View a Copy of This Licence, Visit

Total Page:16

File Type:pdf, Size:1020Kb

View a Copy of This Licence, Visit Colemon et al. Genes and Environment (2020) 42:24 https://doi.org/10.1186/s41021-020-00162-2 RESEARCH Open Access DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells Ashley Colemon1, Taylor M. Harris2 and Saumya Ramanathan2,3* Abstract Melanoma Antigen Genes (MAGEs) are a family of genes that have piqued the interest of scientists for their unique expression pattern. A subset of MAGEs (Type I) are expressed in spermatogonial cells and in no other somatic tissue, and then re-expressed in many cancers. Type I MAGEs are often referred to as cancer-testis antigens due to this expression pattern, while Type II MAGEs are more ubiquitous in expression. This study determines the cause and consequence of the aberrant expression of the MAGE-A subfamily of cancer-testis antigens. We have discovered that MAGE-A genes are regulated by DNA methylation, as revealed by treatment with 5-azacytidine, an inhibitor of DNA methyltransferases. Furthermore, bioinformatics analysis of existing methylome sequencing data also corroborates our findings. The consequence of expressing certain MAGE-A genes is an increase in cell proliferation and colony formation and resistance to chemo-therapeutic agent 5-fluorouracil and DNA damaging agent sodium arsenite. Taken together, these data indicate that DNA methylation plays a crucial role in regulating the expression of MAGE-A genes which then act as drivers of cell proliferation, anchorage-independent growth and chemo-resistance that is critical for cancer-cell survival. Keywords: Cancer, Cancer-testis antigens, Melanoma antigen genes, Anchorage-independent growth, Epigenetics, DNA methylation, Gene expression, Cell proliferation, Chemo-resistance Introduction antigens, and located on the X-chromosome, whereas Type Melanoma Antigen Genes (MAGEs) were first discovered II MAGEs are ubiquitous in expression and some members because a patient with melanoma and a few melanoma cell such as MAGEL2 are located on autosomes [3]. All MAGE lines presented an antigen that was recognized by cytotoxic proteins share a MAGE homology domain (MHD) and some T-cells. Subsequent autologous typing led to the discovery of members of this enigmatic family bind to E3-ubiquitin ligases MAGE-1, now known as MAGEA1, as the tumor associated and enhance their activity, by as yet unknown mechanisms antigen [1]. Since then, based on sequence similarity, more [4]. This adaptor function of the MAGE proteins results in gene members have been added to the family in humans, regulation of many biological processes. For example, with a total of about 60 genes including pseudogenes [2]. MAGEA3/6, a Type I MAGE regulates degradation of MAGEs can be divided into Type I and Type II based on AMPK, a master metabolic regulator and tumor-suppressor their expression pattern and their chromosomal location [5], and activation of cancer-specific MAGEA11-HUWE1 (Fig. 1a). Type I MAGEs are all reported to be cancer-testis ligase complex leads to alternate polyadenylation of core oncogenic and tumor suppressor transcripts [6], whereas * Correspondence: [email protected] MAGEL2,whichisatypeIIMAGE, regulates protein traf- 2Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA ficking by ubiquitination of WASH, a known mediator of the 3Department of Pharmacology, Vanderbilt University, Nashville, TN, USA retromer complex [7, 8]. Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Colemon et al. Genes and Environment (2020) 42:24 Page 2 of 13 Fig. 1 Introduction of MAGE-A subfamily of genes and their protein products. a Schematic illustrating the focus of this paper. Melanoma Antigen Genes are divided into Type I and Type II based on their expression pattern. MAGE-A genes are considered bona fide cancer-testis antigens and are located on the X-chromosome. Type II MAGEs are ubiquitously expressed, and all members are not located on the X chromosome. b Clustal W sequence alignment shows the different percentages of sequence identity among the MAGE-A proteins. c Alignment of individual protein sequences shows that MAGE-A proteins share a MAGE homology domain (pink region) and an invariant dileucine motif (indicated by **) Colemon et al. Genes and Environment (2020) 42:24 Page 3 of 13 Type I MAGEs have garnered a lot of interest because A gene family are regulated by DNA methylation. We of their unique expression pattern. As cancer therapy is present evidence that each MAGE-A gene might have a becoming more personalized, being able to target cancer different role to play in the process of cellular cells specifically, is attractive. Therefore, genes and their transformation. protein products that are exclusively expressed in cancer cells such as the MAGE proteins have good therapeutic Results potential. However, there is a significant gap in the MAGE-A genes are enriched in the bone marrow, cancer knowledge of how the expression of each of these genes and testis is regulated and their individual contribution towards In order to determine whether all members of the the process