Utilizing Fractionated Space Mission Design and Small Satellites for a Next Generation Gamma Ray Burst Observatory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Astronomija, Kosmosas, Inovacijos (50 Užduočių Uždavinynas, Klausimai/Atsakymai)
SPACEOLYMP EKA sutartis Nr. 4000115691/15/NL/NDe Astronomija, Kosmosas, Inovacijos (50 užduočių uždavinynas, Klausimai/Atsakymai) Uždavinyne misijų ir jų etapų laikas nurodomas pagal Pasaulinį koordinuotąjį laiką arba UTC (angl. Coordinated Universal Time) 1 SPACEOLYMP EKA sutartis Nr. 4000115691/15/NL/NDe TURINYS Įvadas ......................................................................................................................... F 8 klasė A-8.1 ......................................................................................................................8.1 A-8.2 .....................................................................................................................8.2 A-8.3 .....................................................................................................................8.3 A-8.4 .....................................................................................................................8.4 A-8.5 .....................................................................................................................8.5 A-8.6 .....................................................................................................................8.6 A-8.7 .....................................................................................................................8.7 A-8.8 .....................................................................................................................8.8 A-8.9 .....................................................................................................................8.9 -
X-Ray and Gamma-Ray Variability of NGC 1275
galaxies Article X-ray and Gamma-ray Variability of NGC 1275 Varsha Chitnis 1,*,† , Amit Shukla 2,*,† , K. P. Singh 3 , Jayashree Roy 4 , Sudip Bhattacharyya 5, Sunil Chandra 6 and Gordon Stewart 7 1 Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India 2 Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India 3 Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India; [email protected] 4 Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411 007, India; [email protected] 5 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; [email protected] 6 Centre for Space Research, North-West University, Potchefstroom 2520, South Africa; [email protected] 7 Department of Physics and Astronomy, The University of Leicester, University Road, Leicester LE1 7RH, UK; [email protected] * Correspondence: [email protected] (V.C.); [email protected] (A.S.) † These authors contributed equally to this work. Received: 30 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission. -
Executive Summary
The Boston University Astronomy Department Annual Report 2010 Chair: James Jackson Administrator: Laura Wipf 1 2 TABLE OF CONTENTS Executive Summary 5 Faculty and Staff 5 Teaching 6 Undergraduate Programs 6 Observatory and Facilities 8 Graduate Program 9 Colloquium Series 10 Alumni Affairs/Public Outreach 10 Research 11 Funding 12 Future Plans/Departmental Needs 13 APPENDIX A: Faculty, Staff, and Graduate Students 16 APPENDIX B: 2009/2010 Astronomy Graduates 18 APPENDIX C: Seminar Series 19 APPENDIX D: Sponsored Project Funding 21 APPENDIX E: Accounts Income Expenditures 25 APPENDIX F: Publications 27 Cover photo: An ultraviolet image of Saturn taken by Prof. John Clarke and his group using the Hubble Space Telescope. The oval ribbons toward the top and bottom of the image shows the location of auroral activity near Saturn’s poles. This activity is analogous to Earth’s aurora borealis and aurora australis, the so-called “northern” and “southern lights,” and is caused by energetic particles from the sun trapped in Saturn’s magnetic field. 3 4 EXECUTIVE SUMMARY associates authored or co-authored a total of 204 refereed, scholarly papers in the disciplines’ most The Department of Astronomy teaches science to prestigious journals. hundreds of non-science majors from throughout the university, and runs one of the largest astronomy degree The funding of the Astronomy Department, the Center programs in the country. Research within the for Space Physics, and the Institute for Astrophysical Astronomy Department is thriving, and we retain our Research was changed this past year. In previous years, strong commitment to teaching and service. only the research centers received research funding, but last year the Department received a portion of this The Department graduated a class of twelve research funding based on grant activity by its faculty. -
Solar Orbiter and Sentinels
