Confidentiality Technique to Enhance Security of Data in Public Cloud Storage Using Data Obfuscation

Total Page:16

File Type:pdf, Size:1020Kb

Confidentiality Technique to Enhance Security of Data in Public Cloud Storage Using Data Obfuscation ISSN (Print) : 0974-6846 Indian Journal of Science and Technology, Vol 8(24), DOI: 10.17485/ijst/2015/v8i24/80032, September 2015 ISSN (Online) : 0974-5645 Confidentiality Technique to Enhance Security of Data in Public Cloud Storage using Data Obfuscation S. Monikandan1* and L. Arockiam2 1Department of MCA, Christhu Raj College, Panjappur, Tiruchirappalli – 620012, Tamil Nadu, India; [email protected] 2Departmentof Computer Science, St. Joseph’s College (Autonomous), Tiruchirappalli – 620102, Tamil Nadu, India; [email protected] Abstract Security of data stored in the cloud is most important challenge in public cloud environment. Users are outsourced their data to cloud for efficient, reliable and flexible storage. Due the security issues, data are disclosed by Cloud Service Providers (CSP) and others users of cloud. To protect the data from unauthorized disclosure, this paper proposes a confidentiality technique as a Security Service Algorithm (SSA), named MONcryptto secure the data in cloud storage. This proposed confidentiality technique is based on data obfuscation technique. The MONcrypt SSA is availed from Security as a Service (SEaaS). Users could use this security service from SEaaS to secure their data at any time. Simulations were conducted in cloud environment (Amazon EC2) for analysis the security of proposed MONcrypt SSA. A security analysis tool is used for measure the security of proposed and existing obfuscation techniques. MONcrypt compares with existing obfuscation techniques like Base32, Base64 and Hexadecimal Encoding. The proposed technique provides better performance and good security when compared with existing obfuscation techniques. Unlike the existing technique, MONcrypt reduces the sizeKeywords: of data being uploaded to the cloud storage. Cloud Service Providers, Cloud Storage, Confidentiality, Obfuscation, Security, Security Service Algorithm 1. Introduction without any human intervention. Cloud automates the service provisioning by way of running a number of Cloud computing is an internet based computing. It is Application Programming Interface (API) in the cloud evolved from grid computing, utility computing, parallel storage environment. computing, distributed computing and virtualization1. Data protection is a crucial security issue for most of the It has more powerful computing infrastructure with a enterprises8. The main issue focused in cloud computing pool of thousands of computers and servers2. It provides is data security. However, users are more concerned about computational resources like server, storage, software, the security ofthe data in the cloud. Obfuscation is a pro- memory, network etc., as on-demand services3. It helps cess of converting original data into unintelligible data. It to reduce the computational infrastructure investment is similar to encryption but it uses mathematical calcula- and maintenance cost of IT requisite for Small and tions or programming logics9. Encryption is the procedure Medium scale Enterprises (SME)4. It provides Everything of transforming the readable data into unreadable data (X) as a Service (XaaS) where ‘X’ denotes software, OS, using an algorithm and a key10. The major difference server, hardware, storage, etc5. Cloud services are scal- between encryption and obfuscation is that encrypted ing up and down based on the users’ demand6. Cloud data cannot be processed until theyare decrypted, whereas has multiple datacentres placed in different geographi- obfuscated data can be processed without de-obfuscation. cal locations in the world to provide reliable services to This technique has recently become popular for data the users7. It provides unlimited service provisioning storage security in cloud storage11. *Author for correspondence S. Monikandan and L. Arockiam Data storage and monitoring are the most important data. Moreover, the obfuscated data are not personally tasks for all enterprises. Small and Medium scale identifiable information, and so the CSPs are not subject Enterprises (SME) are not having enough infrastructure to the legal restrictions that apply to the processing of to do so. Cloud computing solves this problem by pro- the de-obfuscated data. However, it is not practical for all viding enormous virtual storage12. SMEs outsource the cloud applications to work with obfuscated data. data to cloud storage. The basic definition of outsourcing Maheshwari et al.15 introduced a scheme which allows is to move the in-house activities to a third party (cloud a user to store data in a cloud and perform database style provider) who has the required competence to perform query on the stored data without using standard cryptog- data maintenance activities in an effective and efficient raphy schemes while maintaining data confidentiality. way. Other reasons for outsourcing data are to gain access Data obfuscation is used for