of either initiation or maintenance of cancer MAGE-A gene family strictly adhered to the expression phenotypes. Furthermore, if we target one, do we need pattern of a cancer-testis antigen, we used UCSC Xena to target them all? functional genomics browser to analyze mRNA expres- Many germline genes are regulated by epigenetic mech- sion of MAGE-A genes from RNA-Sequencing datasets anisms, such as promoter methylation, histone methyla- from the TCGA (PAN-CANCER) and GTEx dataset for tion, and other post-translational modifications of bone marrow, colon, heart, liver and, testis samples [20]. histones that affects chromatin state [9–11]. In fact, the We used these tissues specifically because, the heart is a epigenetic landscape of the spermatozoon is thought to highly differentiated tissue [21], while colon and liver are contribute transgenerational epigenetic inheritance [12]. differentiated but still proliferative [22, 23] and the bone In addition, there is evidence that MAGEA1 and marrow, which is enriched in stem cells [24]. As a nega- MAGEA11 are both regulated by CpG methylation [13– tive control, we also determined the expression pattern 15]. However, what is not clear is whether expression of of MAGEL2, a more ubiquitously expressed Type II all MAGE-A genes is regulated by methylation, as would MAGE gene [3, 7]. Not surprisingly, MAGEL2 was be expected since many MAGE-A genes are co-expressed expressed in all tissues, except the bone marrow (Fig. 2a). in cancers, and whether aberrant expression of each of With the exception of MAGEA8, we found that all the these genes contributes to the process of cellular trans- MAGE-A genes, were exclusively expressed in the bone formation in any way. A recent study has shown that in marrow, testis and in cancer tissue (Fig. 2a). Moreover, mice, MAGE-A genes protect spermatogonial cells from the level of expression of the MAGE-A genes was highly genotoxic stress [16]. The role that these genes, either col- variable within the PAN-CANCER samples. To confirm lectively as a gene family, or individually, play in cancer- if this expression profile translates into cell culture associated phenotypes is a little less clear. models, we next performed RT-qPCR analysis on normal This study is focused on MAGE-A sub-family of genes and cancer cell lines. We determined the relative mRNA and its protein products and the role they play in cancer. levels of MAGE-A genes in normal non-transformed cell This sub-family has garnered interest because MAGEA3 lines from three different tissue origins, breast (Human peptides were used in a clinical trial for non-small cell Mammary Epithelial Cells, HMEC), lung (Human Bron- lung cancer, as an immunostimulant and more recently, chial Epithelial Cells, HBEC), and colon (Human Colonic a study established MAGE-A proteins as predictors of Epithelial Cells, HCEC). We detected no expression of resistance to anti-CTLA4 therapy in patients with meta- MAGE-A genes in these non-transformed cell lines (Fig. static melanoma [17–19]. Sequence alignment of the 2b). HEK 293 cells have either undetectable or low basal full-length MAGE-A proteins reveals varying levels of expression of a few MAGE-A genes, however patient de- sequence identity. For example, MAGEA3 and MAGEA6 rived cancer cell lines such as SKBR3 and MCF7 (breast are nearly identical (96% identity) and more similar to cancer), HCT116 and HT29 (colon cancer), A549 and MAGEA2 and MAGEA12 (84 and 85% identity), while H209 (lung cancer) cells lines expressed high levels of MAGEA5 is an outlier with a truncated MHD. In most of the MAGE-A genes (Fig. 2b). Within cell lines of addition, MAGEA10 and MAGEA11 at most share only each type of cancer, SKBR3, HCT116 and H209 dis- 58 and 63% identity with other MAGEA proteins, re- played higher expression of MAGE-A genes.
Recommended publications
  • Genome-Wide Analyses on Single Disease Samples for Potential
    Int. J. Biol. Sci. 2018, Vol. 14 833 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(8): 833-842. doi: 10.7150/ijbs.24816 Research Paper Genome-wide Analyses on Single Disease Samples for Potential Biomarkers and Biological Features of Molecular Subtypes: A Case Study in Gastric Cancer Wei Zeng1,2,3,5, Nini Rao1,2,3,4, Qian Li1,2,3, Guangbin Wang1,2,3, Dingyun Liu1,2,3, Zhengwen Li1,2,3, Yuntao Yang1,2,3 1. Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China. 2. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China. 3. Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China. 4. Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, China. 5. Department of Biomedical Engineering, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China Corresponding author: © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.01.08; Accepted: 2018.03.06; Published: 2018.05.22 Abstract Purpose: Based on the previous 3 well-defined subtypes of gastric adenocarcinoma (invasive, proliferative and metabolic), we aimed to find potential biomarkers and biological features of each subtype. Methods: The genome-wide co-expression network of each subtype of gastric cancer was firstly constructed.
