Eight-Legged Tricksters

Total Page:16

File Type:pdf, Size:1020Kb

Eight-Legged Tricksters Eight-leggedTricksters Spidersthat specializein catchingother spiders Robert R. Jackson Spiders arewell knownas preda- strugglesof a trappedinsect. It thereby tors of insects, but some even eat lures the residentspider close enough their own kind. For most spe- Use of deceit may be to be attacked (Bristowe 1941, cies, eating other spiders appears to be Gerhardt 1924). Czajka (1963) also largely an opportunistic occurrence, a especiallyimportant describedan instancewhere E. furcata larger or faster individual overpower- because another spideris a caught a female spider,apparently by ing another in a chance encounter. mimicking the courtship web vibra- There are at least a few spider species, potentialpredator as well tions of a male of the victim'sspecies. however, for which araneophagy (pre- More recently,Mimetus maculosus dation on other spiders) is routine as potential prey from Australiaand Mimetussp. from (e.g., Jackson and Poulsen 1990). Some New Zealand (Jackson and White- of these species employ strategies based house 1986) have beenshown to catch on deceit of their spider prey. In this Aggressive mimicry, where a preda- other spiders by using deceptive vi- article, I use the images of deception, tor seems beneficial to its prey, is a bratingsignals (Figure1). The deceiv- mimicry, and trickery to convey the ploy sometimes used by araneophagic ers ease onto webs, then transmitsig- functional significance of a predator's spiders. An aggressive mimic might, nals to their intended victims by behavior and not to imply cognition. for example, imitate an insect that is pulsatingtheir bodies up and down on Use of deceit by araneophagic spiders the intended victim's prey. In this the web and by pluckingand tugging may be especially important because way, an aggressive mimic can gain on the silk with their legs in a variety another spider is a potential predator control over its prey's behavior. The of ways, apparently mimicking as well as potential prey. situation becomes even more com- strugglesof small insects in the web. Approximately 34,000 species of plex when an araneo-phagic spider The mimetids illustrate several spiders have been described and interacts with another spider that is points that apply more generally to grouped into 105 families (Cod- both potential prey and potential aggressive mimic spiders. First, the dington and Levi 1991). Spiders are predator. Of the araneophagic spe- signalingbehavior of aggressivemim- often informally separated into two cies, the aggressive mimics are a small ics is complex. Mimetidsperform sev- behavioral groups: the web builders minority found only in five distantly eraldifferent vibratory behaviors, and, and the cursorial spiders (Foelix 1982). related families. by varyingthe sequencein which they Web builders erect silken webs and performthese behaviorsand the char- wait for their prey to arrive. In con- Pirate spiders as acteristicsof each behavior(e.g., am- and of trast, cursorial species ambush or stalk aggressive mimics plitude speed leg movement), and chase down their prey without they can transmita complex arrayof using webs. But araneophagic species Although pirate spiders (Mimetidae) vibrations across the web to the host tend to be behavioral nonconform- are well known as web-invading spider (Jackson and Whitehouse ists; they fail to fit simply into either of araneophagic spiders (Foelix 1982), 1986). these traditional behavioral groups. for only a few species from this cos- Second, the basic principles that mopolitan family are details known govern intraspecific communication about behavior. Ero furcata, a Euro- also govern interactionsbetween spe- Robert R. is an associate pean mimetid, is a frequently cited cies duringaggressive mimicry. When Jackson profes- A sor in the Zoology Department,Univer- example of an aggressive mimic. animalscommunicate, one individual sity of Canterbury, Christchurch,New member of this species moves onto (the sender) indirectly manipulates Zealand. ? 1992 American Institute of other spiders' webs, where it jerks on another individual (the receiver) by Biological Sciences. the web, apparently mimicking the providing a specializedstimulus (the 590 BioScience Vol. 42 No. 8 This content downloaded from 185.2.32.89 on Fri, 20 Jun 2014 00:31:39 AM All use subject to JSTOR Terms and Conditions signal)to which the receiverresponds (see Dawkins and Krebs 1978). In aggressive mimicry systems of spi- ders, a predatorprovides another spi- r: der species,its prey,with a signal. But _W in this instance,the predatorattempts to elicit a responsethat benefits itself r-....