Observational Aspects of Hard X-Ray Polarimetry

Total Page:16

File Type:pdf, Size:1020Kb

Observational Aspects of Hard X-Ray Polarimetry Observational Aspects of Hard X-ray Polarimetry A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy by Tanmoy Chattopadhyay (Roll No. 11330008) Under the guidance of Dr. Santosh V. Vadawale Associate Professor Astronomy & Astrophysics Division Physical Research Laboratory, Ahmedabad, India. DISCIPLINE OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR 2015 to my family Declaration I declare that this written submission represents my ideas in my own words and where others' ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed. (Signature) (Name: Tanmoy Chattopadhyay) (Roll No: 11330008) Date: November 26, 2015 CERTIFICATE It is certified that the work contained in the thesis titled \Observational Aspects of Hard X-ray Polarimetry" by Mr. Tanmoy Chattopadhyay (Roll No. 11330008), has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. Dr. Santosh V. Vadawale (Thesis Supervisor) Associate Professor, Astronomy & Astrophysics Division Physical Research Laboratory, Ahmedabad, India. Date: i Acknowledgements First and foremost, I would like to express my sincere gratitude to my advisor Dr. Santosh Vadawale for his continuous support in my Ph.D study and related research. His guidance helped me throughout the time of PhD and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. N. M. Ashok, Prof. Janardhan Padmanabhan, and Dr. Sachindra Naik, for their insightful comments and encouragement. My sincere thanks also goes to Prof. A. R. Rao, Prof. Dipankar Bhattacharya, who provided me an opportunity to join Astrosat-CZTI team, giving me access to the laboratory and research facilities. Without their precious support it would not be possible to conduct this research. I would like to thank other team members of the CZTI team Dr. Varun Bhalerao, Rasika, Pramod, Kutty, Malkar sir, Amir, Anish, Nilkanth, Rakesh, Mithun and others for their continuous support in my research work in PRL, TIFR and IUCAA. I would like to thank all the faculty members in Astronomy & Astrophysics di- vision, PRL, specially Prof. B. G. Anandrao, Prof. T. Chandrasekhar, Dr. Ashok Singal, Prof. U. C. Joshi, Prof. H. O. Vats, Prof. N. M. Ashok, Prof. D. P. K. Banerjee, Prof. P. Janardhan, Prof. K. S. Baliyan, Dr. A. Chakraborty, Dr. Sachindra Naik, Dr. S. Ganesh, Dr. Mudit Srivastava and Dr. V. Venkataraman for their useful comments and suggestions and continuous support during my PhD tenure. I thank my fellow labmates in PRL − Mr. Shanmugam M., Mr. Shivku- mar Goyal, Mithun, Rishab, Arpit, Tinkel, Mr. A. B. Shah and others for the stimulating discussions and helping me out in my research work. Also I thank my batchmates and friends for their continuous support and all the fun we have had in the last five years. I am grateful to Priyanka, Arko, Monojit, Balaji, Pragya and Golu, Naveen, Sneha, Shweta and others for spending valuable time with me in the last five years, which I will cherish throughout my life. I take this opportunity to thank my B.Sc. and M.Sc. batchmates and friends − Rupomoy, Abhisek, Sudip, Rajib, Dhrubo, Debraj, Someswar, Kousik K., Kousik B., Tanmoy R., Suman, Saptorshi, Abhivav, Avdesh, Mayukh da, Aniruddha da, Biswarup, Sibu, Jitu, Bablu who had directly and indirectly helped me achieved this goal. I am grateful to Prof. Hiralal Yadav in B.H.U., Prof. Bhabani Prasad Mandal in B.H.U., and Prof. Ashok Banerjee in T.D.B. college for enlightening me the first glance of research. I am thankful to all my teachers especially Amitabha sir ii and Phonibhusan sir for teaching me not only the academic subjects but also the important lessons in life. Last but not the least, I would like to thank my family: my parents and to my sisters for their encouragement, support and attention throughout my life. (Tanmoy Chattopadhyay) iii Abstract Sensitive polarization measurements in X-ray may address