Feeding Practices for Recirculating Aquaculture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan -
Fishery Basics – Seafood Markets Types of Fishery Products
Fishery Basics – Seafood Markets Types of Fishery Products Fish products are highly traded and valuable commodities around the world. Seafood products are high in unsaturated fats and contain many proteins and other compounds that enhance good health. Fisheries products can be sold as live, fresh, frozen, preserved, or processed. There are a variety of methods to preserve fishery products, such as fermenting (e.g., fish pastes), drying, smoking (e.g., smoked Salmon), salting, or pickling (e.g., pickled Herring) to name a few. Fish for human consumption can be sold in its entirety or in parts, like filets found in grocery stores. The vast majority of fishery products produced in the world are intended for human consumption. During 2008, 115 million t (253 billion lbs) of the world fish production was marketed and sold for human consumption. The remaining 27 million t (59 billion lbs) of fishery production from 2008 was utilized for non-food purposes. For example, 20.8 million t (45 billion lbs) was used for reduction purposes, creating fishmeal and fish oil to feed livestock or to be used as feed in aquaculture operations. The remainder was used for ornamental and cultural purposes as well as live bait and pharmaceutical uses. Similar to the advancement of fishing gear and navigation technology (See Fishing Gear), there have been many advances in the seafood-processing sector over the years. Prior to these developments, most seafood was only available in areas close to coastal towns. The modern canning process originated in France in the early 1800s. Cold storage and freezing plants, to store excess harvests of seafood, were created as early as 1892. -
An Overview of the Cuban Commercial Fishing Industry and Implications to the Florida Seafood Industry of Renewed Trade1 Chuck Adams2
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. An Overview of the Cuban Commercial Fishing Industry and Implications to the Florida Seafood Industry of Renewed Trade1 Chuck Adams2 Abstract Introduction The Cuban seafood industry has long been an The commercial fishing industry of Cuba is an important supplier of certain high-valued seafood important source of fisheries products originating products for the world market. In addition, the from the Gulf of Mexico and Caribbean region. Cuba industry has historically played an important role in historically fielded a large distant-water fleet that was providing seafood products for domestic markets in engaged in the harvest of subtropical and temperate Cuba. Assistance from the Soviet Union led to the fisheries stocks. Cuba has more recently played an development of a large distant-water fleet, which increasingly important role in the world market for produced large volumes of low-valued seafood seafood products, particularly for high-valued finfish products. The nearshore fleets continue to produce and shellfish. However, given the evolution in the high-valued species for export markets. The loss of global political environment of the early 1990s, Soviet assistance, following the break up of the Cuba's commercial fishing industry has changed Soviet Union, has dramatically affected the manner dramatically. As a result, production emphasis has in which the Cuban fishing industry is conducted. shifted from high-volume, low-valued pelagic stocks More recently, management of nearshore fleets, to high-valued nearshore fisheries, aquaculture, and associated service industries, and processing facilities shrimp culture. -
Microencapsulated Diets to Improve Bivalve Shellfish Aquaculture For
Global Food Security 23 (2019) 64–73 Contents lists available at ScienceDirect Global Food Security journal homepage: www.elsevier.com/locate/gfs Microencapsulated diets to improve bivalve shellfish aquaculture for global food security T ∗ David F. Willer , David C. Aldridge Department of Zoology, The David Attenborough Building, University of Cambridge, Pembroke Street, Cambridge, CB2 3QY, United Kingdom ARTICLE INFO ABSTRACT Keywords: There is a global need to sustainably increase aquaculture production to meet the needs of a growing population. Microencapsulated diet Bivalve shellfish aquaculture is highly attractive from a human nutrition, economic, environmental and eco- Bivalve shellfish system standpoint. However, bivalve industry growth is falling behind fish aquaculture due to critical problems Food security in the production process. Feed defects, disease, and quality issues are limiting production. New advances in Aquaculture microencapsulation technology have great potential to tackle these problems. Microencapsulated diets could Sustainable efficiently deliver high-quality nutrients, disease control agents, and quality enhancers to bivalves. Microencapsulation has the potential to drive improvements in bivalve production, reduce production costs, enhance human nutrition and minimise impacts on the environment. 