5.3 authenticatorGetNextAssertion (0x08) 5.3.1 Client Logic 5.4 authenticatorGetInfo (0x04)
    [Show full text]
  • NVM Express TCP Transport Specification 1.0A
    NVM Express® TCP Transport Specification Revision 1.0a July 22nd, 2021 Please send comments to [email protected] NVM Express® TCP Transport Specification Revision 1.0a NVM Express® TCP Transport Specification, revision 1.0a is available for download at http://nvmexpress.org. The NVMe TCP Transport Specification revision 1.0a incorporates NVMe TCP Transport Specification revision 1.0 and NVMe 2.0 ECN 001. SPECIFICATION DISCLAIMER LEGAL NOTICE: © 2021 NVM Express, Inc. ALL RIGHTS RESERVED. This NVM Express TCP Transport Specification revision 1.1 is proprietary to the NVM Express, Inc. (also referred to as “Company”) and/or its successors and assigns. NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have the right to use and implement this NVM Express TCP Transport Specification revision 1.1 subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy and Bylaws and the Member’s Participation Agreement. NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. and you have obtained a copy of this document, you only have a right to review this document or make reference to or cite this document. Any such references or citations to this document must acknowledge NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as follows: “© 2021 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations or references to this document you are not permitted to revise, alter, modify, make any derivatives of, or otherwise amend the referenced portion of this document in any way without the prior express written permission of NVM Express, Inc.
    [Show full text]
  • 4648 SJD Obsoletes: 3548 October 2006 Category: Standards Track
    Network Working Group S. Josefsson Request for Comments: 4648 SJD Obsoletes: 3548 October 2006 Category: Standards Track The Base16, Base32, and Base64 Data Encodings Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2006). Abstract This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. Josefsson Standards Track [Page 1] RFC 4648 Base-N Encodings October 2006 Table of Contents 1. Introduction ....................................................3 2. Conventions Used in This Document ...............................3 3. Implementation Discrepancies ....................................3 3.1. Line Feeds in Encoded Data .................................3 3.2. Padding of Encoded Data ....................................4 3.3. Interpretation of Non-Alphabet Characters in Encoded Data ..4 3.4. Choosing the Alphabet ......................................4 3.5. Canonical Encoding .........................................5 4. Base 64 Encoding ................................................5
    [Show full text]
  • List of NMAP Scripts Use with the Nmap –Script Option
    List of NMAP Scripts Use with the nmap –script option Retrieves information from a listening acarsd daemon. Acarsd decodes ACARS (Aircraft Communication Addressing and Reporting System) data in real time. The information retrieved acarsd-info by this script includes the daemon version, API version, administrator e-mail address and listening frequency. Shows extra information about IPv6 addresses, such as address-info embedded MAC or IPv4 addresses when available. Performs password guessing against Apple Filing Protocol afp-brute (AFP). Attempts to get useful information about files from AFP afp-ls volumes. The output is intended to resemble the output of ls. Detects the Mac OS X AFP directory traversal vulnerability, afp-path-vuln CVE-2010-0533. Shows AFP server information. This information includes the server's hostname, IPv4 and IPv6 addresses, and hardware type afp-serverinfo (for example Macmini or MacBookPro). Shows AFP shares and ACLs. afp-showmount Retrieves the authentication scheme and realm of an AJP service ajp-auth (Apache JServ Protocol) that requires authentication. Performs brute force passwords auditing against the Apache JServ protocol. The Apache JServ Protocol is commonly used by ajp-brute web servers to communicate with back-end Java application server containers. Performs a HEAD or GET request against either the root directory or any optional directory of an Apache JServ Protocol ajp-headers server and returns the server response headers. Discovers which options are supported by the AJP (Apache JServ Protocol) server by sending an OPTIONS request and lists ajp-methods potentially risky methods. ajp-request Requests a URI over the Apache JServ Protocol and displays the result (or stores it in a file).