a wealth of as- trophysical phenomena, which so far remain beyond our understanding through available X-ray spectroscopic, imaging, and timing studies. Though scientific potential of X-ray polarimetry was realized long ago, there has not been any significant advancement in this field for the last four decades since the birth of X-ray astronomy. The only successful polarization measurement in X-rays dates back to 1976, when a Bragg polarimeter onboard OSO-8 measured polarization of Crab nebula. Primary reason behind the lack in progress is its extreme photon hungry nature, which results in poor sensitivity of the polarimeters. Recently, in the last decade or so, with the advancement in detection technol- ogy, X-ray polarimetry may see a significant progress in near future, especially in soft X-rays with the invention of photoelectron tracking polarimeters. Though photoelectric polarimeters are expected to provide sensitive polarization mea- surements of celestial X-ray sources, they are sensitive only in soft X-rays, where the radiation from the sources is dominated by thermal radiation and therefore expected to be less polarized. On the other hand, in hard X-rays, sources are ex- pected to be highly polarized due to the dominance of nonthermal emission over its thermal counterpart. Moreover, polarization measurements in hard X-rays promises to address few interesting scientific issues regarding geometry of corona for black hole sources, emission mechanism responsible for the higher energy peak in the blazars, accretion geometry close to the magnetic poles in accreting neutron star systems and acceleration mechanism in solar flares. Compton polarimeters provide better sensitivity than photoelectric polarimeters in hard X-rays with a broad energy band of operation. Recently, with the development of hard X-ray focusing optics e.g. NuSTAR, Astro-H, it is now possible to conceive Comp- ton polarimeters at the focal plane of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a fo- iv cal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant−4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomul- tiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant−4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this sce- nario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization mea- surements but could be sensitive to it. There have been several attempts in past in retrieving polarization information from few of such spectroscopic instruments like RHESSI, INTEGRAL-IBIS, INTEGRAL-SPI. Cadmium Zinc Telluride Im- ager (CZTI) onboard Astrosat, India's first astronomical mission, is one of such instruments which is expected to provide sensitive polarization measurements for bright X-ray sources. CZTI consists of 64 CZT detector modules, each of which is 5 mm thick and 4 cm × 4 cm in size. Each CZT module is subdivided into 256 pixels with pixel pitch of 2.5 mm. Due to its pixelation nature and significant Compton scattering efficiency at energies beyond 100 keV, CZTI can work as a sensitive Compton polarimeter in hard X-rays. Detailed Geant−4 simulations and polarization experiments with the flight configuration of CZTI show that v CZTI will have significant polarization measurement capability for bright sources in hard X-rays. CZTI is primarily a spectroscopic instrument with coded mask imaging. To properly utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix for CZTI, which in turn requires precise modelling of the CZT lines shapes for monoenergetic X-ray interaction. CZT detectors show an extended lower energy tail of an otherwise Gaussian line shape due to low mobility and lifetime of the charge carriers. On the other hand, inter- pixel charge sharing may also contribute to the lower energy tail making the line shape more complicated. We have developed a model to predict the line shapes from CZTI modules taking into account the mobility and lifetime of the charge carriers and charge sharing fractions.
