23 Minerals and Mining Chapter Objectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applicability of Siberian Placer Mining Technology to Alaska
MIRL Report No. 89 Applicability- - of Siberian Placer Mining Technology to Alaska Dr. Frank J. Skudrzyk, Project Manager E++W Engineering Consultants 461 1 Dartmouth Fairbanks, Alaska James C,Barker U.S. Bureau of Mines Alaska Field Operations Cenkr Fairbanks. Alaska Daniel E. Walsh School of Mineral Engineering University of Alaska Fairbanks Fairbanks, Alaska Rocky MacDonald American Arctic Company Fairbanks, Alaska Library of Congress Cataloging in Publication Data Library of Congress Catalog Card Number: 9 1-6 1923 ISBN 0-911043-12-8 May, 1991 Published bv Mined Industry Research Laboratory 212 ONeill Building University of Alaska Fairbanks Fairbanks, Alaska 99775-1 180 Alaska Science and Technology Foundation 550 West 7th Avenue Suite 360 Anchorage, Alaska 99501 ABSTRACT The result of Perestroyka and Glasnost has been an awakening of potential for cooperation between East and West. Nowhere has that been better demonstrated than between Alaska and Magadan Province, USSR. This report summarizes a one year effort financed by ASTF, with participation from several technical organizations, to establish contacts with the Siberian placer mining industry. The purpose of the project was to provide initial assessment of the Soviet technology for placer mining in permafrost. A ten day trip to Magadan province by an ASTF team and a similar length visit to Alaska by the Soviet mining group representing the All Union Scientific and Research Institute of Gold and Rare Metals, (VNII-I), Magadan are described. The report also reviews translated data on mining in permafrost and describes surface and underground placer mining technology developed by the Soviets. The report also lists relevant publications on Soviet mining research and state of the art Soviet mining technology and expertise. -
Division of Mines and Mining
STATE OF WASHINGTON ARTHUR B. LANGLIE, GOVERNOR Department of Conservation and Development JOHN BROOKE FINK, Director THIRD BIENNIAL REPORT of the DIVISION OF MINES AND MINING For the Period Commencing January 1, 1939 and Ending January 1, 1941 By THOMAS B. HILL, SUPERVISOR J . w. MELROSE, GEOLOGIST OLYMPIA STATE PRI NTINC PLANT DIVISION OF MINES AND MINING Hon. John Brooke Fink, Director, Department of Conservation and Development, Olympia, Washington. Sir: I have the honor to submit herewith the third biennial report of the Division of Mines and Mining, covering the period from January l, 1939, to January 1, 1941. Respectfully, THOMAS B. HILL, Supervisor. DIVISION OF MINES AND MINING THOMAS B. HILL Supervisor SUMMARY OF MINERAL INFORMATION The present widespread interest in the mineral resources of Washington had its beginning in 1933 when the Director of the Department of Conserva tion and Devlopment devoted a substantial part of an allocation of $80,000 from Washington Emergency Relief Administration to mineral investigations. Two years later, the Division of Mines and Mining was created, and has continued the investigations, the work of compiling information and promoting the development of the mineral resources. Extensive information had been developed on the mineral resources of the State in the previous twenty-five years, largely through the Washington Geological Survey and the Division of Geology. This information had been published in some 50 or more bulletins and 1·eports, about half of which are now out of print. The information, while extensive, was scattered and in many instances fragmentary. The result of the work begun by the Department in 1933, and continued by this Division since 1935, is that now information is available on all the known mineral occurrences of the State. -
Shift in Global Tantalum Mine Production, 2000–2014
Shift in Global Tantalum Mine Production, 2000–2014 Tantalum has a unique set of tantalum from mine production is econom- (defined as sharing a border with the properties that make it useful in a ically viable in only a few countries. DRC) (U.S. Securities and Exchange number of diverse applications. The Although developed countries Commission, 2012; Chasan, 2015; ability of the metal to store and release dominated tantalum mine production U.S. Department of State, 2015). electrical energy makes it ideally suited in the early 2000s, production today The DRC, Rwanda, and surrounding for use in certain types of capacitors is dominated by countries in the Great countries are not globally significant that are widely used in modern elec- Lakes Region of Africa (figs. 1 and 2). sources of tin, tungsten, or gold, tronics. Approximately 60 percent of There is concern that the sales of accounting for only about 2 percent global tantalum consumption is in the minerals, including columbite-tantalite or of the mined world supply for each of electronics industry (Papp, 2015). The “coltan,” a mineral from which tantalum these elements. The region has, however, ductility and corrosion resistance of the is derived, have helped finance rebel evolved to become the world’s largest metal lends itself to application in the groups accused of violating human rights producer of mined tantalum. chemical processing industry, and its high as part of the continuing armed conflict A further complication of the melting point and high strength reten- in the Democratic Republic of the Congo production of tantalum stems from the tion at elevated temperatures make it an (DRC) and neighboring countries. -