1. The global importance of bivalve shellfish aquaculture fastest growing food sector (FAO, 2017; Jacquet et al., 2017; Tacon and Metian, 2013; Troell et al., 2014). However, like terrestrial meat pro- 1.1. Bivalves a strategic food source to sustainably feed a growing global duction aquaculture is currently expanding in an unsustainable way population (Godfray et al., 2010; Jacquet et al., 2017). Production quantity of carnivorous species such as salmon, catfish, and shrimp has ballooned, Over 800 million people worldwide are hungry, one billion have growing 84% over the last decade, and today salmon is the largest inadequate protein intake, and an even greater number suffer from single commodity in aquaculture (FAO, 2017, 2016). -
Resources for Fish Feed in Future Mariculture
Vol. 1: 187–200, 2011 AQUACULTURE ENVIRONMENT INTERACTIONS Published online March 10 doi: 10.3354/aei00019 Aquacult Environ Interact OPENPEN ACCESSCCESS AS I SEE IT Resources for fish feed in future mariculture Yngvar Olsen* Trondhjem Biological Station, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway ABSTRACT: There is a growing concern about the ability to produce enough nutritious food to feed the global human population in this century. Environmental conflicts and a limited freshwater supply constrain further developments in agriculture; global fisheries have levelled off, and aquaculture may have to play a more prominent role in supplying human food. Freshwater is important, but it is also a major challenge to cultivate the oceans in an environmentally, economically and energy- friendly way. To support this, a long-term vision must be to derive new sources of feed, primarily taken from outside the human food chain, and to move carnivore production to a lower trophic level. The main aim of this paper is to speculate on how feed supplies can be produced for an expanding aquaculture industry by and beyond 2050 and to establish a roadmap of the actions needed to achieve this. Resources from agriculture, fish meal and fish oil are the major components of pellet fish feeds. All cultured animals take advantage of a certain fraction of fish meal in the feed, and marine carnivores depend on a supply of marine lipids containing highly unsaturated fatty acids (HUFA, with ≥3 double bonds and ≥20 carbon chain length) in the feed. The availability of HUFA is likely the main constraint for developing carnivore aquaculture in the next decades. -
Fishery Bulletin/U S Dept of Commerce National
CHANGES IN CATCH AND EFFORT IN THE ATLANTIC MENHADEN PURSE-SEINE FISHERY 1940-68 WILLIAM R. NICHOLSON' ABSTRACf The catch, number of vessel weeks, and catch per vessel week in the Atlantic menhaden fishery increased during the 1950's. During this period fishing methods improved and the efficiency of vessels increased. Improvements included use of airplanes for spotting schools, aluminum purse boats, nylon nets, power blocks, and fish pumps for catching and handling fish, and larger and faster carrier vessels that could range farther from port. The catch and catch per vessel week began declining north of Chesapeake Bay in the early 1960's. By 1966, fish north of Chesapeake Bay had become so scarce that plants either closed or operated far below their capacity. In Chesapeake Bay the number of vessel weeks increased, and the catch and catch per vessel week decreased through the early and mid 1960's. Variations in catch, effort, and catch per unit of effort showed no trends in the South Atlantic. The annual' mean IIumber of purse-seine sets per day varied in different areas and ranged from about 2.0 to 4.5. The annual mean catch per set ranged from about 11 to 25 metric tons. Catch and effort statistics are important in eval BRIEF HISTORY OF THE FISHERY uating and managing any fishery. They may be used in measuring changes in actual or apparent Atlantic menhaden are found from central abundance, estimating population sizes and mor Florida to Nova Scotia and at one time or an tality rates, and determining optimum fishing other have been exploited over most of this rates. -
The Benefits of Fish Meal in Aquaculture Diets1 R.D
FA122 The Benefits of Fish Meal in Aquaculture Diets1 R.D. Miles and F.A. Chapman2 Introduction sustainable, managed, and monitored fish stocks, reducing the possibility of over-fishing. The supply is presently Fishmeal is recognized by nutritionists as a high-quality, stable at 6.0 to 6.5 million tons annually. Approximately very digestible feed ingredient that is favored for addition 4 to 5 tons of whole fish are required to produce 1 ton of to the diet of most farm animals, especially fish and shrimp. dry fishmeal. Peru produces almost one-third of the total Fishmeal carries large quantities of energy per unit weight world fishmeal supply. Other principal fishmeal-producing and is an excellent source of protein, lipids (oils), minerals, countries are Chile, China, Thailand, U.S.A., Iceland, and