TOKYO INSTITUTE of TECHNOLOGY Profile 2011-2012

Total Page:16

File Type:pdf, Size:1020Kb

TOKYO INSTITUTE of TECHNOLOGY Profile 2011-2012 TOKYO INSTITUTE OF TECHNOLOGY Profile 2011-2012 TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE OF TECHNOLOGY Symbol Mark The seal of Tokyo Institute of Technology was designed in 1948 by Mr. Shinji Hori, then professor at the Tokyo Fine Arts School. The white portion represents the Japanese character [工] which is the first character of “engineering” [工業], and also describes the concept of a window, which is the second character of “school” [学窓]. The black part symbolizes a swallow, and represents the Japanese character [大] which is the first character of “university” [大学]. The design was originally adopted for staff badges and has been used throughout the University ever since. In 1981, at the University’s 100th anniversary, the design was formally adopted as the seal of Tokyo Institute of Technology. On that occasion, then Assistant Professor Ario Tejima of Tokyo University of the Arts, grandson of Prof. Seiichi Tejima, kindly cooperated in refining the design. 東工大 Acronym: Tokyo Tech,TIT, Tokodai , Titech Tokyo Institute of Technology has been shortened to the following in recent years: “Tokyo Tech”, “TIT”, “Tokodai” and “Titech”. School Color In 2004, Tokyo Tech resolved that its school color would be royal blue, the color that stands for advancement and evolution. Tokyo Institute of Technology’s official extracurricular student club, Meister Aircraft for 2010: TSUBAME 2010 Flight distance: 18,556.82 m Winner of the human-powered aircraft distance rally category in the 33rd Japan International Birdman Rally TOKYO INSTITUTE OF TECHNOLOGY Contributing to the World with CONTENTS Science and Technology ORGANIZATION Kenichi Iga President 02 FINANCIAL DATA03 Tokyo Institute of Technology (Tokodai) is a top tier (Making Things) embodies this with its unique hands-on university, leading the world in Science and Technology. As programs that help give shape to ideas, supporting students one of Japan's most reputable institutions of higher learning, to physically create and enjoy the sense of accomplishment UNDERGRADUATE the Institute has undertaken education and research of the that comes with building actual things. COURSES05 highest quality since 1881. Last year’s 130th anniversary Other noteworthy projects include the new upgrade of our was a perfect reminder to refocus on our three pillars: supercomputer "TSUBAME," to Version 2.0, the fastest in People, Research and Contribution. Through the nurturing of Japan, and ranked 4th in the Top 500. This new machine was GRADUATE creative people at the top of their scientific fields, and the also awarded 2nd place in the Top Green 500. COURSES06 promotion of cutting edge research, we always strive to We established the Global Edge Institute to train young contribute in meaningful ways to society. researchers from all over the world, and expanded joint The Institute has three undergraduate schools, six programs with overseas partner universities. The new library INSTITUTE, graduate schools, five leading laboratories and multiple on Ookayama Campus and a new building in Suzukake-dai LABORATORIES, AND CENTERS09 research and education centers producing graduates who are being built to further improve collaboration. The recently excel in conducting research that meets the demands of opened alumni hall (Tokodai Kuramae Kaikan) is also a INSTITUTE LIBRARIES, society and industry. Nothing gives us greater pleasure than testament to the strength and importance of our alumni MUSEUM, TOKYO TECH HIGH to be the first preference when it comes to employers network as a channel to promote fruitful exchanges with SCHOOL OF SCIENCE AND TECHNOLOGY,15 seeking to recruit top engineers, or students choosing a society. AND ACCOMMODATIONS career in science and technology. Our faculties and Tokyo Institute of Technology is open to the world. It is a departments are active in the most advanced fields and matter of great pride that our research and educational STAFF/STUDENT occupy an important position in the global academic activities have been given gradually higher ratings in NUMBERS16 community, thanks to their internationally recognized international surveys over the years, for example, being research. ranked 57th in the QS 2011 World University Rankings, and We have initiated nine projects so far with the support of 20th for Engineering/Technology. We will continue to be ENROLLMENT the Global Center of Excellence (G-COE) program, pioneers at the frontiers of technology, ready to meet the AND GRADUATION21 sponsored by the Ministry of Education, Culture, Sports, demands of an ever-changing world. Science and Technology (MEXT), which will further enhance the functions of research and education in the On March 11, 2011, Japan suffered