    [Show full text]
  • The HECT Domain Ubiquitin Ligase HUWE1 Targets Unassembled Soluble Proteins for Degradation
    OPEN Citation: Cell Discovery (2016) 2, 16040; doi:10.1038/celldisc.2016.40 ARTICLE www.nature.com/celldisc The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation Yue Xu1, D Eric Anderson2, Yihong Ye1 1Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; 2Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA In eukaryotes, many proteins function in multi-subunit complexes that require proper assembly. To maintain complex stoichiometry, cells use the endoplasmic reticulum-associated degradation system to degrade unassembled membrane subunits, but how unassembled soluble proteins are eliminated is undefined. Here we show that degradation of unassembled soluble proteins (referred to as unassembled soluble protein degradation, USPD) requires the ubiquitin selective chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and the proteasome. At the ubiquitin ligase level, the previously identified protein quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1) and the related enzymes only process a subset of unassembled soluble proteins. We identify the homologous to the E6-AP carboxyl terminus (homologous to the E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase for substrates bearing unshielded, hydrophobic segments. We used a stable isotope labeling with amino acids-based proteomic approach to identify endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form multi-protein com- plexes that function in the nucleus although HUWE1 itself is cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated ubiquitination and degradation, suggesting that USPD occurs primarily in the cytoplasm.
    [Show full text]
  • Cancer-Testis Antigens MAGEA Proteins Are Incorporated Into Extracellular Vesicles Released by Cells
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 38), pp: 3694-3708 Research Paper Cancer-testis antigens MAGEA proteins are incorporated into extracellular vesicles released by cells Anneli Kuldkepp1, Magda Karakai1, Eve Toomsoo1, Olavi Reinsalu1 and Reet Kurg1 1Institute of Technology, University of Tartu, Tartu, Estonia Correspondence to: Reet Kurg, email: [email protected] Keywords: cancer-testis antigens; MAGEA; extracellular vesicles; microvesicles Received: December 13, 2018 Accepted: May 13, 2019 Published: June 04, 2019 Copyright: Kuldkepp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Melanoma-associated antigen A (MAGEA) family proteins represent a class of tumor antigens that are expressed in a variety of malignant tumors, but their expression in normal tissues is restricted to germ cells. MAGEA family consists of eleven proteins that are highly conserved sharing the common MAGE homology domain (MHD). In the current study, we show that MAGEA4 and MAGEA10 proteins are incorporated into extracellular vesicles released by mouse fibroblast and human osteosarcoma U2OS cells and are expressed, at least partly, on the surface of released EVs. The C-terminal part of the protein containing MHD domain is required for this activity. Expression of MAGEA proteins induced the budding of cells and formation of extracellular vesicles with 150 to 1500 nm in diameter. Our data suggest that the release of MAGEA-positive EVs is at least to some extent induced by the expression of MAGEA proteins itself.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • The Results of an X-Chromosome Exome Sequencing Study
    Open Access Research BMJ Open: first published as 10.1136/bmjopen-2015-009537 on 29 April 2016. Downloaded from HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study Michael J Friez,1 Susan Sklower Brooks,2 Roger E Stevenson,1 Michael Field,3 Monica J Basehore,1 Lesley C Adès,4 Courtney Sebold,5 Stephen McGee,1 Samantha Saxon,1 Cindy Skinner,1 Maria E Craig,4 Lucy Murray,3 Richard J Simensen,1 Ying Yzu Yap,6 Marie A Shaw,6 Alison Gardner,6 Mark Corbett,6 Raman Kumar,6 Matthias Bosshard,7 Barbara van Loon,7 Patrick S Tarpey,8 Fatima Abidi,1 Jozef Gecz,6 Charles E Schwartz1 To cite: Friez MJ, Brooks SS, ABSTRACT et al Strengths and limitations of this study Stevenson RE, . HUWE1 Background: X linked intellectual disability (XLID) mutations in Juberg-Marsidi syndromes account for a substantial number of males ▪ and Brooks syndromes: the Using the power of next generation sequencing, with ID. Much progress has been made in identifying results of an X-chromosome we have linked Juberg-Marsidi syndrome ( JMS) exome sequencing study. the genetic cause in many of the syndromes described and Brooks syndrome as allelic conditions. – BMJ Open 2016;6:e009537. 20 40 years ago. Next generation sequencing (NGS) ▪ This study provides better organisation to the doi:10.1136/bmjopen-2015- has contributed to the rapid discovery of XLID genes field of X linked disorders by providing evidence 009537 and identifying novel mutations in known XLID genes that JMS is not caused by mutation in the ATRX for many of these syndromes.