vitamins; there is very little carbohydrate in fishmeal. Norway, Denmark, and Japan (Table 1). Major groups of industrial fish rendered into fishmeal are anchovies, her- What Is Fishmeal rings, menhaden, sardines, shads, and smelts (Table 2). Fishmeal is a generic term for a nutrient-rich feed ingredi- ent used primarily in diets for domestic animals, sometimes Fish can be processed at sea in factory ships or caught and used as a high-quality organic fertilizer. Fishmeal can be stored until they are transported to a processing facility made from almost any type of seafood but is generally on the coast. Fish is a highly perishable raw material, and manufactured from wild-caught, small marine fish that spoilage will occur if it is not processed in a timely manner. -
Practical Channel Catfish Brood Stock – Selection and Management
Practical Channel Catfish Brood Stock-Selection and Management Jesse A. Chappell. Extension Fisheries Specialist, Assistant Professor, Auburn University , Revised 2008 Introduction The economic impact of commercial aquaculture of channel catfish (Ictalurus punctatus) in the southern region exceeds $2.5 billion. A variety of products originating from this culture is marketed in all 50 states as well as internationally. Employment within the primary, secondary and tertiary levels of the industry approaches 10,000 people. For the industry to remain economically competitive, ever-greater efficiencies at all production levels is required. Very early in the value chain is the efficient production of seed-stock, that is, the juveniles required by all production systems for grow-out animals. The selection of adult fish used to produce the seed are the focus of this brief. At least a portion of the success achieved to date by the catfish industry is due to improved genetics from selection from within the original stocks of wild fish. However, to build upon the success of the industry, quality brood fish must be continually selected, maintained in proper sex ratios, fed and conditioned for high quality egg development and ultimately the output of highly viable fry. Reliable production of industrial levels of fry and robust fingerlings will make certain that fingerling pricing will remain stable and will allow grow-out production levels the capability of rising. Selection Channel catfish begin maturing sexually after their second summer of growth. Females generally begin maturing ahead of males by at least 6 months. While some females are mature during their third summer, most males are not. -
Existing Fish Diet Formulation Practice and Its Limitation for Aquaponics System
Review article Title: Existing fish diet formulation practice and its limitation for aquaponics system By: Abebe Tadesse [email protected] Introduction Aquaculture is farming of aquatic organisms including fish (principal component), crustaceans, mollusks etc… in controlled or semi-controlled manner with human intervention for increased yield for human consumption either as dietary, ecological or as an ingredient for other products. It is characterized by higher production capacity coupled with environmental problem due to higher discharge of nutrient loaded waste to the environment. The major constitutes of these waste water are nitrogen, calcium and phosphorus. However, these elements are major nutrient constitute of hydroponic production systems. Hydroponic is a technology which enables to increase plant production by supplementing the major nutrient requirement of the plant. The major issue on hydroponics dissemination to developing world is its nutrient solution preparation cost next to installation cost. Hence, the ancient technology which utilized by Azetic people believed to be a possible alternative for aquaculture and hydroponic existing technical and economical issue and recently called as Aquaponics. Aquaponics combine aquaculture and hydroponic systems and enable to produce two crops (fish and plant) with a single input (fish feed) in closed confinement or open system without hampering the yield potential of independent systems (aquaculture and hydroponics). Fish (aquaculture) deliver nutrients for the plant (hydroponic) and plants filter the water for the fish (Rakocy 2012). Hence, the waste water treatment cost will decrease and the production level will increase. The major nutrient input for the system is fish feed and it is expected that the feed will contain sufficient nutrients in available form for best growth of fish and plants. -
Mariculture and Food Production: Sustaining the Promise
