The Placer Gold Mining Game
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applicability of Siberian Placer Mining Technology to Alaska
MIRL Report No. 89 Applicability- - of Siberian Placer Mining Technology to Alaska Dr. Frank J. Skudrzyk, Project Manager E++W Engineering Consultants 461 1 Dartmouth Fairbanks, Alaska James C,Barker U.S. Bureau of Mines Alaska Field Operations Cenkr Fairbanks. Alaska Daniel E. Walsh School of Mineral Engineering University of Alaska Fairbanks Fairbanks, Alaska Rocky MacDonald American Arctic Company Fairbanks, Alaska Library of Congress Cataloging in Publication Data Library of Congress Catalog Card Number: 9 1-6 1923 ISBN 0-911043-12-8 May, 1991 Published bv Mined Industry Research Laboratory 212 ONeill Building University of Alaska Fairbanks Fairbanks, Alaska 99775-1 180 Alaska Science and Technology Foundation 550 West 7th Avenue Suite 360 Anchorage, Alaska 99501 ABSTRACT The result of Perestroyka and Glasnost has been an awakening of potential for cooperation between East and West. Nowhere has that been better demonstrated than between Alaska and Magadan Province, USSR. This report summarizes a one year effort financed by ASTF, with participation from several technical organizations, to establish contacts with the Siberian placer mining industry. The purpose of the project was to provide initial assessment of the Soviet technology for placer mining in permafrost. A ten day trip to Magadan province by an ASTF team and a similar length visit to Alaska by the Soviet mining group representing the All Union Scientific and Research Institute of Gold and Rare Metals, (VNII-I), Magadan are described. The report also reviews translated data on mining in permafrost and describes surface and underground placer mining technology developed by the Soviets. The report also lists relevant publications on Soviet mining research and state of the art Soviet mining technology and expertise. -
93 Placer Tailings Are Features on the Historic-Period Mining Landscape
PAPERS ON HISTORICAL ARCHAEOLOGY 93 GGGOLDOLDOLD IN THETHETHE TAILINGSAILINGSAILINGS MICHAEL DAVID NEWLAND Recent field research of post-Gold Rush placer-mining operations along the Feather River suggests that placer tailings, the cleaned and processed rock and sediment waste of placer-mining operations, can contain important information about mining technique and landscape reconstruction. In addition, careful reconstruction of mining events can tie early mining claims with their mining operations. Two placer-mining sites, Spring Valley Gulch, worked in the 1860s-1870s, and the McCabe Creek Complex, worked in 1853-1860, both studied as part of the Oroville Relicensing Project, will be used as illustrations. lacer tailings are features on the historic-period mining landscape These three questions can be addressed using two sites as case that are typically ignored or recorded minimally, because studies: the Spring Valley Gulch complex and the McCabe Creek Presearchers think that either there is no information potential complex. there, or such features are too complex to address during field study. Placer tailings are found throughout the gold country of the west, and indeed around the world. Tailings are the bi-product of mining: the TWO CASE STUDIES: SPRING VALLEY GULCH AND MCCABE CREEK scraped, washed, or otherwise processed boulders, cobbles, and finer sediments left as a end result of mining; this paper focuses only on Spring Valley Gulch (CA-BUT-1872/H) placer mining and not on other forms of gold extraction. Spring Valley Gulch is filled with mining sites dating to the A lot has been said about tailings over the past two decades, and 1860s-1870s. -
Exploration of Placer Gold Deposits by Geomagnetic Surveys