HELEX: Heliophysical Explorers: Solar Orbiter and Sentinels Report of the Joint Science and Technology Definition Team (JSTDT) PRE-PUBLICATION VERSION 1 Contents HELEX Joint Science and Technology Definition Team .................................................................. 3 Executive Summary ................................................................................................................................. 4 1.0 Introduction ........................................................................................................................................ 6 1.1 Heliophysical Explorers (HELEX): Solar Orbiter and the Inner Heliospheric Sentinels ........ 7 2.0 Science Objectives .............................................................................................................................. 8 2.1 What are the origins of the solar wind streams and the heliospheric magnetic field? ............. 9 2.2 What are the sources, acceleration mechanisms, and transport processes of solar energetic particles? ........................................................................................................................................ 13 2.3 How do coronal mass ejections evolve in the inner heliosphere? ............................................. 16 2.4 High-latitude-phase science ......................................................................................................... 19 3.0 Measurement Requirements and Science Implementation ........................................................ 20 -
Pos(MULTIF15)001 the Impact of Space Exper- (Giovannelli & Sabau-Graziati, 2004) † ∗ [email protected] [email protected] Speaker
Multifrequency Astrophysics: An Updated Review PoS(MULTIF15)001 Franco Giovannelli∗† INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] In this paper – a short updated version of our review paper about "The impact of space exper- iments on our knowledge of the physics of the Universe (Giovannelli & Sabau-Graziati, 2004) (GSG2004) and subsequent updating (Giovannelli & Sabau-Graziati, 2012a, 2014a) – we will briefly discuss old and new results obtained in astrophysics, that marked substantially the re- search in this field. Thanks to the results, chosen by us following our knowledge and feelings, we will go along different stages of the evolution of our Universe discussing briefly several examples of results that are the pillars carrying the Bridge between the Big Bang and Biology. We will remark the importance of the joint venture of ‘active physics experiments’ and ‘passive physics experiments’ ground– and space–based either big either small in size that, with their results, are directed towards the knowledge of the physics of our universe. New generation exper- iments open up new prospects for improving our knowledge of the aforementioned main pillars. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop 25-30 May 2015 Palermo, Italy ∗Speaker. †A footnote may follow. ⃝c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology -
Particle Background for Equatorial Low Earth Orbit (ELEO)
Particle background for Equatorial Low Earth Orbit (ELEO) Yashvi Sharma August 11, 2020 1 Introduction An important consideration for X-ray and Gamma ray missions is the particle background environ- ment. Focusing telescopes with lower effective area are only background limited at the fainter end of sensitivity. On the other hand, collimators and concentrators have larger effective area hence there primary concern is to both limit and model the background to get better sensitivity. It can be achieved through employing shielding systems and careful modeling of radiation environment (see figure ?? for state of the art simulation efforts) and choosing the orbit in accordance with science objectives and background limitations. Low Earth Orbit (LEO) is the most commonly used orbit for imaging satellites, communication satellites (network) and many different space telescopes (Hubble, AGILE, ASTROSAT, etc.) and space stations (ISS, Tiangong-2). It is defined to be less than 2000 km in altitude or with less than 128 minutes period and with eccentricity within 0.25. Thus, it requires less energy for satellite placement (although does require frequent orbital corrections due to orbital decay), provides good bandwidth and low latency for communication (although the window for communication is short due to smaller orbits) and is more easily accessible for servicing of space stations and satellites. Moreover, it is between the Earth's upper atmosphere and inner Van Allen radiation belt to keep the high energy particle background to the minimum. Figure 1: Simulated background environment using MGGPOD 1 2 Particle Background for ELEO missions The particle background for an unshielded detector in LEO is primarily made up of cosmic diffuse radiation (below 150 keV) and albedo glow of Earth from interaction of cosmic rays with atmosphere (above 150 keV). -
What We Learned from the Tokyo Tech 50 Kg-Satellite "TSUBAME"
SSC17-WK-41 What we learned from the Tokyo Tech 50 kg-satellite “TSUBAME” Yoichi YATSU, Nobuyuki KAWAI Dept. of Physics, School of Science, Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro, Tokyo 152-8551, JAPAN; +81-3-5734-238 [email protected] Masanori MATSUSHITA, Shota KAWAJIRI, Kyosuke TAWARA, Kei Ohta, Masaya KOGA, Saburo MATUNAGA Dept. of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro, Tokyo 152-8551, JAPAN Shin’ichi KIMURA Dept. of Electrical Engineering, Tokyo University of Science 2641, Yamazaki, Noda, Chiba 278-8510, JAPAN ABSTRACT A 50 kg-class micro satellite “TSUBAME” was launched in 2014. After a critical phase, the receiving sensitivity of the RF system on board the satellite dropped significantly and the way for command uplink was lost. A thorough investigation was conducted after the failure to determine the causes, based on the obtained telemetry and reproductive experiments in lab room. The detailed data analysis revealed many other malfunctions had occurred. In parallel with the investigation of the fault points, we also classified these malfunctions into several categories in terms of development phase, technological aspects, and management. 1. INTRODUCTION This was the fourth project for Tokyo Tech and therefore it was designed and managed based on the knowledge During the last 10 years, small satellites have become acquired from the previous CubeSats projects, CUTE-I one of the most exciting topic in space technology. At (2003~), Cute-1.7+APD (2006~2008), Cute-1.7+APD II the beginning, these small satellites were mostly aimed (2008~). -