Recommended publications
  • Astronomija, Kosmosas, Inovacijos (50 Užduočių Uždavinynas, Klausimai/Atsakymai)
    SPACEOLYMP EKA sutartis Nr. 4000115691/15/NL/NDe Astronomija, Kosmosas, Inovacijos (50 užduočių uždavinynas, Klausimai/Atsakymai) Uždavinyne misijų ir jų etapų laikas nurodomas pagal Pasaulinį koordinuotąjį laiką arba UTC (angl. Coordinated Universal Time) 1 SPACEOLYMP EKA sutartis Nr. 4000115691/15/NL/NDe TURINYS Įvadas ......................................................................................................................... F 8 klasė A-8.1 ......................................................................................................................8.1 A-8.2 .....................................................................................................................8.2 A-8.3 .....................................................................................................................8.3 A-8.4 .....................................................................................................................8.4 A-8.5 .....................................................................................................................8.5 A-8.6 .....................................................................................................................8.6 A-8.7 .....................................................................................................................8.7 A-8.8 .....................................................................................................................8.8 A-8.9 .....................................................................................................................8.9
    [Show full text]
  • Pos(MULTIF15)001 the Impact of Space Exper- (Giovannelli & Sabau-Graziati, 2004) † ∗ [email protected] [email protected] Speaker
    Multifrequency Astrophysics: An Updated Review PoS(MULTIF15)001 Franco Giovannelli∗† INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] In this paper – a short updated version of our review paper about "The impact of space exper- iments on our knowledge of the physics of the Universe (Giovannelli & Sabau-Graziati, 2004) (GSG2004) and subsequent updating (Giovannelli & Sabau-Graziati, 2012a, 2014a) – we will briefly discuss old and new results obtained in astrophysics, that marked substantially the re- search in this field. Thanks to the results, chosen by us following our knowledge and feelings, we will go along different stages of the evolution of our Universe discussing briefly several examples of results that are the pillars carrying the Bridge between the Big Bang and Biology. We will remark the importance of the joint venture of ‘active physics experiments’ and ‘passive physics experiments’ ground– and space–based either big either small in size that, with their results, are directed towards the knowledge of the physics of our universe. New generation exper- iments open up new prospects for improving our knowledge of the aforementioned main pillars. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop 25-30 May 2015 Palermo, Italy ∗Speaker. †A footnote may follow. ⃝c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • What We Learned from the Tokyo Tech 50 Kg-Satellite "TSUBAME"
    SSC17-WK-41 What we learned from the Tokyo Tech 50 kg-satellite “TSUBAME” Yoichi YATSU, Nobuyuki KAWAI Dept. of Physics, School of Science, Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro, Tokyo 152-8551, JAPAN; +81-3-5734-238 [email protected] Masanori MATSUSHITA, Shota KAWAJIRI, Kyosuke TAWARA, Kei Ohta, Masaya KOGA, Saburo MATUNAGA Dept. of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro, Tokyo 152-8551, JAPAN Shin’ichi KIMURA Dept. of Electrical Engineering, Tokyo University of Science 2641, Yamazaki, Noda, Chiba 278-8510, JAPAN ABSTRACT A 50 kg-class micro satellite “TSUBAME” was launched in 2014. After a critical phase, the receiving sensitivity of the RF system on board the satellite dropped significantly and the way for command uplink was lost. A thorough investigation was conducted after the failure to determine the causes, based on the obtained telemetry and reproductive experiments in lab room. The detailed data analysis revealed many other malfunctions had occurred. In parallel with the investigation of the fault points, we also classified these malfunctions into several categories in terms of development phase, technological aspects, and management. 1. INTRODUCTION This was the fourth project for Tokyo Tech and therefore it was designed and managed based on the knowledge During the last 10 years, small satellites have become acquired from the previous CubeSats projects, CUTE-I one of the most exciting topic in space technology. At (2003~), Cute-1.7+APD (2006~2008), Cute-1.7+APD II the beginning, these small satellites were mostly aimed (2008~).
    [Show full text]
  • Japan's Space Program
    Notes de l’Ifri Asie.Visions 115 Japan’s Space Program Shifting Away from “Non-Offensive” Purposes? Lionel FATTON July 2020 Center for Asian Studies The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental, non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Taking an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. The opinions expressed in this text are the responsibility of the author alone. ISBN: 979-10-373-0208-3 © All rights reserved, Ifri, 2020 How to cite this publication: Lionel Fatton, “Japan’s Space Program: Shifting Away from “Non-Offensive” Purposes?”, Asie.Visions, No. 115, Ifri, July 2020. Ifri 27 rue de la Procession 75740 Paris Cedex 15 – FRANCE Tel. : +33 (0)1 40 61 60 00 – Fax : +33 (0)1 40 61 60 60 Email: [email protected] Website: Ifri.org Author Lionel Fatton is Assistant Professor of International Relations at Webster University Geneva. He is also Research Collaborator at the Research Institute for the History of Global Arms Transfer, Meiji University, Tokyo, and Adjunct Fellow at The Charhar Institute, Beijing. His research interests include international and security dynamics in the Asia-Pacific, China- Japan-US relations, Japan’s security policy, civil-military relations and neoclassical realism. Lionel holds a PhD in Political Science, specialization International Relations, from Sciences Po Paris and two MA in International Relations from Waseda University in Tokyo and the Graduate Institute of International and Development Studies in Geneva.