MTR-2 EXPLORATION OF PLACER GOLD DEPOSITS BY GEOMAGNETIC SURVEYS by Eric Anderson V. P. Exploration Placer Management Group, Ltd. EXPLORATION OF PLACER GOLD DEPOSITS BY GEOMAGNETIC SURVEYS by Eric Anderson V. P. Exploration Placer Management Group, Ltd. Exploration of Placer Gold Deposits by Geomagnetic Surveys Eric Anderson, V.P. Exploration Placer Management Group, Ltd. ABSTRACT Past attempts to explore for placer gold deposits by measuring the anomalous magnetic intensities of the magnetite normally found in the ”black sands” fraction of placer gravels were for the most part unsuccessful. Recent improvements in the sensitivity, reliability and portability of magnetometers have made it possible to cheaply and accurately delineate some types of placer gravels if they occur in a geological environment that is ”magnetically hospitable” and does not mask the signal of the overlaying gravels. The main benefit of this technique is that it can accurately delineate targets and thus dramatically reduce the overall cost of an exploration program in a given area. INTRODUCTION Whether or not this technique will work in a given area depends on three factors: 1. The amount of magnetite associated with the pay gravels. 2. The depth of the gravel deposit. 3. The nature of the underlying bedrock. In our work to date in Western Canada and United States, we have not encountered any pay gravels that did not have measurable concentrations of magnetite in the black sands. It is common to find gravel deposits with high concentrations of magnetite and no gold values whatsoever, but our experience and history have shown that gold values rarely occur without associated magnetic black sands; although the concentrates of magnetite do vary tremendously, In this regard it is important to keep two things in mind: 1. -
Big Creek Mining Complex
Ah Heng Mining Complex A Malheur National Forest Virtual Tour Introduction: Types of Gold Mining Placer vs. Hard Rock (Quartz, Load) Mining There are several different ways to mine for gold. The following is a brief description of placer and hard rock mining. The remainder of this virtual tour focuses on the placer mining done by the Ah Heng Company at a leased mining claim near Big Creek. Placer Mining- using water to excavate, transport, and recover Hard Rock Mining- the underground excavation of lode deposits. A heavy minerals from alluvial deposits. These deposits consist of lode deposit is the original mineral occurrence within a fissure minerals that have eroded from their parent lode into a variety through native rock, also known as a vein or ledge. In order to access of natural contexts among the sedimentary formations. Placer these minerals, miners must excavate either a decline (ramp), vertical deposits are generally free from parent material and do not shaft, or an adit. These type of claims were a longer term investment require additional refinement when they are separated from because of the additional labor and equipment needed to extract the other sediments. and refine the ore and the need for transportation infrastructure to ship the refined ore to smelting facilities. Placer Mining 2. After gold was discovered through prospecting, more complex equipment and Technology techniques were employed to recover gold buried in the alluvial deposits Rocker – Long Toms a rocking box and Sluice which Boxes- allowed Trough-like recovery of 1. The first step in placer mining is boxes with gold with prospecting for rich gold deposits, usually water small flowing over with shovel, pick and . -
Mines of El Dorado County
by Doug Noble © 2002 Definitions Of Mining Terms:.........................................3 Burt Valley Mine............................................................13 Adams Gulch Mine........................................................4 Butler Pit........................................................................13 Agara Mine ...................................................................4 Calaveras Mine.............................................................13 Alabaster Cave Mine ....................................................4 Caledonia Mine..............................................................13 Alderson Mine...............................................................4 California-Bangor Slate Company Mine ........................13 Alhambra Mine..............................................................4 California Consolidated (Ibid, Tapioca) Mine.................13 Allen Dredge.................................................................5 California Jack Mine......................................................13 Alveoro Mine.................................................................5 California Slate Quarry .................................................14 Amelia Mine...................................................................5 Camelback (Voss) Mine................................................14 Argonaut Mine ..............................................................5 Carrie Hale Mine............................................................14 Badger Hill Mine -
