Language-Based Anomaly Detection in Client-Cloud Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluating DDS, MQTT, and Zeromq Under Different Iot Traffic Conditions
Evaluating DDS, MQTT, and ZeroMQ Under Different IoT Traffic Conditions Zhuangwei Kang Robert Canady Abhishek Dubey Vanderbilt University Vanderbilt University Vanderbilt University Nashville, Tennessee Nashville, Tennessee Nashville, Tennessee [email protected] [email protected] [email protected] Aniruddha Gokhale Shashank Shekhar Matous Sedlacek Vanderbilt University Siemens Technology Siemens Technology Nashville, Tennessee Princeton, New Jersey Munich, Germany [email protected] [email protected] [email protected] Abstract Keywords: Publish/Subscribe Middleware, Benchmark- ing, MQTT, DDS, ZeroMQ, Performance Evaluation Publish/Subscribe (pub/sub) semantics are critical for IoT applications due to their loosely coupled nature. Although OMG DDS, MQTT, and ZeroMQ are mature pub/sub solutions used for IoT, prior studies show that their performance varies significantly under different 1 Introduction load conditions and QoS configurations, which makes Distributed deployment of real-time applications and middleware selection and configuration decisions hard. high-speed dissemination of massive data have been hall- Moreover, the load conditions and role of QoS settings in marks of the Internet of Things (IoT) platforms. IoT prior comparison studies are not comprehensive and well- applications typically adopt publish/subscribe (pub/- documented. To address these limitations, we (1) propose sub) middleware for asynchronous and cross-platform a set of performance-related properties for pub/sub mid- communication. OMG Data Distribution Service (DDS), dleware and investigate their support in DDS, MQTT, ZeroMQ, and MQTT are three representative pub/sub and ZeroMQ; (2) perform systematic experiments under technologies that have entirely different architectures (de- three representative, lab-based real-world IoT use cases; centralized data-centric, decentralized message-centric, and (3) improve DDS performance by applying three and centralized message-centric, respectively). -
Specification for JSON Abstract Data Notation Version
Standards Track Work Product Specification for JSON Abstract Data Notation (JADN) Version 1.0 Committee Specification 01 17 August 2021 This stage: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.html https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.pdf Previous stage: https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.pdf Latest stage: https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.md (Authoritative) https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.pdf Technical Committee: OASIS Open Command and Control (OpenC2) TC Chair: Duncan Sparrell ([email protected]), sFractal Consulting LLC Editor: David Kemp ([email protected]), National Security Agency Additional artifacts: This prose specification is one component of a Work Product that also includes: JSON schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/schemas/jadn-v1.0.json JADN schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/schemas/jadn-v1.0.jadn Abstract: JSON Abstract Data Notation (JADN) is a UML-based information modeling language that defines data structure independently of data format. -
This Paper Must Be Cited As
Document downloaded from: http://hdl.handle.net/10251/64607 This paper must be cited as: Luzuriaga Quichimbo, JE.; Pérez, M.; Boronat, P.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2015). A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. 12th IEEE Consumer Communications and Networking Conference (CCNC 2015). IEEE. doi:10.1109/CCNC.2015.7158101. The final publication is available at http://dx.doi.org/10.1109/CCNC.2015.7158101 Copyright IEEE Additional Information © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks Jorge E. Luzuriaga∗, Miguel Perezy, Pablo Boronaty, Juan Carlos Cano∗, Carlos Calafate∗, Pietro Manzoni∗ ∗Department of Computer Engineering Universitat Politecnica` de Valencia,` Valencia, SPAIN [email protected], jucano,calafate,[email protected] yUniversitat Jaume I, Castello´ de la Plana, SPAIN [email protected], [email protected] Abstract—Message oriented middleware (MOM) refers to business application [6]. It works like instant messaging or the software infrastructure supporting sending and receiving email, and the difference towards these available -
Open Message Queue Mq.Dev.Java.Net
Open Message Queue mq.dev.java.net Jason Huang Technical Consultant Sun Microsystems, Inc. 1 Objective Understand basic of JMS API and OpenMQ products Copyright 2007 Sun Microsystems Inc. 2 Agenda • Introduction to JMS • What's OpenMQ • Features of OpenMQ • Demo Copyright 2007 Sun Microsystems Inc. 3 What is Java Message Service? • A Java API for Message Oriented Middleware(MOM) > JMS is a specification developed under the Java Community Process as JSR 914. > http://www.jcp.org/en/jsr/detail?id=914 Copyright 2007 Sun Microsystems Inc. 4 What Is Java Message Service? • The Java 2 Platform, Enterprise Edition (J2EE™platform) specification for MOM products • Defines provider-neutral APIs and administered objects that allow client applications to be portable across Java Message Service providers • Is defined as part of the J2EE 1.3 and later specification Copyright 2007 Sun Microsystems Inc. 5 What Is Java Message Service (continued)? • Supports two different messaging models: point-to-point and publish-subscribe • Supports asynchronous messaging and message-driven beans (MDBs) on a J2EE application server • Allows providers to implement additional provider-specific features • Provides the ability to tune applications for performance and reliability Copyright 2007 Sun Microsystems Inc. 6 Point to Point Messaging Message Service Producers Consumers Sender Receiver Queue 1 Queue 2 Receiver Queue 3 Receiver Messages from producers delivered to consumers Held in Queue Delivered, in order – Guaranteed Copyright 2007 Sun Microsystems Inc. 7 Publish and Subscribe Messaging Message Service Producers Consumers Publisher Subscriber Topic Subscriber Subscriber Publishers are independent from subscribers Message expiration is configured Subscriptions may be “durable” Copyright 2007 Sun Microsystems Inc. -