the Great East Japan NEW FEATURES OF RESEARCH university. The Institute also secured funding in 2005 as a Earthquake. PROGRAMS23 super COE program from MEXT and established an In order to overcome the hardship, Tokyo Institute of Technology Integrated Research Institute (IRI), which aggregates and should contribute by offering our highest capacity of science disseminates knowledge across departments in order to and technology. UNIVERSITY/ create solutions for the future problems of society, from INDUSTRY RELATIONS26 energy security to the effects of burgeoning medical costs. This project was a success and five research laboratories took up its function. NEW FEATURES The Institute is also active through many educational OF EDUCATION PROGRAMS29 programs. Seven projects were launched as part of the support program for improving graduate school education by MEXT. The Productive Leader Incubation Platform (PLIP) INTERNATIONAL and Gender Equality Center began life in 2008. Emphasis on COLLABORATION32 creativity as part of our educational philosophy has produced a great number of famous graduates, including Dr. Hideki Shirakawa, the 2000 Nobel Laureate in Chemistry. One key mission of the Institute is indeed to foster creativity in CAMPUS MAP38 our students, but creativity built on a comprehensive grasp of the fundamentals of knowledge. The center for Monotsukuri Main Building (Birthplace of the world's first quartz clock) HISTORY42 MEMBERS OF THE BOARD, COMMITTEES, AND COUNCIL45 1 TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTEORGANIZATION OF TECHNOLOGY Administration As of October 24, 2011 Auditors Executive Vice Presidents ORGANIZATION Planning Office Board SHIMIZU, SUZUKI, OKADA, Evaluation Office of Kiyoshi Yasutaka Motoyuki Directors Financial Management Office University Management Center Internal President MISHIMA, Educational Planning Office Audit Office Yoshinao International Office Research Strategy Office IGA, SUZUKI, General Safety Management Center Compliance Keisuke Office Kenichi Office of Industry Liaison Information Infrastructure Management Office IIZUKA, Center for Public Information President Hisao Nomination Center for University Communications and Coordination Committee Administrative Departments YAMADA, Michio Admission Office Educational Management Gender Equality Center and Committee Research Director-General th Council Office for the 130 Anniversary Project Research Project Support Center Energy Conservation Promotion Office Deans & University Contents Utilization Center Directors Conference Admission Center Technical Department Academics As of February 1, 2012 Global Edge Institute Productive Leader Incubation Platform Inter-departmental Organization ■ Career Advancement Professional School for Informatics ■ Inter-departmental Organization for Environment and Energy Global Scientific Information and Computing Center Organization ■ Organization for Life Design and Engineering Research Center for Educational Facilities Inter-departmental Educational Research Volcanic Fluid Research Center International Student Center ■ Chemical Resources Laboratory - Resources Recycling Process Laboratory Quantum Nanoelectronics Research Center ■ Precision and Intelligence Laboratory - Photonics Integration System Research Center Foreign Language Research and Teaching Center - Secure Device Research Center ■ Materials and Structures Laboratory Center for Biological Resources and Informatics - Secure Materials Center Center Integrated Center for Liberal Arts ■ Research Laboratory for Nuclear Reactors Laboratory Integrated - International Nuclear Research Centers Research Institute Health Service Centers (Ookayama & Suzukakedai) Cooperation Center Frontier Research Solutions Research Research Institute ■ Imaging Science and Engineering Laboratory Radiation Research and Management Center And other 37 Facilities Research and Service ■ Graduate School of Science and Engineering ■ Graduate School of Bioscience and Biotechnology ■ Interdisciplinary Graduate School of Science and ■ School of Science Engineering ■ Graduate School of Information Science and ■ School of Engineering Engineering ■ Graduate School of Decision Science and ■ School of Bioscience Technology Schools and Biotechnology Graduate Schools ■ Graduate School of Innovation Management Graduate Schools Undergraduate Attached High School Institute Libraries Museum of Science and Technology 2 TOKYO INSTITUTE OF TECHNOLOGY FINANCIAL DATA Budget FY2011 Revenue (Unit: million yen) Expenditure (Unit: million yen) Sponsored Funds consisting of grants and donations Sponsored Funds consisting of grants and donations Donation for Research 886 Donation for Research 886 Sponsored/ Collaborative Research 5,176 Sponsored/ Collaborative Research 5,176 Grants 7,026 Grants 7,026 FINANCIAL DATA FINANCIAL 5.7% 5.7% Budget for Facilities