security which makes it hard to the knowledge and to minimize the risks associated. for the cloud to reconstruct the plaintext. This scheme This phenomenon has helped SMEs concentrate more represents each character by its glyph image. Instead of on its core competencies and thereby to gain competitive storing the normal glyph in a given font, which can be advantage in the markets. readily understood by a machine, add noise and split Data outsourcing creates many security issues on the the glyph image into small portions. Different portions data stored in the cloud. Researchers start using obfusca- belonging to a glyph image are stored in servers belong- tion technique to provide security to the data in cloud. ing to different cloud providers. To reconstruct the data, To maintaining security for the outsourced data in cloud the glyph portions from different servers need to be gath- is an imperative task. To enhance the security of data,the ered. The overall concept of this scheme is to convert the MONcrypt SSA is proposed for securing numerical data. users’ data into an image and each part of the image is As a part this research, there is an SSA called AROcrypt13 sent to different independent clouds. which is used for Non-numerical data. Users can use The proposed MONcrypt SSA in SEaaS is an these two SSA based on their sensitive data. MONcrypt obfuscation technique and it is compared with existing is used for Numerical data and AROcrypt is used for obfuscation techniques such as Base64, Base32 and Non-numerical. This paper only discusses about the Hexadecimal Encoding with respect to security, time. MONcrypt SSA. 3. Existing Data Obfuscation 2. Related Work Techniques There are many more obfuscation techniques available Data obfuscation is a method of data hiding where data in the literature. The approach for each of the obfusca- is purposely scrambled to prevent from unauthorized tion techniques can range from very simple to highly access14. The result of obfuscation is an unintelligible or mathematical. Recently, researchers have started to use confusing data. Data obfuscation techniques are used to obfuscation techniques for security protection in cloud prevent the intrusion of sensitive data stored in the cloud. environment. However, issues have stemmed from an inability to vigor- Siani Pearson et al.14 described a privacy manager for ously prevent security attacks16. Several data obfuscation cloud computing, which reduces the risk to the cloud techniques are discussed in the following subsections17. computing user of their private data being stolen or mis- used. As a first line of defense, the privacy manager uses a feature called obfuscation. The idea is that instead of 3.1 Base64 Encoding being present unencrypted data in the cloud, the users’ Base64 encoding schemes are commonly used when there sensitive data are sent to the cloud in an obfuscated form. is a need to encode binary data that need to be stored The obfuscation method uses a key which is chosen by and transferred over media that are designed to deal the users and known by the privacy manager, but which is with textual data. This is to ensure that the data remain not communicated to the CSPs. Thus the CSP is not able intact without modification during transport. The Base64 to de-obfuscate the users’ data and the data are not pres- encodesa word “Man” with “TWFu”. The Base64 encodes ent on the CSPs’ machines. It reduces the risks of theft the word “Man”, by determining the related ASCII 8-bit of the data from the cloud and unauthorized uses of the values for each letter. Vol 8 (24) | September 2015 | www.indjst.org Indian Journal of Science and Technology 89 Confidentiality Technique to Enhance Security of Data in Public Cloud Storage using Data Obfuscation M = 77 a = 97 n = 110 3.4 Hexadecimal Encoding Those values can then be represented as 8-bit binary Hexadecimal is a positional notation system with a base of 16. It uses sixteen distinct symbols. Most often the M = 01001101 a = 01100001 n = 01101110 symbols 0–9 represent the values zero to nine, and A, B, Since base64 breaks binary into 6-bit groups, the easi- C, D, E, F represent values ten to fifteen. For example, the est way is to connect them linearly and then redistribute number 2AF3 is equal, in decimal, to (2 x 16^3) + (10 x into 6-bit groups. 16^2) + (15 x 16^1) + (3 x 16^0), or 10995. Each hexa- 010011010110000101101110 decimal digit represents four binary digits (bits), and the is thus represented as: primary use of hexadecimal notation is a human friendly 010011 010110 000101 101110 representation of binary coded values in computing. Recently, data obfuscation is focused for the security of Each of these values is then recalculated in decimal as, data in the cloud storage. Normally, obfuscation technique 010011 = (0 x 2^5) + (1 x 2^4) + (0 x 2^3) + (0 x 2^2) + is not using keys to obfuscate the data unlike encryption. (1 x 2^1) + (1 x 2^0) = 19, then the alphabet correspond- Simple obfuscation technique without using key is easy 18 ing to 19 is taken from the base64 index tableto produce to break by brute force attack.