New Enterprise Project
NI 43-101 Technical Report Assessing the Au, Cu, Porphyry Potential of the New Enterprise Project Maynard Mining District, Kingman, Arizona, United States of America FOR Pershing Resources Company Inc. 200 South Virginia Street, 8th Floor Reno, NV 89501 AUTHORS: Edward Walker, Ph.D., P.Geo. Jim Renaud, Ph.D., P.Geo. Natalie Pietrzak-Renaud, Ph.D., P.Geo. Effective Date : June 18, 2018 Signature Date: May 22, 2018 Table of Contents Item 1: Summary .......................................................................................................................... 7 Item 2: Introduction.................................................................................................................... 12 Item 3: Reliance on Other Experts .............................................................................................. 14 Item 4: Property Description and Location ................................................................................ 14 Item 5: Accessibility, Climate, Local Resources, Infrastructure, and Physiography ................... 27 Location and Access ............................................................................................................... 27 Climate and Vegetation .......................................................................................................... 27 Local Resources and Infrastructure ........................................................................................ 27 Physiography ......................................................................................................................... -
93 Placer Tailings Are Features on the Historic-Period Mining Landscape
PAPERS ON HISTORICAL ARCHAEOLOGY 93 GGGOLDOLDOLD IN THETHETHE TAILINGSAILINGSAILINGS MICHAEL DAVID NEWLAND Recent field research of post-Gold Rush placer-mining operations along the Feather River suggests that placer tailings, the cleaned and processed rock and sediment waste of placer-mining operations, can contain important information about mining technique and landscape reconstruction. In addition, careful reconstruction of mining events can tie early mining claims with their mining operations. Two placer-mining sites, Spring Valley Gulch, worked in the 1860s-1870s, and the McCabe Creek Complex, worked in 1853-1860, both studied as part of the Oroville Relicensing Project, will be used as illustrations. lacer tailings are features on the historic-period mining landscape These three questions can be addressed using two sites as case that are typically ignored or recorded minimally, because studies: the Spring Valley Gulch complex and the McCabe Creek Presearchers think that either there is no information potential complex. there, or such features are too complex to address during field study. Placer tailings are found throughout the gold country of the west, and indeed around the world. Tailings are the bi-product of mining: the TWO CASE STUDIES: SPRING VALLEY GULCH AND MCCABE CREEK scraped, washed, or otherwise processed boulders, cobbles, and finer sediments left as a end result of mining; this paper focuses only on Spring Valley Gulch (CA-BUT-1872/H) placer mining and not on other forms of gold extraction. Spring Valley Gulch is filled with mining sites dating to the A lot has been said about tailings over the past two decades, and 1860s-1870s. -
Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium
Appendix C – Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium Mine Expansion – 2018 Mining Proposal (GHD 2018) and Talison Leaching Study – Stage 2 AMD Testing Results (GHD 2019) GHD | Report for Talison Lithium Australia Pty Ltd – Greenbushes Mine Expansion – Works Approval 1, 6136944 TALISON LITHIUM Talison Lithium Australia Pty Ltd Assessment of acid and metalliferous drainage Greenbushes Lithium Mine Expansion - 2018 Mining Proposal July 2018 WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION Executive summary GHD was engaged by Talison Lithium Australia Pty Ltd to undertake an Acid and Metalliferous Drainage assessment (AMD), to demonstrate the leaching potential of the future tailings and waste rock due to the proposed expansion of the mine - the Greenbushes Lithium Mine, located at Greenbushes Western Australia. The scope of works for this AMD study included the collation and geo-statistical analysis of Talison’s mineralogical assay data base - for the proposed waste rock and ore, and a review of the body of information relating to previous AMD assessments of the previously mined waste rock and existing tailings facilities. Given the continuity of mineralogy between the previously mined material and the proposed mined material (waste rock and ore), the findings of previous AMD assessments, relating to the existing waste rock and tailings facilities, are considered reliable indicators of the future AMD risk. This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.3 and the assumptions and qualifications contained throughout the Report. Acidic drainage risk The risk that the tailings (derived from ore processing) will produce adverse quantities of acid is considered low, given the low sulphur content (average 0.04%). -