Recommended publications
  • Astronomija, Kosmosas, Inovacijos (50 Užduočių Uždavinynas, Klausimai/Atsakymai)
    SPACEOLYMP EKA sutartis Nr. 4000115691/15/NL/NDe Astronomija, Kosmosas, Inovacijos (50 užduočių uždavinynas, Klausimai/Atsakymai) Uždavinyne misijų ir jų etapų laikas nurodomas pagal Pasaulinį koordinuotąjį laiką arba UTC (angl. Coordinated Universal Time) 1 SPACEOLYMP EKA sutartis Nr. 4000115691/15/NL/NDe TURINYS Įvadas ......................................................................................................................... F 8 klasė A-8.1 ......................................................................................................................8.1 A-8.2 .....................................................................................................................8.2 A-8.3 .....................................................................................................................8.3 A-8.4 .....................................................................................................................8.4 A-8.5 .....................................................................................................................8.5 A-8.6 .....................................................................................................................8.6 A-8.7 .....................................................................................................................8.7 A-8.8 .....................................................................................................................8.8 A-8.9 .....................................................................................................................8.9
    [Show full text]
  • Pos(MULTIF15)001 the Impact of Space Exper- (Giovannelli & Sabau-Graziati, 2004) † ∗ [email protected] [email protected] Speaker
    Multifrequency Astrophysics: An Updated Review PoS(MULTIF15)001 Franco Giovannelli∗† INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] In this paper – a short updated version of our review paper about "The impact of space exper- iments on our knowledge of the physics of the Universe (Giovannelli & Sabau-Graziati, 2004) (GSG2004) and subsequent updating (Giovannelli & Sabau-Graziati, 2012a, 2014a) – we will briefly discuss old and new results obtained in astrophysics, that marked substantially the re- search in this field. Thanks to the results, chosen by us following our knowledge and feelings, we will go along different stages of the evolution of our Universe discussing briefly several examples of results that are the pillars carrying the Bridge between the Big Bang and Biology. We will remark the importance of the joint venture of ‘active physics experiments’ and ‘passive physics experiments’ ground– and space–based either big either small in size that, with their results, are directed towards the knowledge of the physics of our universe. New generation exper- iments open up new prospects for improving our knowledge of the aforementioned main pillars. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop 25-30 May 2015 Palermo, Italy ∗Speaker. †A footnote may follow. ⃝c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • What We Learned from the Tokyo Tech 50 Kg-Satellite "TSUBAME"
    SSC17-WK-41 What we learned from the Tokyo Tech 50 kg-satellite “TSUBAME” Yoichi YATSU, Nobuyuki KAWAI Dept. of Physics, School of Science, Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro, Tokyo 152-8551, JAPAN; +81-3-5734-238 [email protected] Masanori MATSUSHITA, Shota KAWAJIRI, Kyosuke TAWARA, Kei Ohta, Masaya KOGA, Saburo MATUNAGA Dept. of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro, Tokyo 152-8551, JAPAN Shin’ichi KIMURA Dept. of Electrical Engineering, Tokyo University of Science 2641, Yamazaki, Noda, Chiba 278-8510, JAPAN ABSTRACT A 50 kg-class micro satellite “TSUBAME” was launched in 2014. After a critical phase, the receiving sensitivity of the RF system on board the satellite dropped significantly and the way for command uplink was lost. A thorough investigation was conducted after the failure to determine the causes, based on the obtained telemetry and reproductive experiments in lab room. The detailed data analysis revealed many other malfunctions had occurred. In parallel with the investigation of the fault points, we also classified these malfunctions into several categories in terms of development phase, technological aspects, and management. 1. INTRODUCTION This was the fourth project for Tokyo Tech and therefore it was designed and managed based on the knowledge During the last 10 years, small satellites have become acquired from the previous CubeSats projects, CUTE-I one of the most exciting topic in space technology. At (2003~), Cute-1.7+APD (2006~2008), Cute-1.7+APD II the beginning, these small satellites were mostly aimed (2008~).