Eclipse Glassfish Server Release Notes, Release 5.1 Table of Contents
Eclipse GlassFish Server Release Notes, Release 5.1 Table of Contents Eclipse GlassFish Server . 1 Preface. 2 GlassFish Server Documentation Set. 2 Related Documentation. 4 Typographic Conventions. 5 Symbol Conventions . 5 Default Paths and File Names . 6 1 Eclipse GlassFish Server 6.1 Release Notes . 8 Revision History . 8 What’s New in the GlassFish Server 5.1 Release?. 9 Hardware and Software Requirements . 10 Known Issues in GlassFish Server 5.1 . 15 Restrictions and Deprecated Functionality . 17 Documentation Errata . 20 Features Available Only in the Full Platform . 20 Java EE Standards Support . 21 Java EE SDK . 23 How to Report Problems and Provide Feedback . 24 Additional Resources. 24 Eclipse GlassFish Server Eclipse GlassFish Server Release Notes Release 5.1 Contributed 2018, 2019 These Release Notes provide late-breaking information about GlassFish Server 5.1 software and documentation. Also included are a summary of new product features in the 5.1 release, and descriptions and workarounds for known issues and limitations. Eclipse GlassFish Server Release Notes, Release 5.1 Copyright © 2013, 2019 Oracle and/or its affiliates. All rights reserved. This program and the accompanying materials are made available under the terms of the Eclipse Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0. SPDX-License-Identifier: EPL-2.0 Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. -
Understanding JSON Schema Release 2020-12
Understanding JSON Schema Release 2020-12 Michael Droettboom, et al Space Telescope Science Institute Sep 14, 2021 Contents 1 Conventions used in this book3 1.1 Language-specific notes.........................................3 1.2 Draft-specific notes............................................4 1.3 Examples.................................................4 2 What is a schema? 7 3 The basics 11 3.1 Hello, World!............................................... 11 3.2 The type keyword............................................ 12 3.3 Declaring a JSON Schema........................................ 13 3.4 Declaring a unique identifier....................................... 13 4 JSON Schema Reference 15 4.1 Type-specific keywords......................................... 15 4.2 string................................................... 17 4.2.1 Length.............................................. 19 4.2.2 Regular Expressions...................................... 19 4.2.3 Format.............................................. 20 4.3 Regular Expressions........................................... 22 4.3.1 Example............................................. 23 4.4 Numeric types.............................................. 23 4.4.1 integer.............................................. 24 4.4.2 number............................................. 25 4.4.3 Multiples............................................ 26 4.4.4 Range.............................................. 26 4.5 object................................................... 29 4.5.1 Properties........................................... -
Efficient Sorting of Search Results by String Attributes
Efficient sorting of search results by string attributes Nicholas Sherlock Andrew Trotman Department of Computer Science Department of Computer Science University of Otago University of Otago Otago 9054 New Zealand Otago 9054 New Zealand [email protected] [email protected] Abstract It is sometimes required to order search In addition, the search engine must allocate memory results using textual document attributes such as to an index structure which allows it to efficiently re- titles. This is problematic for performance because trieve those post titles by document index, which, using of the memory required to store these long text a simplistic scheme with 4 bytes required per docu- strings at indexing and search time. We create a ment offset, would require an additional 50 megabytes method for compressing strings which may be used of storage. for approximate ordering of search results on textual For search terms which occur in many documents, attributes. We create a metric for analyzing its most of the memory allocated to storing text fields like performance. We then use this metric to show that, post titles must be examined during result list sorting. for document collections containing tens of millions of As 550 megabytes is vastly larger than the cache mem- documents, we can sort document titles using 64-bits ory available inside the CPU, sorting the list of docu- of storage per title to within 100 positions of error per ments by post title requires the CPU to load that data document. from main memory, which adds substantial latency to query processing and competes for memory bandwidth Keywords Information Retrieval, Web Documents, with other processes running on the same system. -