    [Show full text]
  • Pos(APCS2016)001 the Impact of the Space Ex- " Published in 2004 by the Kluwer Accretion Processes in Cosmic Sources: † ∗
    Accretion Processes in Astrophysics: The State of Art PoS(APCS2016)001 Franco Giovannelli∗† INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] In this review paper we will discuss about the accretion processes that regulates the growth and evolution of all objects in the Universe. We will make a short cruise discussing the accretion in Young Stellar Objects (YSOs), in Planets (Pts), in White Dwarfs (WDs), in Neutron Stars (NSs), and in Black Holes (BHs) independent of their masses. In this way we will mark the borders of the arguments discussed during this workshop on Accretion Processes in Cosmic Sources: Young Stellar Objects, Cataclysmic Variables and Related Objects, X-ray Binary Systems, Active Galactic Nuclei. This paper gets information from updated versions of the book "The Impact of the Space Ex- periments on Our Knowledge of the Physics of the Universe" published in 2004 by the Kluwer Academic Publishers, reprinted from the review paper by Giovannelli, F. & Sabau-Graziati, L.: 2004, Space Sci. Rev. 112, 1-443 (GSG2004), and subsequent considered lucubrations. The review is a source of a huge amount of references. Thus, who wants to enter in details in one of the discussed arguments can find an almost exhaustive list of specific references. Accretion Processes in Cosmic Sources "APCS2016" 5-10 September 2016, Saint Petersburg, Russia ∗Speaker.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Conceptual design of a wide-field near UV transient survey in a 6U CubeSat Yoichi Yatsu, Toshiki Ozawa, Kenichi Sasaki, Hideo Mamiya, Nobuyuki Kawai, et al. Yoichi Yatsu, Toshiki Ozawa, Kenichi Sasaki, Hideo Mamiya, Nobuyuki Kawai, Yuhei Kikuya, Masanori Matsushita, Saburo Matunaga, Shouleh Nikzad, Pavaman Bilgi, Shrinivas R. Kulkarni, Nozomu Tominaga, Masaomi Tanaka, Tomoki Morokuma, Norihide Takeyama, Akito Enokuchi, "Conceptual design of a wide-field near UV transient survey in a 6U CubeSat," Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 106990D (6 July 2018); doi: 10.1117/12.2313026 Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/12/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Conceptual design of a wide-field near UV transient survey in a 6U CubeSat Yoichi Yatsua, Toshiki Ozawaa, Kenichi Sasakib, Hideo Mamiyaa, Nobuyuki Kawaia, Yuhei Kikuyab, Masanori Matsushitab, Saburo Matunagab, Shouleh Nikzadd, Pavan Bilgic, Shrinivas R. Kulkarnie, Nozomu Tominagaf, Masaomi Tanakag, Tomoki Morokumah, Norihide Takeyamai, and Akito Enokuchii aDept of Physics, Tokyo Institute of Technology, 2-12-1 Ohkayama, Meguro, Tokyo 152-8551, Japan bDept. of Mechanical Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan dJet Propulsion Laboratory, California Institute of Technology, 4800, Oak Grove Drive, Pasadena, CA 91109, USA cDept. of Aerospace, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA eDivision of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA fDept.