    [Show full text]
  • Japan's Space Program
    Notes de l’Ifri Asie.Visions 115 Japan’s Space Program Shifting Away from “Non-Offensive” Purposes? Lionel FATTON July 2020 Center for Asian Studies The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental, non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Taking an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. The opinions expressed in this text are the responsibility of the author alone. ISBN: 979-10-373-0208-3 © All rights reserved, Ifri, 2020 How to cite this publication: Lionel Fatton, “Japan’s Space Program: Shifting Away from “Non-Offensive” Purposes?”, Asie.Visions, No. 115, Ifri, July 2020. Ifri 27 rue de la Procession 75740 Paris Cedex 15 – FRANCE Tel. : +33 (0)1 40 61 60 00 – Fax : +33 (0)1 40 61 60 60 Email: [email protected] Website: Ifri.org Author Lionel Fatton is Assistant Professor of International Relations at Webster University Geneva. He is also Research Collaborator at the Research Institute for the History of Global Arms Transfer, Meiji University, Tokyo, and Adjunct Fellow at The Charhar Institute, Beijing. His research interests include international and security dynamics in the Asia-Pacific, China- Japan-US relations, Japan’s security policy, civil-military relations and neoclassical realism. Lionel holds a PhD in Political Science, specialization International Relations, from Sciences Po Paris and two MA in International Relations from Waseda University in Tokyo and the Graduate Institute of International and Development Studies in Geneva.
    [Show full text]
  • Pos(APCS2016)001 the Impact of the Space Ex- " Published in 2004 by the Kluwer Accretion Processes in Cosmic Sources: † ∗
    Accretion Processes in Astrophysics: The State of Art PoS(APCS2016)001 Franco Giovannelli∗† INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] In this review paper we will discuss about the accretion processes that regulates the growth and evolution of all objects in the Universe. We will make a short cruise discussing the accretion in Young Stellar Objects (YSOs), in Planets (Pts), in White Dwarfs (WDs), in Neutron Stars (NSs), and in Black Holes (BHs) independent of their masses. In this way we will mark the borders of the arguments discussed during this workshop on Accretion Processes in Cosmic Sources: Young Stellar Objects, Cataclysmic Variables and Related Objects, X-ray Binary Systems, Active Galactic Nuclei. This paper gets information from updated versions of the book "The Impact of the Space Ex- periments on Our Knowledge of the Physics of the Universe" published in 2004 by the Kluwer Academic Publishers, reprinted from the review paper by Giovannelli, F. & Sabau-Graziati, L.: 2004, Space Sci. Rev. 112, 1-443 (GSG2004), and subsequent considered lucubrations. The review is a source of a huge amount of references. Thus, who wants to enter in details in one of the discussed arguments can find an almost exhaustive list of specific references. Accretion Processes in Cosmic Sources "APCS2016" 5-10 September 2016, Saint Petersburg, Russia ∗Speaker.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Conceptual design of a wide-field near UV transient survey in a 6U CubeSat Yoichi Yatsu, Toshiki Ozawa, Kenichi Sasaki, Hideo Mamiya, Nobuyuki Kawai, et al. Yoichi Yatsu, Toshiki Ozawa, Kenichi Sasaki, Hideo Mamiya, Nobuyuki Kawai, Yuhei Kikuya, Masanori Matsushita, Saburo Matunaga, Shouleh Nikzad, Pavaman Bilgi, Shrinivas R. Kulkarni, Nozomu Tominaga, Masaomi Tanaka, Tomoki Morokuma, Norihide Takeyama, Akito Enokuchi, "Conceptual design of a wide-field near UV transient survey in a 6U CubeSat," Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 106990D (6 July 2018); doi: 10.1117/12.2313026 Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/12/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Conceptual design of a wide-field near UV transient survey in a 6U CubeSat Yoichi Yatsua, Toshiki Ozawaa, Kenichi Sasakib, Hideo Mamiyaa, Nobuyuki Kawaia, Yuhei Kikuyab, Masanori Matsushitab, Saburo Matunagab, Shouleh Nikzadd, Pavan Bilgic, Shrinivas R. Kulkarnie, Nozomu Tominagaf, Masaomi Tanakag, Tomoki Morokumah, Norihide Takeyamai, and Akito Enokuchii aDept of Physics, Tokyo Institute of Technology, 2-12-1 Ohkayama, Meguro, Tokyo 152-8551, Japan bDept. of Mechanical Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan dJet Propulsion Laboratory, California Institute of Technology, 4800, Oak Grove Drive, Pasadena, CA 91109, USA cDept. of Aerospace, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA eDivision of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA fDept.