MAP SHOWING LOCATIONS of MINES and PROSPECTS in the DILLON Lox 2° QUADRANGLE, IDAHO and MONTANA
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY MAP SHOWING LOCATIONS OF MINES AND PROSPECTS IN THE DILLON lox 2° QUADRANGLE, IDAHO AND MONTANA By JeffreyS. Loen and Robert C. Pearson Pamphlet to accompany Miscellaneous Investigations Series Map I-1803-C Table !.--Recorded and estimated production of base and precious metals in mining districts and areas in the Dillon 1°x2° guadrangle, Idaho and Montana [Production of other commodities are listed in footnotes. All monetary values are given in dollars at time of production. Dashes indicate no information available. Numbers in parentheses are estimates by the authors or by those cited as sources of data in list that follows table 2. <,less than; s.t., short tons] District/area Years Ore Gold Silver Copper Lead Zinc Value Sources name (s. t.) (oz) (oz) (lb) (lb) (lb) (dollars) of data Idaho Carmen Creek 18 70's-190 1 (50,000) 141, 226 district 1902-1980 (unknown) Total (50,000) Eldorado 1870's-1911 17,500 (350 ,000) 123, 226 district 1912-1954 (13,000) (8,000) (300,000) Total (650,000) Eureka district 1880's-1956 (13 ,500) 12,366 (2,680,000) 57,994 (4,000) ( 4,000 ,000) 173 Total (4,000,000) Gibbonsville 1877-1893 (unknown) district 1894-1907 (83,500) (1,670,000) 123, 226 1908-1980 ( <10 ,000) 123 Total (2,000,000) Kirtley Creek 1870's-1890 2,000 40,500 173 district 1890's-1909 (<10,000) 1910-1918 24,300 (500 ,000) 123 1919-1931 (unknown) 1932-1947 2,146 (75 ,000) 173 Total (620,000) McDevitt district 1800's.-1980 (80,000) Total (80,000) North Fork area 1800's-1980 (unknown) Total ( <10 ,000) Pratt Creek 1870's-1900 (50 ,000) district Total (50,000) Sandy Creek 1800 's-1900 (unknown) district 1901-1954 19,613 4,055 4,433 71,359 166,179 (310,000) 17 3, 200 Total (310 ,000) Montana Anaconda Range 1880's-1980 (<100,000) area Total (<100,000) Argenta district 1864-1901 (1 ,500 ,000) 1902-1965 311,796 72,241 562,159 604,135 18,189,939 2,009,366 5,522,962 88 Total (7,000,000) Baldy Mtn. -
Air, Energy, & Mining Pmsion
^ Air, Energy, & Mining PMSion Montana Department of Environmental Quality To All Potential Applicant(s) RE: Application Information Packet for Single and Multiple Hard Rock Mine Sites Dear Applicant, An operating permit from the Montana Department of Environmental Quality(DEQ) Hard Rock Mining Bureau(HRMB) is required for those that plan to mine and disturb more than five acres, as defined under the Montana Metal Mine Reclamation Act. Enclosed is an information packet. Applications may be submitted to include multiple sites under one operating permit, but the following restrictions must be met: • There would be no impact to any wetland, surface or groundwater; • There would be no constructed impoundment or reservoirs used in the operation; • There would be no potential to produce acid or other pollutive drainage from the pit; • There would be in impact to threatened and endangered species; and • There would be no impact to significant historic or archaeological features. If these requirements cannot be met an individual operating permit would be required for each site. The information packet includes: 1. Operating Permit Application form 2. Application process flow chart 3. Montana Hard Rock & Placer Mining Requirements 4. Guidelines for gathering and reporting baseline data 5. Additional permits or licenses that may be required 6. Operating permit summary Please mail a signed original copy and an electronic copy of the Application form, plus a $500 application fee (checks made payable to "MT DEQ-HRMB")to: DEQ-HRMB Attn: Operating Permit Supervisor PO Box 200901 Helena, MT 59620-0901 The submittal needs to include a mine and reclamation plan as described in the attached information packet. -