Recommended publications
  • Specification for JSON Abstract Data Notation Version
    Standards Track Work Product Specification for JSON Abstract Data Notation (JADN) Version 1.0 Committee Specification 01 17 August 2021 This stage: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.html https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.pdf Previous stage: https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.pdf Latest stage: https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.pdf Technical Committee: OASIS Open Command and Control (OpenC2) TC Chair: Duncan Sparrell ([email protected]), sFractal Consulting LLC Editor: David Kemp ([email protected]), National Security Agency Additional artifacts: This prose specification is one component of a Work Product that also includes: JSON schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/schemas/jadn-v1.0.json JADN schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/schemas/jadn-v1.0.jadn Abstract: JSON Abstract Data Notation (JADN) is a UML-based information modeling language that defines data structure independently of data format.
    [Show full text]
  • Base64 Character Encoding and Decoding Modeling
    Base64 Character Encoding and Decoding Modeling Isnar Sumartono1, Andysah Putera Utama Siahaan2, Arpan3 Faculty of Computer Science,Universitas Pembangunan Panca Budi Jl. Jend. Gatot Subroto Km. 4,5 Sei Sikambing, 20122, Medan, Sumatera Utara, Indonesia Abstract: Security is crucial to maintaining the confidentiality of the information. Secure information is the information should not be known to the unreliable person, especially information concerning the state and the government. This information is often transmitted using a public network. If the data is not secured in advance, would be easily intercepted and the contents of the information known by the people who stole it. The method used to secure data is to use a cryptographic system by changing plaintext into ciphertext. Base64 algorithm is one of the encryption processes that is ideal for use in data transmission. Ciphertext obtained is the arrangement of the characters that have been tabulated. These tables have been designed to facilitate the delivery of data during transmission. By applying this algorithm, errors would be avoided, and security would also be ensured. Keywords: Base64, Security, Cryptography, Encoding I. INTRODUCTION Security and confidentiality is one important aspect of an information system [9][10]. The information sent is expected to be well received only by those who have the right. Information will be useless if at the time of transmission intercepted or hijacked by an unauthorized person [7]. The public network is one that is prone to be intercepted or hijacked [1][2]. From time to time the data transmission technology has developed so rapidly. Security is necessary for an organization or company as to maintain the integrity of the data and information on the company.
    [Show full text]
  • Understanding JSON Schema Release 2020-12
    Understanding JSON Schema Release 2020-12 Michael Droettboom, et al Space Telescope Science Institute Sep 14, 2021 Contents 1 Conventions used in this book3 1.1 Language-specific notes.........................................3 1.2 Draft-specific notes............................................4 1.3 Examples.................................................4 2 What is a schema? 7 3 The basics 11 3.1 Hello, World!............................................... 11 3.2 The type keyword............................................ 12 3.3 Declaring a JSON Schema........................................ 13 3.4 Declaring a unique identifier....................................... 13 4 JSON Schema Reference 15 4.1 Type-specific keywords......................................... 15 4.2 string................................................... 17 4.2.1 Length.............................................. 19 4.2.2 Regular Expressions...................................... 19 4.2.3 Format.............................................. 20 4.3 Regular Expressions........................................... 22 4.3.1 Example............................................. 23 4.4 Numeric types.............................................. 23 4.4.1 integer.............................................. 24 4.4.2 number............................................. 25 4.4.3 Multiples............................................ 26 4.4.4 Range.............................................. 26 4.5 object................................................... 29 4.5.1 Properties...........................................