Big Creek Mining Complex
Ah Heng Mining Complex A Malheur National Forest Virtual Tour Introduction: Types of Gold Mining Placer vs. Hard Rock (Quartz, Load) Mining There are several different ways to mine for gold. The following is a brief description of placer and hard rock mining. The remainder of this virtual tour focuses on the placer mining done by the Ah Heng Company at a leased mining claim near Big Creek. Placer Mining- using water to excavate, transport, and recover Hard Rock Mining- the underground excavation of lode deposits. A heavy minerals from alluvial deposits. These deposits consist of lode deposit is the original mineral occurrence within a fissure minerals that have eroded from their parent lode into a variety through native rock, also known as a vein or ledge. In order to access of natural contexts among the sedimentary formations. Placer these minerals, miners must excavate either a decline (ramp), vertical deposits are generally free from parent material and do not shaft, or an adit. These type of claims were a longer term investment require additional refinement when they are separated from because of the additional labor and equipment needed to extract the other sediments. and refine the ore and the need for transportation infrastructure to ship the refined ore to smelting facilities. Placer Mining 2. After gold was discovered through prospecting, more complex equipment and Technology techniques were employed to recover gold buried in the alluvial deposits Rocker – Long Toms a rocking box and Sluice which Boxes- allowed Trough-like recovery of 1. The first step in placer mining is boxes with gold with prospecting for rich gold deposits, usually water small flowing over with shovel, pick and . -
Estimation of Capital Costs for Establishing Coal Mines in South Africa
ESTIMATION OF CAPITAL COSTS FOR ESTABLISHING COAL MINES IN SOUTH AFRICA Moshe Mohutsiwa A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2015 DECLARATION I declare that this research report is my own unaided work. It is being submitted to the degree of Master of Science to the University of the Witwatersrand, Johannesburg. (Signature of Candidate) day of year ii ABSTRACT Coal is one of the most abundant mineral resources in South Africa and it is predominantly used in electricity generation in the country. Of all the mineral resources in South Africa, development of coal resources attracted most of the financial investment between 2010 and 2013. Development of mining projects requires estimation of capital and operating costs in the early stages of the project’s life. Estimation of costs is an essential exercise that assists on deciding the future of mining projects. Despite all the investment in the South African coal mining sector, there is still little consistency in unit capital costs invested/required to develop coal mining projects. Lack of research within the area of coal mining projects’ costs is attributable to a lack of publicly available information. Research in this area will enable investors and operators in the coal mining sector to be able to assess financial viability early in the project life. This study reviewed coal mining projects across the world, looking at publicly available capital costs. The study further recognised similarities between the South African and Indian coal mining sectors thereby enabling the research to leverage data from the Indian coal mining sector to estimate capital costs in South Africa. -
Mines of El Dorado County
by Doug Noble © 2002 Definitions Of Mining Terms:.........................................3 Burt Valley Mine............................................................13 Adams Gulch Mine........................................................4 Butler Pit........................................................................13 Agara Mine ...................................................................4 Calaveras Mine.............................................................13 Alabaster Cave Mine ....................................................4 Caledonia Mine..............................................................13 Alderson Mine...............................................................4 California-Bangor Slate Company Mine ........................13 Alhambra Mine..............................................................4 California Consolidated (Ibid, Tapioca) Mine.................13 Allen Dredge.................................................................5 California Jack Mine......................................................13 Alveoro Mine.................................................................5 California Slate Quarry .................................................14 Amelia Mine...................................................................5 Camelback (Voss) Mine................................................14 Argonaut Mine ..............................................................5 Carrie Hale Mine............................................................14 Badger Hill Mine -
MAP SHOWING LOCATIONS of MINES and PROSPECTS in the DILLON Lox 2° QUADRANGLE, IDAHO and MONTANA