    [Show full text]
  • The Inactive X Chromosome Is Epigenetically Unstable and Transcriptionally Labile in Breast Cancer
    Supplemental Information The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer Ronan Chaligné1,2,3,8, Tatiana Popova1,4, Marco-Antonio Mendoza-Parra5, Mohamed-Ashick M. Saleem5 , David Gentien1,6, Kristen Ban1,2,3,8, Tristan Piolot1,7, Olivier Leroy1,7, Odette Mariani6, Hinrich Gronemeyer*5, Anne Vincent-Salomon*1,4,6,8, Marc-Henri Stern*1,4,6 and Edith Heard*1,2,3,8 Extended Experimental Procedures Cell Culture Human Mammary Epithelial Cells (HMEC, Invitrogen) were grown in serum-free medium (HuMEC, Invitrogen). WI- 38, ZR-75-1, SK-BR-3 and MDA-MB-436 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) containing 10% fetal bovine serum (FBS). DNA Methylation analysis. We bisulfite-treated 2 µg of genomic DNA using Epitect bisulfite kit (Qiagen). Bisulfite converted DNA was amplified with bisulfite primers listed in Table S3. All primers incorporated a T7 promoter tag, and PCR conditions are available upon request. We analyzed PCR products by MALDI-TOF mass spectrometry after in vitro transcription and specific cleavage (EpiTYPER by Sequenom®). For each amplicon, we analyzed two independent DNA samples and several CG sites in the CpG Island. Design of primers and selection of best promoter region to assess (approx. 500 bp) were done by a combination of UCSC Genome Browser (http://genome.ucsc.edu) and MethPrimer (http://www.urogene.org). All the primers used are listed (Table S3). NB: MAGEC2 CpG analysis have been done with a combination of two CpG island identified in the gene core. Analysis of RNA allelic expression profiles (based on Human SNP Array 6.0) DNA and RNA hybridizations were normalized by Genotyping console.
    [Show full text]
  • Expression of Cancer-Testis Antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in Myxoid and Round Cell Liposarcoma
    Modern Pathology (2014) 27, 1238–1245 1238 & 2014 USCAP, Inc All rights reserved 0893-3952/14 $32.00 Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma Jessica A Hemminger1, Amanda Ewart Toland2, Thomas J Scharschmidt3, Joel L Mayerson3, Denis C Guttridge2 and O Hans Iwenofu1 1Department of Pathology and Laboratory Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; 2Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA and 3Department of Orthopedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n ¼ 37) and frozen tissue (n ¼ 8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1–2 þ ) and percent tumor positivity.
    [Show full text]
  • Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line
    Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line Mahnaz Nezamivand-Chegini Shiraz University Hamed Kharrati-Koopaee Shiraz University https://orcid.org/0000-0003-2345-6919 seyed taghi Heydari ( [email protected] ) Shiraz University of Medical Sciences https://orcid.org/0000-0001-7711-1137 Hasan Giahi Shiraz University Ali Dehshahri Shiraz University of Medical Sciences Mehdi Dianatpour Shiraz University of Medical Sciences Kamran Bagheri Lankarani Shiraz University of Medical Sciences Research Keywords: Tamoxifen, breast cancer, genetic variants, RNA-seq. Posted Date: August 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-783422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression prole at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression prole between control and treatment samples.
    [Show full text]
  • Rationale for the Development of Alternative Forms of Androgen Deprivation Therapy
    248 S Kumari, D Senapati et al. New approaches to inhibit 24:8 R275–R295 Review AR action Rationale for the development of alternative forms of androgen deprivation therapy Sangeeta Kumari1,*, Dhirodatta Senapati1,* and Hannelore V Heemers1,2,3 1Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA Correspondence 2Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA should be addressed 3Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA to H V Heemers *(S Kumari and D Senapati contributed equally to this work) Email [email protected] Abstract With few exceptions, the almost 30,000 prostate cancer deaths annually in the United Key Words States are due to failure of androgen deprivation therapy. Androgen deprivation f androgen receptor therapy prevents ligand-activation of the androgen receptor. Despite initial remission f prostate cancer after androgen deprivation therapy, prostate cancer almost invariably progresses while f nuclear receptor continuing to rely on androgen receptor action. Androgen receptor’s transcriptional f coregulator output, which ultimately controls prostate cancer behavior, is an alternative therapeutic f transcription target, but its molecular regulation is poorly understood. Recent insights in the molecular f castration mechanisms by which the androgen receptor controls transcription of its target genes f hormonal therapy are uncovering gene specificity as well as context-dependency. Heterogeneity in the Endocrine-Related Cancer Endocrine-Related androgen receptor’s transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer’s clinical progression are active simultaneously in prostate cancer cells.