    [Show full text]
  • Observational Aspects of Hard X-Ray Polarimetry
    Observational Aspects of Hard X-ray Polarimetry A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy by Tanmoy Chattopadhyay (Roll No. 11330008) Under the guidance of Dr. Santosh V. Vadawale Associate Professor Astronomy & Astrophysics Division Physical Research Laboratory, Ahmedabad, India. DISCIPLINE OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR 2015 to my family Declaration I declare that this written submission represents my ideas in my own words and where others' ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed. (Signature) (Name: Tanmoy Chattopadhyay) (Roll No: 11330008) Date: November 26, 2015 CERTIFICATE It is certified that the work contained in the thesis titled \Observational Aspects of Hard X-ray Polarimetry" by Mr. Tanmoy Chattopadhyay (Roll No. 11330008), has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. Dr. Santosh V. Vadawale (Thesis Supervisor) Associate Professor, Astronomy & Astrophysics Division Physical Research Laboratory, Ahmedabad, India. Date: i Acknowledgements First and foremost, I would like to express my sincere gratitude to my advisor Dr. Santosh Vadawale for his continuous support in my Ph.D study and related research.
    [Show full text]
  • The First Year of MAXI: Monitoring Variable X-Ray Sources ー 4Th International MAXI Workshop ー Aoyama Gakuin University Tokyo, Japan Tuesday, November 30
    The first year of MAXI: Monitoring variable X-ray sources ー 4th International MAXI Workshop ー Aoyama Gakuin University Tokyo, Japan Tuesday, November 30 9:00 Registration 10:00 10 M. Matsuoka Opening remarks 10:10 30 [O-01] N. Kawai MAXI highlights 10:40 Session 1. Black Hole 10:40 20 [O-02] N. Shaposhnikov Discovery and Monitoring of a new Black Hole Candidate XTE J1752-223 with RXTE 11:00 20 [O-03] P.A. Curran Swift observations of black hole candidate, XTE J1752-223, during outburst 11:20 20 [O-04] K. Yamaoka Suzaku observations of two Galactic black hole candidates XTE J1752-223 and MAXI J1659-152 11:40 30 [O-05] R. Matsumoto Global Magnetohydrodynamic Simulations of State Transitions in Black Hole Candidates 12:10 Lunch / Poster Viewing 14:00 30 [O-06] H. Negoro Outbursts and State Transitions in Black Hole Candidates observed by MAXI 14:30 20 [O-07] J. Kennea A Swift Program of Follow-up Observations of MAXI Galactic Transients 14:50 15 [O-08] P. Gandhi Constraining accretion from coordinated multi- wavelength rapid timing observations of X-ray binaries 15:05 30 [O-09] E. Kuulkers INTEGRAL Galactic bulge monitoring program 15:35 15 [O-10] R.A. Krivonos The 7-year view of the accreting X-ray binaries in the Galaxy with INTEGRAL 15:50 Coffee Break / Poster Viewing 16:20 30 [O-11] C.B. Markwardt Monitoring the Galactic Center with the RXTE PCA 16:50 30 [O-12] E.A. Hays Fermi Observations of Galactic Transients 17:20 15 [O-13] A.