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY MAP SHOWING LOCATIONS OF MINES AND PROSPECTS IN THE DILLON lox 2° QUADRANGLE, IDAHO AND MONTANA By JeffreyS. Loen and Robert C. Pearson Pamphlet to accompany Miscellaneous Investigations Series Map I-1803-C Table !.--Recorded and estimated production of base and precious metals in mining districts and areas in the Dillon 1°x2° guadrangle, Idaho and Montana [Production of other commodities are listed in footnotes. All monetary values are given in dollars at time of production. Dashes indicate no information available. Numbers in parentheses are estimates by the authors or by those cited as sources of data in list that follows table 2. <,less than; s.t., short tons] District/area Years Ore Gold Silver Copper Lead Zinc Value Sources name (s. t.) (oz) (oz) (lb) (lb) (lb) (dollars) of data Idaho Carmen Creek 18 70's-190 1 (50,000) 141, 226 district 1902-1980 (unknown) Total (50,000) Eldorado 1870's-1911 17,500 (350 ,000) 123, 226 district 1912-1954 (13,000) (8,000) (300,000) Total (650,000) Eureka district 1880's-1956 (13 ,500) 12,366 (2,680,000) 57,994 (4,000) ( 4,000 ,000) 173 Total (4,000,000) Gibbonsville 1877-1893 (unknown) district 1894-1907 (83,500) (1,670,000) 123, 226 1908-1980 ( <10 ,000) 123 Total (2,000,000) Kirtley Creek 1870's-1890 2,000 40,500 173 district 1890's-1909 (<10,000) 1910-1918 24,300 (500 ,000) 123 1919-1931 (unknown) 1932-1947 2,146 (75 ,000) 173 Total (620,000) McDevitt district 1800's.-1980 (80,000) Total (80,000) North Fork area 1800's-1980 (unknown) Total ( <10 ,000) Pratt Creek 1870's-1900 (50 ,000) district Total (50,000) Sandy Creek 1800 's-1900 (unknown) district 1901-1954 19,613 4,055 4,433 71,359 166,179 (310,000) 17 3, 200 Total (310 ,000) Montana Anaconda Range 1880's-1980 (<100,000) area Total (<100,000) Argenta district 1864-1901 (1 ,500 ,000) 1902-1965 311,796 72,241 562,159 604,135 18,189,939 2,009,366 5,522,962 88 Total (7,000,000) Baldy Mtn. -
Air, Energy, & Mining Pmsion
^ Air, Energy, & Mining PMSion Montana Department of Environmental Quality To All Potential Applicant(s) RE: Application Information Packet for Single and Multiple Hard Rock Mine Sites Dear Applicant, An operating permit from the Montana Department of Environmental Quality(DEQ) Hard Rock Mining Bureau(HRMB) is required for those that plan to mine and disturb more than five acres, as defined under the Montana Metal Mine Reclamation Act. Enclosed is an information packet. Applications may be submitted to include multiple sites under one operating permit, but the following restrictions must be met: • There would be no impact to any wetland, surface or groundwater; • There would be no constructed impoundment or reservoirs used in the operation; • There would be no potential to produce acid or other pollutive drainage from the pit; • There would be in impact to threatened and endangered species; and • There would be no impact to significant historic or archaeological features. If these requirements cannot be met an individual operating permit would be required for each site. The information packet includes: 1. Operating Permit Application form 2. Application process flow chart 3. Montana Hard Rock & Placer Mining Requirements 4. Guidelines for gathering and reporting baseline data 5. Additional permits or licenses that may be required 6. Operating permit summary Please mail a signed original copy and an electronic copy of the Application form, plus a $500 application fee (checks made payable to "MT DEQ-HRMB")to: DEQ-HRMB Attn: Operating Permit Supervisor PO Box 200901 Helena, MT 59620-0901 The submittal needs to include a mine and reclamation plan as described in the attached information packet. -
Mining & Milling
Mining & Milling The Story of Park City 8TH GRADE SCIENCE CURRICULUM © Park City Historical Society & Museum All Rights Reserved These materials and the photographs are copyrighted by the Park City Historical Society & Museum. Permission is granted to make photocopies and transparencies of the handouts as directed in the lesson plans. Please contact the Park City Historical Society & Museum for permission to use materials for any other purpose. This program was developed by Johanna Fassbender, Curator of Education With special thanks to Richard Pick Keith J. Droste Thanks also to Courtney Cochley Josephine Janger David Hedderly-Smith James L. Hewitson Tom Barber Sydney Reed Park City Rotary Çlub Summit County Recreation, Arts and Parks Program The Underdog Foundation Dear Teachers, We hope that you will enjoy the 8th grade science curriculum and use it with your students to teach major physical and chemical con- cepts. Each lesson is keyed to the Utah Science Core Curriculum to help you deliver science instructions. Our curriculum includes history sections to provide the students with the appropriate background knowledge and get them excited about their hometown of Park City which was the unique setting for the science of mining and mineralo- gy. This goes along with our belief in an interdisciplinary approach which provides students with a more holistic knowledge and will empower them in future research projects. Almost all of the lesson plans allow for adjustments and provide you with different options, depending on the progress of your class. You can teach the entire curriculum within three weeks, or you can extend it to six weeks by slowing down the pace and reducing the workload.