    [Show full text]
  • Efficient Sorting of Search Results by String Attributes
    Efficient sorting of search results by string attributes Nicholas Sherlock Andrew Trotman Department of Computer Science Department of Computer Science University of Otago University of Otago Otago 9054 New Zealand Otago 9054 New Zealand [email protected] [email protected] Abstract It is sometimes required to order search In addition, the search engine must allocate memory results using textual document attributes such as to an index structure which allows it to efficiently re- titles. This is problematic for performance because trieve those post titles by document index, which, using of the memory required to store these long text a simplistic scheme with 4 bytes required per docu- strings at indexing and search time. We create a ment offset, would require an additional 50 megabytes method for compressing strings which may be used of storage. for approximate ordering of search results on textual For search terms which occur in many documents, attributes. We create a metric for analyzing its most of the memory allocated to storing text fields like performance. We then use this metric to show that, post titles must be examined during result list sorting. for document collections containing tens of millions of As 550 megabytes is vastly larger than the cache mem- documents, we can sort document titles using 64-bits ory available inside the CPU, sorting the list of docu- of storage per title to within 100 positions of error per ments by post title requires the CPU to load that data document. from main memory, which adds substantial latency to query processing and competes for memory bandwidth Keywords Information Retrieval, Web Documents, with other processes running on the same system.
    [Show full text]
  • [MS-LISTSWS]: Lists Web Service Protocol
    [MS-LISTSWS]: Lists Web Service Protocol Intellectual Property Rights Notice for Open Specifications Documentation . Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions. Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation. No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting [email protected].
    [Show full text]
  • V10.5.0 (2013-07)
    ETSI TS 126 234 V10.5.0 (2013-07) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (3GPP TS 26.234 version 10.5.0 Release 10) 3GPP TS 26.234 version 10.5.0 Release 10 1 ETSI TS 126 234 V10.5.0 (2013-07) Reference RTS/TSGS-0426234va50 Keywords LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • FIDO Technical Glossary
    Client to Authenticator Protocol (CTAP) Implementation Draft, February 27, 2018 This version: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id- 20180227.html Previous Versions: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/ Issue Tracking: GitHub Editors: Christiaan Brand (Google) Alexei Czeskis (Google) Jakob Ehrensvärd (Yubico) Michael B. Jones (Microsoft) Akshay Kumar (Microsoft) Rolf Lindemann (Nok Nok Labs) Adam Powers (FIDO Alliance) Johan Verrept (VASCO Data Security) Former Editors: Matthieu Antoine (Gemalto) Vijay Bharadwaj (Microsoft) Mirko J. Ploch (SurePassID) Contributors: Jeff Hodges (PayPal) Copyright © 2018 FIDO Alliance. All Rights Reserved. Abstract This specification describes an application layer protocol for communication between a roaming authenticator and another client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the details of how such transport layer connections should be set up, in a manner that meets the requirements of the application layer protocol. Table of Contents 1 Introduction 1.1 Relationship to Other Specifications 2 Conformance 3 Protocol Structure 4 Protocol Overview 5 Authenticator API 5.1 authenticatorMakeCredential (0x01) 5.2 authenticatorGetAssertion (0x02) 5.3 authenticatorGetNextAssertion (0x08) 5.3.1 Client Logic 5.4 authenticatorGetInfo (0x04)
    [Show full text]
  • NVM Express TCP Transport Specification 1.0A
    NVM Express® TCP Transport Specification Revision 1.0a July 22nd, 2021 Please send comments to [email protected] NVM Express® TCP Transport Specification Revision 1.0a NVM Express® TCP Transport Specification, revision 1.0a is available for download at http://nvmexpress.org. The NVMe TCP Transport Specification revision 1.0a incorporates NVMe TCP Transport Specification revision 1.0 and NVMe 2.0 ECN 001. SPECIFICATION DISCLAIMER LEGAL NOTICE: © 2021 NVM Express, Inc. ALL RIGHTS RESERVED. This NVM Express TCP Transport Specification revision 1.1 is proprietary to the NVM Express, Inc. (also referred to as “Company”) and/or its successors and assigns. NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have the right to use and implement this NVM Express TCP Transport Specification revision 1.1 subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy and Bylaws and the Member’s Participation Agreement. NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. and you have obtained a copy of this document, you only have a right to review this document or make reference to or cite this document. Any such references or citations to this document must acknowledge NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as follows: “© 2021 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations or references to this document you are not permitted to revise, alter, modify, make any derivatives of, or otherwise amend the referenced portion of this document in any way without the prior express written permission of NVM Express, Inc.