~ ~~.. I and not the prey. Whetheror not the receiverbenefits in a communication system is an important question be- .r. IP cause the evolution of the receiver's / behavior is easy to account for if it I~~ benefits, but more difficult if it does I~~~ not. The function of the signal, how- ; ever, refers only to how the signal benefits the sender. Third, mimetids, like all web-in- vading aggressivemimic spiders that have been studied in detail, are not limited to using aggressive mimicry (Jacksonand Whitehouse 1986). In- stead, they are versatile predators (Curio1976) whose tacticsdepend on the circumstances (see Dominey Figure1. Mimetusmaculosus (above, facing down, ventral view), having attacked and 1984), and so the tactics are consid- killedanother spider, Eriophora pustulosa (below, facing right, ventral view), wraps eredto be conditionalpredatory strat- its victimup in silk. egies. Mimetids, in addition to catch- ing the spidersin their own webs, also steal insects from other spiders'webs ever,adhere to cribellatewebs and are pholcid that buildsa nonstickydome- (klep-toparasitism)and open egg sacs less efficient as predatorsthere. Some shaped web and, like other pholcids, to feed on the victim spider's eggs other aggressivemimics are more ef- has legs that are especially long rela- (oophagy). These behaviors are dis- fective when invadingcribellate webs tive to the body. When prey contacts tinctly different from araneophagic than when invadingecribellate webs. the web, P. phalangioidesuses its long aggressivemimicry because no signal- How mimetidsand other web-invad- legs to wrap the prey up with silk ing is associated with them. ing spiders avoid adhering to sticky while keepingits body distantand out Fourth, the characteristicsof the webs is not known. of harm'sway. invaded web largely determine how Except for salticids, which will be However, P. phalangioides is not effective an aggressive mimic is at discussed later, spiders do not have simply a predator that uses its own catching the web's resident. Spider acute vision. Typical web-building web. Like Mimetus, P. phalangioides webs varygreatly in shapeand design, spiders rely primarily on web-borne invades alien webs and practices ag- from two-dimensional orb webs to vibrationalcues to detect and locate gressive mimicry and also eats the sparselyspun three-dimensional space prey. A web invader, also without resident spider, insects in the alien webs to thickly woven sheet webs acute vision, relieson vibrationalcues web, andthe victimspider's eggs (Jack- (Foelix 1982). Some spiders, called in the alien web. But because webs son and Brassington1987). cribellates,build sticky webs by coat- may differsignificantly in their vibra- Unlike Mimetus, P. phalangioides ing structurallines with fine threads tional characteristicsdue to structural adheres to both cribellate and fromthe cribellum,a specializedspin- diversity,web invadersare limited as ecribellatesticky webs. Therefore,P. ning plate with minute spigots. Other to the range of web types they can phalangioidesis moreefficient at catch- spiders,called ecribellates, build sticky exploit. This sensory factor appar- ing prey on nonsticky than on sticky webs by secretingfrom spigots on the ently limits most aggressivemimics to webs, and most efficient of all when spinneretsadhesive fluid to form glue being effective as predators on a re- on its own web (Jackson and dropletsalong the threads.Webs with- stricted range of web types (Jackson Brassington 1987). Nevertheless, P. out eitherform of glue are referredto 1986). phalangioidescan catch prey on both as nonsticky, although all spider silk types of sticky webs. With its long maybe adhesiveto someextent (Hallas Both a web builder and a legs, P. phalangioidesappears to tip- and Jackson 1986). web invader toe across the sticky web, minimizing Mimetids are most effective when contact with the sticky threads (Fig- invadingthe space and orb webs cre- Research on Pholcus phalangioides ure 2). Also, by grooming its legs ated by ecribellates (Jackson and (Jacksonand Brassington1987) illus- frequently, P. phalangioides can re- Whitehouse 1986); they do not ad- tratesthat an individualspider may be move any sticky silk that accumu- here to the glue on these most fre- both a web builderand a web invader. lates.Another key to P. phalangioides' quentlyinvaded webs. They do, how- P. phalangioides is a cosmopolitan success at invading sticky webs ap- September1992 591 This content downloaded from 185.2.32.89 on Fri, 20 Jun 2014 00:31:39 AM All use subject to JSTOR Terms and Conditions a.__ R - If Zealand illustrates that an ..;,. X. _ gnaphosid, can * araneophagic web-invading spider be both a web builder and a cursorial * *".. predator. Most gnaphosids are insec- "*' -1 e ;F . X* \jh'. \ tivorous hunters. T. erebus, like typi- _0 - ow.,. Oe1\ \\ cal gnaphosids, generally hunts prey f in the open, completely away from 4.-leX4 webs. However, an
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
    Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance.