    [Show full text]
  • The First Year of MAXI: Monitoring Variable X-Ray Sources ー 4Th International MAXI Workshop ー Aoyama Gakuin University Tokyo, Japan Tuesday, November 30
    The first year of MAXI: Monitoring variable X-ray sources ー 4th International MAXI Workshop ー Aoyama Gakuin University Tokyo, Japan Tuesday, November 30 9:00 Registration 10:00 10 M. Matsuoka Opening remarks 10:10 30 [O-01] N. Kawai MAXI highlights 10:40 Session 1. Black Hole 10:40 20 [O-02] N. Shaposhnikov Discovery and Monitoring of a new Black Hole Candidate XTE J1752-223 with RXTE 11:00 20 [O-03] P.A. Curran Swift observations of black hole candidate, XTE J1752-223, during outburst 11:20 20 [O-04] K. Yamaoka Suzaku observations of two Galactic black hole candidates XTE J1752-223 and MAXI J1659-152 11:40 30 [O-05] R. Matsumoto Global Magnetohydrodynamic Simulations of State Transitions in Black Hole Candidates 12:10 Lunch / Poster Viewing 14:00 30 [O-06] H. Negoro Outbursts and State Transitions in Black Hole Candidates observed by MAXI 14:30 20 [O-07] J. Kennea A Swift Program of Follow-up Observations of MAXI Galactic Transients 14:50 15 [O-08] P. Gandhi Constraining accretion from coordinated multi- wavelength rapid timing observations of X-ray binaries 15:05 30 [O-09] E. Kuulkers INTEGRAL Galactic bulge monitoring program 15:35 15 [O-10] R.A. Krivonos The 7-year view of the accreting X-ray binaries in the Galaxy with INTEGRAL 15:50 Coffee Break / Poster Viewing 16:20 30 [O-11] C.B. Markwardt Monitoring the Galactic Center with the RXTE PCA 16:50 30 [O-12] E.A. Hays Fermi Observations of Galactic Transients 17:20 15 [O-13] A.
    [Show full text]
  • Development of a Hard X-Ray Focal Plane Compton Polarimeter: a Compact Polarimetric Configuration with Scintillators and Si Photomultipliers
    Noname manuscript No. (will be inserted by the editor) Development of a Hard X-ray focal plane Compton Polarimeter: A compact polarimetric configuration with Scintillators and Si photomultipliers T. Chattopadhyay· S. V. Vadawale· S. K. Goyal· Mithun N. P. S.· A. R. Patel· R. Shukla· T. Ladiya· M. Shanmugam· V. R. Patel· G. P. !"ale Received: date / Accepted: date Abstract X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact ob- jects. Specifically the hard X-ray polarimetry is more rewarding because the sources are e!pected to be intrinsically highly polarized at higher energies. "ith the successful implementation of Hard X-ray optics in NuS%&' it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is li)ely to provide sensitive polarization measurements in hard X-rays with a broad energy band. "e are developing a focal plane hard X- ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. %he scatterer is + mm diameter and ,-- mm long plastic scintillator (.C404) viewed by nor- mal 01T. The photons scattered by the plastic scatterer are collected by a cylindrical array of ,2 CsI(Tl) scintillators (+ mm×+ mm×,+- mm) which are read by Si Photomultiplier (SiP1). Use of the new generation Si01s ensures the compactness of the instrument which is essential for the design of focal plane detectors. %he expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower ener- gies have been discussed in 4,, ,56.
    [Show full text]
  • Thermal Analysis of a Small Satellite in Post- Mission Phase
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 6 Issue 2, February - 2019 Thermal Analysis of a Small Satellite in Post- Mission Phase Ahmed Elhefnawy Ahmed Elweteedy Space Technology Center Military Technical College Cairo, Egypt Cairo, Egypt [email protected] [email protected] Abstract— The objective of satellite thermal perigee altitude of 354 km, an apogee altitude of 1447 control is maintaining all satellite components km and an inclination of 71˚. A passive thermal control within their operational temperature range for system was used, with a small electric heater for the different missions. Most small satellites are battery. Thermal models were developed within both designed to have passive thermal control system. MATLAB/Simulink and ESATAN/ESARAD In this paper the thermal analysis of a small environments. satellite in post-mission phase is introduced. The Dinh [4] illustrated the modeling of a nanosatellite European Student Earth Orbiter (ESEO) satellite using Thermal Desktop software. The satellite has a was chosen in this study. This phase starts at the passive thermal control system. It was designed to end of the operational phase and should last at operate in LEO with altitude of 400 km. least 2 years for the chosen satellite. A finite Bulut et al [5] described the thermal control system difference thermal model using a commercial of Turksat-3U Nanosatellite [6]. The satellite orbit is software “Thermal Desktop” was described for the sun-synchronous orbit with altitude 600 km and selected satellite. Model results verification were inclination 98˚. The satellite has passive thermal performed by varying design variables and seeing control system.