    [Show full text]
  • Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) Beyond SMARCA4 Mutations: a Comprehensive Genomic Analysis
    cells Article Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis Aurélie Auguste 1,Félix Blanc-Durand 2 , Marc Deloger 3 , Audrey Le Formal 1, Rohan Bareja 4,5, David C. Wilkes 4 , Catherine Richon 6,Béatrice Brunn 2, Olivier Caron 6, Mojgan Devouassoux-Shisheboran 7,Sébastien Gouy 2, Philippe Morice 2, Enrica Bentivegna 2, Andrea Sboner 4,5,8, Olivier Elemento 4,8, Mark A. Rubin 9 , Patricia Pautier 2, Catherine Genestie 10, Joanna Cyrta 4,9,11 and Alexandra Leary 1,2,* 1 Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; [email protected] (A.A.); [email protected] (A.L.F.) 2 Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; [email protected] (F.B.-D.); [email protected] (B.B.); [email protected] (S.G.); [email protected] (P.M.); [email protected] (E.B.); [email protected] (P.P.) 3 Bioinformatics Core Facility, Gustave Roussy Cancer Center, UMS CNRS 3655/INSERM 23 AMMICA, 94805 Villejuif, France; [email protected] 4 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; [email protected] (R.B.); [email protected] (D.C.W.); [email protected] (A.S.); [email protected] (O.E.); [email protected] (J.C.) 5 Institute for Computational Biomedicine, Weill Cornell
    [Show full text]
  • MAGE-A5 Rabbit Pab Antibody
    MAGE-A5 rabbit pAb antibody Catalog No : Source: Concentration : Mol.Wt. (Da): A17280 Rabbit 1 mg/ml 13016 Applications WB,ELISA Reactivity Human Dilution WB: 1:500 - 1:2000. ELISA: 1:10000. Not yet tested in other applications. Storage -20°C/1 year Specificity MAGE-A5 Polyclonal Antibody detects endogenous levels of MAGE-A5 protein. Source / Purification The antibody was affinity-purified from rabbit antiserum by affinity- chromatography using epitope-specific immunogen. Immunogen The antiserum was produced against synthesized peptide derived from human MAGEA5. AA range:68-117 Uniprot No P43359 Alternative names MAGEA5; MAGE5; Melanoma-associated antigen 5; Cancer/testis antigen 1.5; CT1.5; MAGE-5 antigen Form Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Clonality Polyclonal Isotype IgG Conjugation Background MAGE family member A5(MAGEA5) Homo sapiens This gene is a member of the MAGEA gene family. The members of this family encode proteins with 50 to 80% sequence identity to each other. The promoters and first exons of the MAGEA genes show considerable variability, suggesting that the existence of this gene family enables the same function to be expressed under different transcriptional controls. The MAGEA genes are clustered at chromosomal location Xq28. They have been implicated in some hereditary disorders, such as dyskeratosis congenita. This MAGEA gene encodes a protein that is C-terminally truncated compared to other family members, and this gene can be alternatively interpreted to be a pseudogene. The protein is represented in this Gene record in accordance with the assumed protein-coding status defined in the literature.
    [Show full text]
  • Pan-Cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade
    bioRxiv preprint doi: https://doi.org/10.1101/056101; this version posted November 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade Pornpimol Charoentong†, Francesca Finotello†, Mihaela Angelova†, Clemens Mayer, Mirjana Efremova, Dietmar Rieder, Hubert Hackl, Zlatko Trajanoski* 1Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria †Equal contribution *To whom correspondence should be addressed: [email protected] Zlatko Trajanoski, PhD Biocenter, Division of Bioinformatics Medical University of Innsbruck Innrain 80, 6020 Innsbruck Austria Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/056101; this version posted November 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY: The Cancer Genome Atlas revealed the genomic landscapes of common human cancers. In parallel, immunotherapy with checkpoint blockers is transforming the treatment of advanced cancers. As only a minority of the patients is responsive to checkpoint blockers, the identification of predictive markers and the mechanisms of resistance is a subject of intense research. To facilitate understanding of the tumor-immune cell interactions, we characterized the intratumoral immune landscapes and the cancer antigenomes from 20 solid cancers, and created The Cancer Immunome Atlas (http://tcia.at).
    [Show full text]