    [Show full text]
  • The Pholcid Spiders of Micronesia and Polynesia (Araneae, Pholcidae) Joseph A
    Butler University Digital Commons @ Butler University Scholarship and Professional Work - LAS College of Liberal Arts & Sciences 2008 The pholcid spiders of Micronesia and Polynesia (Araneae, Pholcidae) Joseph A. Beatty James W. Berry Butler University, [email protected] Bernhard A. Huber Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers Part of the Biology Commons, and the Entomology Commons Recommended Citation Beatty, Joseph A.; Berry, James W.; and Huber, Bernhard A., "The hop lcid spiders of Micronesia and Polynesia (Araneae, Pholcidae)" Journal of Arachnology / (2008): 1-25. Available at http://digitalcommons.butler.edu/facsch_papers/782 This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact [email protected]. The pholcid spiders of Micronesia and Polynesia (Araneae, Pholcidae) Author(s): Joseph A. Beatty, James W. Berry, Bernhard A. Huber Source: Journal of Arachnology, 36(1):1-25. Published By: American Arachnological Society DOI: http://dx.doi.org/10.1636/H05-66.1 URL: http://www.bioone.org/doi/full/10.1636/H05-66.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
    [Show full text]
  • Casting a Sticky Trap: SPIDERS and Their Predatory Ways
    Casting a Sticky Trap: SPIDERS and Their Predatory Ways Bennett C. Moulder, ISM Research Associate and Professor Emeritus, Illinois College, Jacksonville, Illinois ating insects and other small sticky silk, capable of trapping and holding to the spot, and impales the insect with its arthropods is what spiders do for even relatively large an powerful insect prey. long chelicerae. First using her mouthparts a living. That spiders are an Damage to the orb caused by wind or strug- to cut a small slit in the tube, the spider enormously successful group of gling prey can be quickly repaired, or the then pulls the insect inside. After her meal, animals is testimony to how efficient they entire can be web taken down and replaced. the spider repairs the tear in the tube, re- Eare at catching their prey. Most insects move Many orb weavers replace their tattered web sumes her position below ground, and swiftly and, for their size, are quite powerful. with a new one every day. awaits the next victim. “For spiders to capture such prey, they have, Other spiders do not utilize webs for prey Mastophora, the bolas spider, is a mem- as a group, developed an impressive arsenal capture. Crab spiders, perfectly camouflaged ber of the family Araneidae, the typical orb of weapons and a variety of strategies. against their background, lie in wait on flow- weavers. This small spider has abandoned Except for one small family (Ul- ers or on the bark of trees to ambush unsus- the practice of orb web construction alto- oboridae), all spiders in Illinois have venom pecting insects.
    [Show full text]
  • Speculative Hunting by an Araneophagic Salticid Spider
    SPECULATIVE HUNTINGBY ANARANEOPHAGICSAL TICID SPIDER by ROBERT J.CLARK , DUANE P.HARLAND and ROBERT R.JACKSON 1,2) (Departmentof Zoology,University of Canterbury, Private Bag 4800, Christchurch, New Zealand) (Acc.3-VII-2000) Summary Portia mbriata ,anaraneophagic jumping spider ( Salticidae),makes undirected leaps ( er- raticleaping with no particulartarget being evident) in the presence of chemicalcues from Jacksonoidesqueenslandicus ,anothersalticid and a commonprey of P. mbriata. Whether undirectedleaping by P. mbriata functionsas hunting by speculation is investigatedexperi- mentally.Our rsthypothesis, that undirected leaps provoke movement by J.queenslandicus , wasinvestigated using living P. mbriata andthree types of luresmade from dead, dry arthro- pods (P. mbriata, J.queenslandicus and Muscadomestica ).When a living P. mbriata made undirectedleaps or aspring-drivendevice made the lures suddenly move up and down, sim- ulatingundirected leaping, J.queenslandicus respondedby wavingits palps and starting to walk.There was no statisticalevidence that the species from which the lure was made in u- enced J.queenslandicus ’responsein these tests. Our second hypothesis, that J.queenslandi- cus revealsits location to P. mbriata bymoving, was investigated by recording P. mbriata’s reaction to J.queenslandicus when J.queenslandicus reactedto luressimulating undirected leaping.In these tests, P. mbriata respondedby turning toward J.queenslandicus and waving its palps. Keywords: Portia mbriata , Jacksonoidesqueenslandicus ,jumpingspiders, predation, spec- ulativehunting. 1) Correspondingauthor; e-mail address: [email protected] 2) WethankPhil T aylorand David Blest for useful discussion and valuable comments on the manuscript.Financial support was provided by theNational Science Foundation ( GrantBNS 861078)and the Marsden Fund of New Zealand(Grant UOC512). c KoninklijkeBrill NV ,Leiden,2000 Behaviour137, 1601-1612 ® 1602 CLARK, HARLAND&JACKSON Introduction Ageneralproblem facing predators is howto locate prey(Curio, 1976).