    [Show full text]
  • 4648 SJD Obsoletes: 3548 October 2006 Category: Standards Track
    Network Working Group S. Josefsson Request for Comments: 4648 SJD Obsoletes: 3548 October 2006 Category: Standards Track The Base16, Base32, and Base64 Data Encodings Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2006). Abstract This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. Josefsson Standards Track [Page 1] RFC 4648 Base-N Encodings October 2006 Table of Contents 1. Introduction ....................................................3 2. Conventions Used in This Document ...............................3 3. Implementation Discrepancies ....................................3 3.1. Line Feeds in Encoded Data .................................3 3.2. Padding of Encoded Data ....................................4 3.3. Interpretation of Non-Alphabet Characters in Encoded Data ..4 3.4. Choosing the Alphabet ......................................4 3.5. Canonical Encoding .........................................5 4. Base 64 Encoding ................................................5
    [Show full text]
  • List of NMAP Scripts Use with the Nmap –Script Option
    List of NMAP Scripts Use with the nmap –script option Retrieves information from a listening acarsd daemon. Acarsd decodes ACARS (Aircraft Communication Addressing and Reporting System) data in real time. The information retrieved acarsd-info by this script includes the daemon version, API version, administrator e-mail address and listening frequency. Shows extra information about IPv6 addresses, such as address-info embedded MAC or IPv4 addresses when available. Performs password guessing against Apple Filing Protocol afp-brute (AFP). Attempts to get useful information about files from AFP afp-ls volumes. The output is intended to resemble the output of ls. Detects the Mac OS X AFP directory traversal vulnerability, afp-path-vuln CVE-2010-0533. Shows AFP server information. This information includes the server's hostname, IPv4 and IPv6 addresses, and hardware type afp-serverinfo (for example Macmini or MacBookPro). Shows AFP shares and ACLs. afp-showmount Retrieves the authentication scheme and realm of an AJP service ajp-auth (Apache JServ Protocol) that requires authentication. Performs brute force passwords auditing against the Apache JServ protocol. The Apache JServ Protocol is commonly used by ajp-brute web servers to communicate with back-end Java application server containers. Performs a HEAD or GET request against either the root directory or any optional directory of an Apache JServ Protocol ajp-headers server and returns the server response headers. Discovers which options are supported by the AJP (Apache JServ Protocol) server by sending an OPTIONS request and lists ajp-methods potentially risky methods. ajp-request Requests a URI over the Apache JServ Protocol and displays the result (or stores it in a file).
    [Show full text]
  • The Base16, Base32, and Base64 Data Encodings
    Network Working Group S. Josefsson Request for Comments: 4648 SJD Obsoletes: 3548 October 2006 Category: Standards Track The Base16, Base32, and Base64 Data Encodings Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the “Internet Official Protocol Standards” (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright © The Internet Society (2006). All Rights Reserved. Abstract This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. RFC 4648 Base-N Encodings October 2006 Table of Contents 1 Introduction...............................................................................................................................................................3 2 Conventions Used in This Document..................................................................................................................... 4 3 Implementation Discrepancies................................................................................................................................ 5 3.1 Line Feeds in Encoded Data.................................................................................................................................5
    [Show full text]
  • IDOL RSS Connector (CFS)
    HPE RSS Connector Software Version: 10.11.0 RSS Connector (CFS) Release Notes Document Release Date: November 2015 Software Release Date: November 2015 RSS Connector (CFS) Release Notes Legal Notices Warranty The only warranties for Hewlett Packard Enterprise Development LP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions contained herein. The information contained herein is subject to change without notice. Restricted Rights Legend Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. Copyright Notice © Copyright 2015 Hewlett Packard Enterprise Development LP Trademark Notices Adobe™ is a trademark of Adobe Systems Incorporated. Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. UNIX® is a registered trademark of The Open Group. This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark Adler. Documentation Updates HPE Big Data Support provides prompt and accurate support to help you quickly and effectively resolve any issue you may encounter while using HPE Big Data products. Support services include access to the Customer Support Site (CSS) for online answers, expertise-based service by HPE Big Data support engineers, and software maintenance to ensure you have the most up-to-date technology.
    [Show full text]