Hubble Space Telescope and Optical Data on SDSSJ0804+5103 (EZ Lyn) One Year After Outburst
Hubble Space Telescope and Optical Data on SDSSJ0804+5103 (EZ Lyn) One Year After Outburst Dean M. Townsley – University of California et al. Deposited 08/23/2018 Citation of published version: Szkody, P., et al. (2013): Hubble Space Telescope and Optical Data on SDSSJ0804+5103 (EZ Lyn) One Year After Outburst. The Astronomical Journal, 145(5). http://dx.doi.org/10.1088/0004-6256/145/5/121 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A The Astronomical Journal, 145:121 (6pp), 2013 May doi:10.1088/0004-6256/145/5/121 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. HUBBLE SPACE TELESCOPE AND OPTICAL DATA ON SDSSJ0804+5103 (EZ Lyn) ONE YEAR AFTER OUTBURST∗ Paula Szkody1, Anjum S. Mukadam1, Edward M. Sion2,BorisT.Gansicke¨ 3, Arne Henden4, and Dean Townsley5 1 Department of Astronomy, University of Washington, Seattle, WA 98195, USA; [email protected], [email protected] 2 Department of Astronomy & Astrophysics, Villanova University, Villanova, PA 19085, USA; [email protected] 3 Department of Physics, University of Warwick, Coventry CV4 7AL, UK; [email protected] 4 AAVSO, 49 Bay State Road, Cambridge, MA 02138, USA; [email protected] 5 Department of Physics & Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA; [email protected] Received 2012 November 20; accepted 2013 February 25; published 2013 March 19 ABSTRACT We present an ultraviolet (UV) spectrum and light curve of the short orbital period cataclysmic variable EZ Lyn obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope 14 months after its dwarf nova outburst, along with ground-based optical photometry. -
Japan's Space Program
Notes de l’Ifri Asie.Visions 115 Japan’s Space Program Shifting Away from “Non-Offensive” Purposes? Lionel FATTON July 2020 Center for Asian Studies The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental, non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Taking an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. The opinions expressed in this text are the responsibility of the author alone. ISBN: 979-10-373-0208-3 © All rights reserved, Ifri, 2020 How to cite this publication: Lionel Fatton, “Japan’s Space Program: Shifting Away from “Non-Offensive” Purposes?”, Asie.Visions, No. 115, Ifri, July 2020. Ifri 27 rue de la Procession 75740 Paris Cedex 15 – FRANCE Tel. : +33 (0)1 40 61 60 00 – Fax : +33 (0)1 40 61 60 60 Email: [email protected] Website: Ifri.org Author Lionel Fatton is Assistant Professor of International Relations at Webster University Geneva. He is also Research Collaborator at the Research Institute for the History of Global Arms Transfer, Meiji University, Tokyo, and Adjunct Fellow at The Charhar Institute, Beijing. His research interests include international and security dynamics in the Asia-Pacific, China- Japan-US relations, Japan’s security policy, civil-military relations and neoclassical realism. Lionel holds a PhD in Political Science, specialization International Relations, from Sciences Po Paris and two MA in International Relations from Waseda University in Tokyo and the Graduate Institute of International and Development Studies in Geneva. -
39 44 Commentary
COMMENTARY Summer reading An Earth systems science agency 39 44 LETTERS I BOOKS I POLICY FORUM I EDUCATION FORUM I PERSPECTIVES Published papers are the currency of sci- LETTERS ence, and scientists need to do more to make edited by Jennifer Sills the publishing process more rapid, rational, and equitable, as well as less painful and frustrat- ing. We scientists have created the problems Painful Publishing discussed here, and it is up to us to fix them. MARTIN RAFF,1 ALEXANDER JOHNSON,2 BIOMEDICAL SCIENCE HAS NEVER BEEN MORE EXCITING OR PRODUCTIVE. RESEARCH TOOLS PETER WALTER3 have become increasingly powerful, and progress continues to accelerate. Yet, these are stressful 1Emeritus Professor, Department of Biology, University times for many biomedical scientists, because competition for grant support, jobs, and publish- College London, London WC1E 6BT, UK. 2Department of ing in the most prestigious journals is also accelerating. The stress associated with publishing Microbiology and Immunology, University of California, San Francisco, CA 94158, USA. 3Howard Hughes Medical experimental results—a process that can take as long as obtaining the results in the first place— Institute and Department of Biochemistry and Biophysics, can drain much of the joy from practicing science. University of California, San Francisco, CA 94158, USA. One problem with the current publication process arises from the overwhelming importance given to papers published in high-impact journals such as Science. Sadly, career advancement on July 29, 2008 can depend more on where you publish than what you publish. Consequently, authors are so The Enemy Within keen to publish in these select journals that THE NEWS OF THE WEEK STORY BY D.