POSITION PAPER 2012 MARICULTURE AND FOOD PRODUCTION SUSTAINING THE PROMISE Naveen Namboothri1,2, C.M. Muralidharan3 and Aarthi Sridhar1,4 1Dakshin Foundation, Bengaluru 2Centre for Ecological Studies, Indian Institute of Science, Bengaluru 3Consultant, Food and Agriculture Organization, Bangkok 4Jawaharlal Nehru University, New Delhi Feeding the world with dwindling ranks second in world aquaculture production (see figure on stocks Pages 2-3), with an estimated production of 3,791,921 tonnes per annum. The origins of aquaculture date back more than 4,000 Marine fish stocks in many parts of the world years1. There is evidence that Egyptians cultured fish as early have been exploited beyond recovery, but this as 2500 BC2. The Chinese have a rich tradition of aquaculture has done little to slacken an increasing global practices that can be traced back to 2000 BC. Contemporary demand for sea food. These markets compel practices in this field are a result of the refinement and the producers throughout the world to fish out adaptation of these ancient experiments with aquaculture. even smaller sizes, effectively endangering reproducing populations of several commercial The tradition of aquaculture in India can be traced back to 300 species. Sustainability and equity in fisheries has BC, and certain practices involving the integration of paddy frequently been sacrificed in favour of meeting and fish farming techniques are seen in their more traditional this growing desire for seafood. Declining wild manifestations even today in Kerala and West Bengal. Even fish catch, increasing input costs of fishing though these traditional production methods were considered operations, and the unrelenting demand for low-technology, produced lesser quantities, and were often marine products has prompted an interest in low cost and less intensive, these traditional forms of fish aquaculture. -
Plant and Pest Management in Aquaponics D
PLANT AND PEST MANAGEMENT IN AQUAPONICS D. Allen Pattillo • Aquaculture Extension Specialist Department of Natural Resource Ecology and Management • Enhanced Biofiltration >>Surface Area • Nutrient Uptake Ammonia & Nitrate • Additional Revenue Stream >75% of total revenue • Where the plants are grown • Must maintain moisture and high oxygen concentrations for plant roots • Options: – Floating raft – Flood and drain – Nutrient film technique – Towers – Aeroponics • Deficiencies • Nutrients • Light • Moisture • Temperature Stress • Insect Predation • Food Safety Yellowing, reduced growth rates, and reduced flavor quality can be caused by nutrient imbalances Deficiencies related to source water and feed additives • For a raft hydroponic system the optimum ratio varies from • For example: – 1,000 g feed per day will fertilize 16.7 m2 for a feeding rate ratio of 60 g/m2/day. • Higher protein = higher nitrogen – Protein is generally ~6.25% nitrogen – Nitrogen affects plant growth • Leafy greens use more N • Fruiting plants need more K • Protein source relates to sustainability – Fish meal vs. plant protein meals Feed = Fertilizer • Multiple rearing tanks, staggered production – four tilapia rearing tanks – Stock & Harvest every 6 weeks – All-in/all-out production (per tank) Plants provide critical filtration!! Single rearing tank with multiple size groups of plants • 6-week growout time for plants will require • Harvest plants weekly or bi-weekly • restock equal number of seedlings SOW SEEDS Week 1 Week 2 TRANSPLANT Week 3 Week 4 Week 5 Week 6 HARVEST Surface Area Living Space for the Nitrifying Bacteria Competition for that Space Food aquaponicsplan.com ammonia or nitrite > 0.07 mg / L Good Living Conditions Dissolved Oxygen going into the biofilter > 4 mg / L pH 7.2 – 8.8 Alkalinity > 200 mg / L as CaCO3 • The fish, plants and bacteria in aquaponic systems require adequate levels of maximum health and growth. -
AP42 Chapter 9 Reference
Background Report Reference AP-42 Section Number: 9.13.1 Background Chapter: 2 Reference Number: 3 Title: "Developments in Fish Handling and Processing: An Engineering Perspective" in Proceedings of the Institute for Mechanical Engineers J.H. Merritt 1989 AP42 Section ?& I Reference - Report Sect. 2 12s Reference __s Developments in fish handling and processing : an engineering perspective J H Merritt, BE, MSc Canadian Institute of Fisheries Technology, Technical University of Nova Scotia, Halifax, Canada The engineer faces new challenges brought about by demandsror improvedfishery products and the need to make maximum use 01 available resources. In recent years, a/er a period of great expansion, important advances have been made in the handling and processing offish. The wider application ofmodern techniques will enhance the position offish asfood. 1 INDUSTRIAL TRENDS Table I World fish production and disposition (millions of metric tonnes) Fishing and the manufacture of fishery products are tra- ditional activities, fundamental to the well being and llcms 1960 1970 1980 1986 prosperity of the human race. There have been, Fresh 16.9 19.5 15.7 18.2 however, remarkable changes in recent times. Current Froze" 3.5 9.7 15.9 21.4 Cured 7.5 8. I 11.1 13.5 developments in fish handling and processing can be Canned 3.7 6.2 10.3 11.4 viewed in the light of several trends that have exerted a Other 8.6 26.5 18.4 26.9 strong influence. Such an approach might help towards Catch '40.2 70.0 72.0 91.5 anticipation of future needs and developments.