    [Show full text]
  • Visual Perception in Jumping Spiders (Araneae,Salticidae)
    Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods .....................................................................................................................................................................
    [Show full text]
  • Predatory Behavior of Jumping Spiders
    Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies.
    [Show full text]
  • Circadian Rhythms of the Spider Pholcus Phalangeoides in Activity Monitors and Web Boxes
    East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2019 Circadian Rhythms of the Spider Pholcus phalangeoides in Activity Monitors and Web Boxes Steven Dirmeyer Follow this and additional works at: https://dc.etsu.edu/honors Part of the Animal Experimentation and Research Commons, Behavior and Ethology Commons, and the Biology Commons Recommended Citation Dirmeyer, Steven, "Circadian Rhythms of the Spider Pholcus phalangeoides in Activity Monitors and Web Boxes" (2019). Undergraduate Honors Theses. Paper 640. https://dc.etsu.edu/honors/640 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Circadian Rhythms of the Spider Pholcus phalangeoides in Activity Monitors and Web Boxes Thesis submitted in partial fulfillment of Honors By Steven Dirmeyer The Honors College University Honors Scholars Program East Tennessee State University April (26), 2019 --------------------------------------------- Dr. Thomas C. Jones, Faculty Mentor --------------------------------------------- Dr. Darrell J. Moore, Faculty Reader SPIDER CIRCADIAN RHYTHMS IN ACTIVITY MONITORS AND WEB BOXES 1 Abstract: Circadian rhythms are endogenous molecular clocks that correspond to the 24-hour day and are regulated by light stimulus, allowing organisms to entrain to the dawn-dusk cycle. These clocks may allow organisms to anticipate daily events, influencing their behavior. In arthropods, including spiders, circadian rhythmicity is tested using activity monitors, which house individuals in tubes. However, this does not reflect the natural habitat of many spiders.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Golden Orb Weaving Spiders - the Australian Museum
    6/24/2019 Golden Orb Weaving Spiders - The Australian Museum / Discover & Learn / Animal factsheets / Spiders / Golden Orb Weaving Spiders, Nephila sp. Golden Orb Weaving Spiders Alternative name/s: Golden Orb Weaver https://australianmuseum.net.au/learn/animals/spiders/golden-orb-weaving-spiders/ 1/8 6/24/2019 Golden Orb Weaving Spiders - The Australian Museum Image: Stuart Humphreys © Australian Museum Fast Facts Classification Genus Nephila Family Nephilidae https://australianmuseum.net.au/learn/animals/spiders/golden-orb-weaving-spiders/ 2/8 6/24/2019 Golden Orb Weaving Spiders - The Australian Museum Order Araneae Class Arachnida Phylum Arthropoda Kingdom Animalia Size Range 2 cm - 4 cm (female), 5 mm (male) The Golden Orb Weaving Spiders build large, strong orb webs with a golden sheen. Identification Golden Orb Weaving Spiders are large spiders with silvery-grey to plum coloured bodies and brown-black, often yellow banded legs. The males are tiny and red-brown to brown in colour. The main difference between the common Sydney species, Nephila plumipes and N. edulis (which is commoner in inland regions) is the presence of a 'knob' on the front of the sternum (the heart shaped plate on the underside of the body between the legs) of N. plumipes. https://australianmuseum.net.au/learn/animals/spiders/golden-orb-weaving-spiders/ 3/8 6/24/2019 Golden Orb Weaving Spiders - The Australian Museum Golden Orb-weaving Spider, Nephila plumipes, showing female and smaller male Image: Mike Gray © Australian Museum Habitat https://australianmuseum.net.au/learn/animals/spiders/golden-orb-weaving-spiders/ 4/8 6/24/2019 Golden Orb Weaving Spiders - The Australian Museum Golden Orb Weaving Spiders are found in dry open forest and woodlands, coastal sand dune shrubland and mangrove habitats.
    [Show full text]