Advanced Architecture for Java Universal Message Passing (AA-JUMP)
The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 429 Advanced Architecture for Java Universal Message Passing (AA-JUMP) Adeel-ur-Rehman1 and Naveed Riaz2 1National Centre for Physics, Pakistan 2School of Electrical Engineering and Computer Science, National University of Science and Technology, Pakistan Abstract: The Architecture for Java Universal Message Passing (A-JUMP) is a Java based message passing framework. A- JUMP offers flexibility for programmers in order to write parallel applications making use of multiple programming languages. There is also a provision to use various network protocols for message communication. The results for standard benchmarks like ping-pong latency, Embarrassingly Parallel (EP) code execution, Java Grande Forum (JGF) Crypt etc. gave us the conclusion that for the cases where the data size is smaller than 256K bytes, the numbers are comparative with some of its predecessor models like Message Passing Interface CHameleon version 2 (MPICH2), Message Passing interface for Java (MPJ) Express etc. But, in case, the packet size exceeds 256K bytes, the performance of the A-JUMP model seems to be severely hampered. Hence, taking that peculiar behaviour into account, this paper talks about a strategy devised to cope up with the performance limitation observed under the base A-JUMP implementation, giving birth to an Advanced A-JUMP (AA- JUMP) methodology while keeping the basic workflow of the original model intact. AA-JUMP addresses to improve performance of A-JUMP by preserving its various traits like portability, simplicity, scalability etc. which are the key features offered by flourishing High Performance Computing (HPC) oriented frameworks of now-a-days. -
Dcamp: Distributed Common Api for Measuring
DCAMP: DISTRIBUTED COMMON API FOR MEASURING PERFORMANCE A Thesis presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Alexander Paul Sideropoulos December 2014 c 2014 Alexander Paul Sideropoulos ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: dCAMP: Distributed Common API for Measuring Performance AUTHOR: Alexander Paul Sideropoulos DATE SUBMITTED: December 2014 COMMITTEE CHAIR: Michael Haungs, Ph.D. Associate Professor of Computer Science COMMITTEE MEMBER: Aaron Keen, Ph.D. Assistant Professor of Computer Science COMMITTEE MEMBER: John Bellardo, Ph.D. Associate Professor of Computer Science iii ABSTRACT dCAMP: Distributed Common API for Measuring Performance Alexander Paul Sideropoulos Although the nearing end of Moore's Law has been predicted numerous times in the past [22], it will eventually come to pass. In forethought of this, many modern computing systems have become increasingly complex, distributed, and parallel. As software is developed on and for these complex systems, a common API is necessary for gathering vital performance related metrics while remaining transparent to the user, both in terms of system impact and ease of use. Several distributed performance monitoring and testing systems have been proposed and implemented by both research and commercial institutions. How- ever, most of these systems do not meet several fundamental criterion for a truly useful distributed performance monitoring system: 1) variable data delivery mod- els, 2) security, 3) scalability, 4) transparency, 5) completeness, 6) validity, and 7) portability [30]. This work presents dCAMP: Distributed Common API for Measuring Per- formance, a distributed performance framework built on top of Mark Gabel and Michael Haungs' work with CAMP. -
[MS-LISTSWS]: Lists Web Service Protocol
[MS-LISTSWS]: Lists Web Service Protocol Intellectual Property Rights Notice for Open Specifications Documentation . Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions. Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation. No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting [email protected]. -
V10.5.0 (2013-07)
ETSI TS 126 234 V10.5.0 (2013-07) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (3GPP TS 26.234 version 10.5.0 Release 10) 3GPP TS 26.234 version 10.5.0 Release 10 1 ETSI TS 126 234 V10.5.0 (2013-07) Reference RTS/TSGS-0426234va50 Keywords LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
FIDO Technical Glossary
Client to Authenticator Protocol (CTAP) Implementation Draft, February 27, 2018 This version: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id- 20180227.html Previous Versions: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/ Issue Tracking: GitHub Editors: Christiaan Brand (Google) Alexei Czeskis (Google) Jakob Ehrensvärd (Yubico) Michael B. Jones (Microsoft) Akshay Kumar (Microsoft) Rolf Lindemann (Nok Nok Labs) Adam Powers (FIDO Alliance) Johan Verrept (VASCO Data Security) Former Editors: Matthieu Antoine (Gemalto) Vijay Bharadwaj (Microsoft) Mirko J. Ploch (SurePassID) Contributors: Jeff Hodges (PayPal) Copyright © 2018 FIDO Alliance. All Rights Reserved. Abstract This specification describes an application layer protocol for communication between a roaming authenticator and another client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the details of how such transport layer connections should be set up, in a manner that meets the requirements of the application layer protocol. Table of Contents 1 Introduction 1.1 Relationship to Other Specifications 2 Conformance 3 Protocol Structure 4 Protocol Overview 5 Authenticator API 5.1 authenticatorMakeCredential (0x01) 5.2 authenticatorGetAssertion (0x02) 5.3 authenticatorGetNextAssertion (0x08) 5.3.1 Client Logic 5.4 authenticatorGetInfo (0x04)