    [Show full text]
  • Development of a Hard X-Ray Focal Plane Compton Polarimeter: a Compact Polarimetric Configuration with Scintillators and Si Photomultipliers
    Noname manuscript No. (will be inserted by the editor) Development of a Hard X-ray focal plane Compton Polarimeter: A compact polarimetric configuration with Scintillators and Si photomultipliers T. Chattopadhyay· S. V. Vadawale· S. K. Goyal· Mithun N. P. S.· A. R. Patel· R. Shukla· T. Ladiya· M. Shanmugam· V. R. Patel· G. P. !"ale Received: date / Accepted: date Abstract X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact ob- jects. Specifically the hard X-ray polarimetry is more rewarding because the sources are e!pected to be intrinsically highly polarized at higher energies. "ith the successful implementation of Hard X-ray optics in NuS%&' it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is li)ely to provide sensitive polarization measurements in hard X-rays with a broad energy band. "e are developing a focal plane hard X- ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. %he scatterer is + mm diameter and ,-- mm long plastic scintillator (.C404) viewed by nor- mal 01T. The photons scattered by the plastic scatterer are collected by a cylindrical array of ,2 CsI(Tl) scintillators (+ mm×+ mm×,+- mm) which are read by Si Photomultiplier (SiP1). Use of the new generation Si01s ensures the compactness of the instrument which is essential for the design of focal plane detectors. %he expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower ener- gies have been discussed in 4,, ,56.
    [Show full text]
  • Thermal Analysis of a Small Satellite in Post- Mission Phase
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 6 Issue 2, February - 2019 Thermal Analysis of a Small Satellite in Post- Mission Phase Ahmed Elhefnawy Ahmed Elweteedy Space Technology Center Military Technical College Cairo, Egypt Cairo, Egypt [email protected] [email protected] Abstract— The objective of satellite thermal perigee altitude of 354 km, an apogee altitude of 1447 control is maintaining all satellite components km and an inclination of 71˚. A passive thermal control within their operational temperature range for system was used, with a small electric heater for the different missions. Most small satellites are battery. Thermal models were developed within both designed to have passive thermal control system. MATLAB/Simulink and ESATAN/ESARAD In this paper the thermal analysis of a small environments. satellite in post-mission phase is introduced. The Dinh [4] illustrated the modeling of a nanosatellite European Student Earth Orbiter (ESEO) satellite using Thermal Desktop software. The satellite has a was chosen in this study. This phase starts at the passive thermal control system. It was designed to end of the operational phase and should last at operate in LEO with altitude of 400 km. least 2 years for the chosen satellite. A finite Bulut et al [5] described the thermal control system difference thermal model using a commercial of Turksat-3U Nanosatellite [6]. The satellite orbit is software “Thermal Desktop” was described for the sun-synchronous orbit with altitude 600 km and selected satellite. Model results verification were inclination 98˚. The satellite has passive thermal performed by varying design variables and seeing control system.
    [Show full text]
  • Environment Monitoring of Fukushima and Chernobyl Areas Using A
    Environment Monitoring of Fukushima and Chernobyl Areas using a Constellation of Earth Observation Microsatellites Japan-Ukraine Cooperation Technical Demonstration Program for Supporting Aftermath Responses to Accidents at Nuclear Power Stations Seiji Yoshimoto, et al. The Un ivers ity o f To kyo November 20th , 2013 [email protected] 2013-1117 1 Fukushima and Chernobyl areas have catastrophic nuclear disasters and need careful long term monitoring of radiation and environment change ALOS - Japan’s main Earth observation satellite (4000kg) stopped its function just after the Fukushima disaster. Alternative satellites? Hodoyoshi microsatellites development started: small (50 to 60kg each), simple, low cost, short lead-time technology satellites. “ Can we prepare a constellation of microsatellites that can quickly respond to national catastrophes? The microsatellite constellation can observe wide geographical areas frequently, regardless of international borders and access restrictions.” → Preparation of a Constellation of Earth Observation Microsatellites (hardware) “ What kind of satellite observations and analysis are really useful for Fukushima? Let’s learn from Ukrainian experience of monitoring and management of Chernobyl.” → Cooperation with Ukraine (application and software) 2 Constellation of Earth Observation Microsatellites of Japanese Universities for Environment Monitoring of Fukushima and Chernobyl Areas Satellite name Hodoyoshi-1 Hodoyoshi-2 Hodoyoshi-3 Hodoyoshi-4 Uniform-1 Chubusat-1 TSUBAME QSAT-EOS OitiOrganization
    [Show full text]