Gold, Platinum and Diamond Placer Deposits in Alluvial Gravels, Whitecourt, Alberta Special Report 89
Special Report 89 Gold, Platinum and Diamond Placer Deposits in Alluvial Gravels, Whitecourt, Alberta Special Report 89 Gold, Platinum and Diamond Placer Deposits in Alluvial Gravels, Whitecourt, Alberta G.G. Mudaliar1, J.P. Richards1 and D.R Eccles2 1 Department of Earth & Atmospheric Sciences, University of Alberta 2 Alberta Geological Survey May 2007 ©Her Majesty the Queen in Right of Alberta, 2007 ISBN 0-7785-3851-6 The Alberta Geological Survey and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness, or reliability of this publication. Any digital data and software supplied with this publication are subject to the licence conditions (specified in 'Licence Agreement for Digital Products'"). The data are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release does not constitute endorsement by the Alberta Geological Survey of any manufacturer's product. This product is an EUB/AGS Special Report; the information is provided as received from the author and has had minimal editing for conformity to EUB/AGS standards. When using information from this publication in other publications or presentations, due acknowledgment should be given to the Alberta Geological Survey/Alberta Energy and Utilities Board. The following reference format is recommended: Mudaliar, G.G., Richards, J.P. and Eccles, D.R. (2007): Gold, platinum and diamond placer deposits in alluvial gravels, Whitecourt, Alberta; Alberta Energy and Utilities Board, EUB/AGS, SPE 089, 24 p. -
Mining & Milling
Mining & Milling The Story of Park City 8TH GRADE SCIENCE CURRICULUM © Park City Historical Society & Museum All Rights Reserved These materials and the photographs are copyrighted by the Park City Historical Society & Museum. Permission is granted to make photocopies and transparencies of the handouts as directed in the lesson plans. Please contact the Park City Historical Society & Museum for permission to use materials for any other purpose. This program was developed by Johanna Fassbender, Curator of Education With special thanks to Richard Pick Keith J. Droste Thanks also to Courtney Cochley Josephine Janger David Hedderly-Smith James L. Hewitson Tom Barber Sydney Reed Park City Rotary Çlub Summit County Recreation, Arts and Parks Program The Underdog Foundation Dear Teachers, We hope that you will enjoy the 8th grade science curriculum and use it with your students to teach major physical and chemical con- cepts. Each lesson is keyed to the Utah Science Core Curriculum to help you deliver science instructions. Our curriculum includes history sections to provide the students with the appropriate background knowledge and get them excited about their hometown of Park City which was the unique setting for the science of mining and mineralo- gy. This goes along with our belief in an interdisciplinary approach which provides students with a more holistic knowledge and will empower them in future research projects. Almost all of the lesson plans allow for adjustments and provide you with different options, depending on the progress of your class. You can teach the entire curriculum within three weeks, or you can extend it to six weeks by slowing down the pace and reducing the workload. -
Colloform High-Purity Platinum from the Placer Deposit
Colloform high-purity platinum from the placer deposit of Koura River (Gornaya Shoriya, Russia) Nesterenko G.V.1, Zhmodik S.M.1,2, Airiyants E.V.1, Belyanin D.K.1,2, Kolpakov V.V.1, Bogush A.A.1,3,* 1V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 2Novosibirsk State University, Novosibirsk 630090, Russia 3Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK *Corresponding author: A.A. Bogush, E-mail: [email protected] Abstract A microinclusion of colloform high-purity platinum in a grain of platinum-group minerals (PGM) from the alluvial gold-bearing placer deposit in the south of Western Siberia (Russia) was detected and characterized for the first time. It is different in composition, texture, and conditions of formation from high-purity platinum of other regions described in the literature. The main characteristics of investigated high-purity platinum are colloform-layered texture, admixture of Fe (0.37-0.78 wt.