    [Show full text]
  • The Base16, Base32, and Base64 Data Encodings
    Network Working Group S. Josefsson Request for Comments: 4648 SJD Obsoletes: 3548 October 2006 Category: Standards Track The Base16, Base32, and Base64 Data Encodings Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the “Internet Official Protocol Standards” (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright © The Internet Society (2006). All Rights Reserved. Abstract This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. RFC 4648 Base-N Encodings October 2006 Table of Contents 1 Introduction...............................................................................................................................................................3 2 Conventions Used in This Document..................................................................................................................... 4 3 Implementation Discrepancies................................................................................................................................ 5 3.1 Line Feeds in Encoded Data.................................................................................................................................5
    [Show full text]
  • Confidentiality Technique to Enhance Security of Data in Public Cloud Storage Using Data Obfuscation
    ISSN (Print) : 0974-6846 Indian Journal of Science and Technology, Vol 8(24), DOI: 10.17485/ijst/2015/v8i24/80032, September 2015 ISSN (Online) : 0974-5645 Confidentiality Technique to Enhance Security of Data in Public Cloud Storage using Data Obfuscation S. Monikandan1* and L. Arockiam2 1Department of MCA, Christhu Raj College, Panjappur, Tiruchirappalli – 620012, Tamil Nadu, India; [email protected] 2Departmentof Computer Science, St. Joseph’s College (Autonomous), Tiruchirappalli – 620102, Tamil Nadu, India; [email protected] Abstract Security of data stored in the cloud is most important challenge in public cloud environment. Users are outsourced their data to cloud for efficient, reliable and flexible storage. Due the security issues, data are disclosed by Cloud Service Providers (CSP) and others users of cloud. To protect the data from unauthorized disclosure, this paper proposes a confidentiality technique as a Security Service Algorithm (SSA), named MONcryptto secure the data in cloud storage. This proposed confidentiality technique is based on data obfuscation technique. The MONcrypt SSA is availed from Security as a Service (SEaaS). Users could use this security service from SEaaS to secure their data at any time. Simulations were conducted in cloud environment (Amazon EC2) for analysis the security of proposed MONcrypt SSA. A security analysis tool is used for measure the security of proposed and existing obfuscation techniques. MONcrypt compares with existing obfuscation techniques like Base32, Base64 and Hexadecimal Encoding. The proposed technique provides better performance and good security when compared with existing obfuscation techniques. Unlike the existing technique, MONcrypt reduces the sizeKeywords: of data being uploaded to the cloud storage.
    [Show full text]
  • UAS Service Supplier Framework for Authentication and Authorization
    NASA/TM–2019–220364 UAS Service Supplier Framework for Authentication and Authorization A federated approach to securing communications between service suppliers within the UAS Traffic Management system Joseph L. Rios Ames Research Center, Moffett Field, California Irene Smith Ames Research Center, Moffett Field, California Priya Venkatesen SGT Inc., Moffett Field, California September 2019 1 NASA STI Program ... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or helping NASA maintain this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Reports Server, thus providing one of the largest TECHNICAL TRANSLATION. collections of aeronautical and space science STI English-language translations of foreign in the world. Results are published in both scientific and technical material pertinent to non-NASA channels and by NASA in the NASA NASA’s mission. STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing TECHNICAL PUBLICATION. Reports of specialized research announcements and completed research or a major significant feeds, providing information desk and personal phase of research that present the results of search support, and enabling data exchange NASA Programs and include extensive data services.
    [Show full text]
  • A Proposal of Substitute for Base85/64 – Base91
    A Proposal of Substitute for Base85/64 – Base91 Dake He School of Information Science & Technology, Southwest Jiaotong University, Chengdu 610031,China College of Informatics, South China Agricultural University, Guangzhou 510642, China [email protected] Yu Sun, Zhen Jia, Xiuying Yu, Wei Guo, Wei He, Chao Qi School of Information Science & Technology, Southwest Jiaotong University, Chengdu 610031,China Xianhui Lu Key Lab. of Information Security, Chinese Academy of Sciences, Beijing 100039,China ABSTRACT not control character or “-”(hyphen). There are totally 94 of such ASCII characters, their corresponding digital The coding transformation method, called Base91, is coding being all integers ranging from 32 through 126 characterized by its output of 91 printable ASCII with the exception of 45. E-mail written in these ASCII characters. Base91 has a higher encoding efficiency than characters is compatible with the Internet standard SMTP, Base85/64, and higher encoding rate than Base85. and can be transferred in nearly all the E-mail systems. Besides, Base91 provides compatibility with any Nowadays, as Content-Transfer-Encoding to provide bit-length input sequence without additional filling compatibility with the E-mail, Base64[1,2] code is usually declaration except for his codeword self. One can use employed. Base91 as a substitute for Base85 and Base64 to get some Base64 coding divides the input sequence into blocks benefits in restricted situations. being 6-bits long to be used as variable implementation Keywords: Base91; Base85; Base64; printable ASCII mapping, the mapping is denoted by characters; IPv6 Base64[ ]: X →Y where the variable or original image set X includes all 64 1.
    [Show full text]