    [Show full text]
  • Environment Monitoring of Fukushima and Chernobyl Areas Using A
    Environment Monitoring of Fukushima and Chernobyl Areas using a Constellation of Earth Observation Microsatellites Japan-Ukraine Cooperation Technical Demonstration Program for Supporting Aftermath Responses to Accidents at Nuclear Power Stations Seiji Yoshimoto, et al. The Un ivers ity o f To kyo November 20th , 2013 [email protected] 2013-1117 1 Fukushima and Chernobyl areas have catastrophic nuclear disasters and need careful long term monitoring of radiation and environment change ALOS - Japan’s main Earth observation satellite (4000kg) stopped its function just after the Fukushima disaster. Alternative satellites? Hodoyoshi microsatellites development started: small (50 to 60kg each), simple, low cost, short lead-time technology satellites. “ Can we prepare a constellation of microsatellites that can quickly respond to national catastrophes? The microsatellite constellation can observe wide geographical areas frequently, regardless of international borders and access restrictions.” → Preparation of a Constellation of Earth Observation Microsatellites (hardware) “ What kind of satellite observations and analysis are really useful for Fukushima? Let’s learn from Ukrainian experience of monitoring and management of Chernobyl.” → Cooperation with Ukraine (application and software) 2 Constellation of Earth Observation Microsatellites of Japanese Universities for Environment Monitoring of Fukushima and Chernobyl Areas Satellite name Hodoyoshi-1 Hodoyoshi-2 Hodoyoshi-3 Hodoyoshi-4 Uniform-1 Chubusat-1 TSUBAME QSAT-EOS OitiOrganization
    [Show full text]
  • JAXA | H-IIA Launch Vehicle
    Contact and FAQ Space Transportation Systems H­IIA Launch Vehicle In Operation Home > Missions > Space Transportation Systems > H­IIA Launch Vehicle Project Topics index Dec. 23, 2017 Updated Successful Launch, H­IIA Launch Vehicle No. 37 Encapsulating SHIKISAI and TSUBAME The H­IIA Launch Vehicle No. 37 with the Global Changing Observation Mission ­ Climate "SHIKISAI" (GCOM­C) and the Super Low Altitude Test Satellite "TSUBAME" (SLATS) onboard lifted off at 10:26:22 a.m. on December 23, 2017 (Japan Standard Time) from the Tanegashima Space Center. The launch and flight of H­IIA F37 proceeded as planned. So did the separation of SHIKISAI and TSUBAME, which was confirmed respectively at approximately 16 minutes and 13 seconds and 1 hour and 47 minutes 59 seconds ... More to read Press Release Press Release index Dec. 23, 2017 (13:45) [release] Successful Launch, H­IIA Launch Vehicle No. 37 Encapsulating SHIKISAI and TSUBAME Dec. 21, 2017 (14:00) [release] Launch Time and Window, H­IIA F37 (with upgraded function) Encapsulating SHIKISAI and TSUBAME About H­IIA Launch Vehicle Leading edge, efficient and economical technology Japanese main large­scale launch vehicle, H­IIA H­IIA, Japan?s primary large­scale launch vehicle, is designed to meet diverse launch demands, at lower cost and with a high degree of reliability, by making the best use of the H­II launch­vehicle technology. The simplified design and improved efficiency of the manufacturing and launch processes of H­IIA have achieved one of the highest performance to cost ratio of launch system in the world, reducing the cost of launches by a half or more.
    [Show full text]