%), and paragenesis of Cu-rich isoferroplatinum, hongshiite, and rhodarsenide. The PGM grain with high-purity platinum is multiphase and heterogeneous in texture. It is a product of intensive metasomatic transformation of Cu-rich isoferroplatinum (Pt3(Fe0.6Cu0.4)). The transformation was carried out in two stages: 1 - copper stage including three substages (Cu-rich isoferroplatinum, copper platinum and hongshiite); and 2 - arsenic (rhodarsenide). The formation of high-purity platinum was separated in time from the formation of isoferroplatinum and was carried out by precipitation from postmagmatic solutions. Keywords: platinum-group elements (PGE), platinum-group minerals (PGM), high-purity platinum, Cu-rich isoferroplatinum, hongshiite, alluvial placer, Gornaya Shoriya Introduction High-purity platinum was discovered in the gold-bearing placer deposit of Koura River situated in Gornaya Shoriya (south-western Siberia, Russia, Fig. -
Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia
minerals Article Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia Andrei Y. Barkov 1,*, Gennadiy I. Shvedov 2, Sergey A. Silyanov 2 and Robert F. Martin 3 1 Research Laboratory of Industrial and Ore Mineralogy, Cherepovets State University, 5 Lunacharsky Avenue, 162600 Cherepovets, Russia 2 Institute of Mining, Geology and Geotechnology, Siberian Federal University, 95 Avenue Prospekt im. gazety “Krasnoyarskiy Rabochiy”, 660025 Krasnoyarsk, Russia; [email protected] (G.I.S.); [email protected] (S.A.S.) 3 Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC H3A 0E8, Canada; [email protected] * Correspondence: [email protected]; Tel.: +7-8202-51-78-27 Received: 21 May 2018; Accepted: 5 June 2018; Published: 12 June 2018 Abstract: We describe assemblages of platinum-group minerals (PGM) and associated PGE–Au phases found in alluvium along the River Bolshoy Khailyk, in the western Sayans, Russia. The river drains the Aktovrakskiy ophiolitic complex, part of the Kurtushibinskiy belt, as does the Zolotaya River ~15 km away, the site of other placer deposits. Three groups of alloy minerals are described: (1) Os–Ir–Ru compositions, which predominate, (2) Pt–Fe compositions of a Pt3Fe stoichiometry, and (3) Pt–Au–Cu alloys, which likely crystallized in the sequence from Au–(Cu)-bearing platinum, Pt(Au,Cu), Pt(Cu,Au), and PtAuCu2, to PtAu4Cu5. The general trends of crystallization of PGM appear to be: [Os–Ir–Ru alloys] ! Pt3Fe-type alloy (with inclusions of Ru-dominant alloy formed by exsolution or via replacement of the host Pt–Fe phase) ! Pt–Au–Cu alloys. -
Significant Metalliferous Lode Deposits and Placer Districts of Alaska
Significant Metalliferous Lode Deposits and Placer Districts of Alaska By WARREN J. NOKLEBERG, THOMAS K. BUNDTZEN, HENRY C. BERG, DAVID A. BREW, DONALD GRYBECK, MARK S. ROBINSON, THOMAS E. SMITH, and WARREN YEEND U.S. GEOLOGICAL SURVEY BULLETIN 1786 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1987 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-PublicationData Significant metalliferous lode deposits and placer districts of Alaska. U.S. Geological Survey Bulletin 1786 Bibliography Supt. of Docs. No.: 1 19.3:1786 1. Placer deposits-Alaska. 2. Ore deposits-Alaska. I. Nokleberg, Warren J. II. Series. QE75.B9 No. 1786 557.3 s 87-600165 [TN24.A4] [553'.13'09798] COVER Mill buildings at Kennecott, Alaska. The Kennecott district Cu-Ag mines in the Wrangell Mountains were some of the principal sources of copper in North America from 1913 to 1938. See deposit description for Kennecott district (number 30 for southern Alaska). Copyrighted drawing used by permission of Gail Niebrugge, artist, Glennallen, Alaska. PREFACE This report is a compilation of the signifi- geology. The unpublished data were contributed cant metalliferous lode deposits and placer by mineral deposit and regional geologists in districts of Alaska, and is a comprehensive data private industry, universities, the U.S. Geo- base for a companion article on the metallogene- logical Survey, the Alaska Division of Geologi- sis and major mineral deposits of Alaska that cal and Geophysical Surveys, the U.S.