Scientific Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cripto-1 As a Potential Target of Cancer Stem Cells for Immunotherapy
cancers Review Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy Hiroko Ishii 1 , Said M. Afify 2,3 , Ghmkin Hassan 2 , David S. Salomon 4 and Masaharu Seno 2,* 1 GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan; [email protected] 2 Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; saidafi[email protected] (S.M.A.); [email protected] (G.H.) 3 Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt 4 Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; [email protected] * Correspondence: [email protected]; Tel.: +81-86-251-8216 Simple Summary: Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Citation: Ishii, H.; Afify, S.M.; Hassan, G.; Salomon, D.S.; Seno, M. -
Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation -
TGF Beta Signaling Pathways and Microrna Function in the Female Reproductive Tract
TGF Beta signaling pathways and microRNA function in the female reproductive tract Prof. Martin Matzuk Baylor College of Medicine Intellectual and Developmental Disabilities Research Center Houston, TX, USA TGFb signaling pathways and microRNA function in the female reproductive tract Topic 1 TGFb Superfamily N Pro RRRR Mature C • Largest family of growth factor ligands in mammals • Function as secreted homodimers or heterodimers in multiple developmental and physiologic processes • We have been studying 12 family members including growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), activins, inhibins, and GDF3 GDF9 functions in folliculogenesis & cumulus expansion Pre-Ovulatory Follicle Cumulus GC Early Antral Follicle Ovulating Follicle Mural GC Fertilization Secondary & Embryo Follicle Development GDF9 KO Primary Primordial Follicle Follicles Dong et. al. Nature 1996 Elvin et al. Mol Endo, 1999a, b TGFb Superfamily “Canonical” Signaling Pathways – GDF9 and BMP15 appear to signal in different pathways GDF9/BMP b b Extracellular Cytoplasm Type II Type I (Kinase) (Kinase) “BMP” SMAD1/5/8 SMAD2/3 “Activin/TGFb” Pathway SMAD4 SMAD4 Pathway (BMP15) (GDF9) Nucleus BMP-Specific Activin-Specific Genes Genes What is the ovarian GDF9 type 1 receptor? ALK1 Activin receptor like-1 ALK2 Activin receptor 1 ALK3 BMP receptor 1A ALK4 Activin receptor 1B ALK5 TGFb receptor 1 ALK6 BMP receptor 1B ALK7 Activin receptor 1C b b Extracellular Cytoplasm Type II Type I (Kinase) (Kinase) “BMP” ALK2, ALK5, “GDF9” Pathway ALK3, ALK6 -
The Transcriptional Co-Regulator Jab1 Is Crucial for Chondrocyte
234 Research Article The transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo Dongxing Chen1, Lindsay A. Bashur1, Bojian Liang1,*, Martina Panattoni2, Keiko Tamai3,`, Ruggero Pardi2 and Guang Zhou1,3,4,§ 1Department of Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 2San Raffaele University, School of Medicine and Scientific Institute San Raffaele, Milan, Italy 3Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 4Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA *Present address: Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, People’s Republic of China `Present address: Oncology Research Laboratories, Daiichi Sankyo Co., Ltd.., Tokyo, Japan §Author for correspondence ([email protected]) Accepted 11 November 2012 Journal of Cell Science 126, 234–243 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.113795 Summary The evolutionarily conserved transcriptional cofactor Jab1 plays critical roles in cell differentiation, proliferation, and apoptosis by modulating the activity of diverse factors and regulating the output of various signaling pathways. Although Jab1 can interact with the bone morphogenetic protein (BMP) downstream effector Smad5 to repress BMP signaling in vitro, the role of Jab1 in BMP-mediated skeletogenesis in vivo is still poorly understood. As a key regulator of skeletogenesis, BMP signaling regulates the critical Ihh-Pthrp feedback loop to promote chondrocyte hypertrophy. In this study, we utilized the loxP/Cre system to delineate the specific role of Jab1 in cartilage formation. Strikingly, Jab1 chondrocyte-specific knockout Jab1flox/flox; Col2a1-Cre (cKO) mutants exhibited neonatal lethal chondrodysplasia with severe dwarfism. -
Supplementary Materials
Supplementary Materials + - NUMB E2F2 PCBP2 CDKN1B MTOR AKT3 HOXA9 HNRNPA1 HNRNPA2B1 HNRNPA2B1 HNRNPK HNRNPA3 PCBP2 AICDA FLT3 SLAMF1 BIC CD34 TAL1 SPI1 GATA1 CD48 PIK3CG RUNX1 PIK3CD SLAMF1 CDKN2B CDKN2A CD34 RUNX1 E2F3 KMT2A RUNX1 T MIXL1 +++ +++ ++++ ++++ +++ 0 0 0 0 hematopoietic potential H1 H1 PB7 PB6 PB6 PB6.1 PB6.1 PB12.1 PB12.1 Figure S1. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of hematopoietic lineage genes (microarray analysis). Hematopoietic-competent cells (H1, PB6.1, PB7) were separated from hematopoietic-deficient ones (PB6, PB12.1). In this experiment, all hPSCs were tested in duplicate, except PB7. Genes under-expressed or over-expressed in blood-deficient hPSCs are indicated in blue and red respectively (related to Table S1). 1 C) Mesoderm B) Endoderm + - KDR HAND1 GATA6 MEF2C DKK1 MSX1 GATA4 WNT3A GATA4 COL2A1 HNF1B ZFPM2 A) Ectoderm GATA4 GATA4 GSC GATA4 T ISL1 NCAM1 FOXH1 NCAM1 MESP1 CER1 WNT3A MIXL1 GATA4 PAX6 CDX2 T PAX6 SOX17 HBB NES GATA6 WT1 SOX1 FN1 ACTC1 ZIC1 FOXA2 MYF5 ZIC1 CXCR4 TBX5 PAX6 NCAM1 TBX20 PAX6 KRT18 DDX4 TUBB3 EPCAM TBX5 SOX2 KRT18 NKX2-5 NES AFP COL1A1 +++ +++ 0 0 0 0 ++++ +++ ++++ +++ +++ ++++ +++ ++++ 0 0 0 0 +++ +++ ++++ +++ ++++ 0 0 0 0 hematopoietic potential H1 H1 H1 H1 H1 H1 PB6 PB6 PB7 PB7 PB6 PB6 PB7 PB6 PB6 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 Figure S2. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of germ layer differentiation genes (microarray analysis) Selected ectoderm (A), endoderm (B) and mesoderm (C) related genes differentially expressed between hematopoietic-competent (H1, PB6.1, PB7) and -deficient cells (PB6, PB12.1) are shown (related to Table S1). -
Cripto Regulates Skeletal Muscle Regeneration and Modulates Satellite Cell Determination by Antagonizing Myostatin
Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Ombretta Guardiola, Peggy Lafuste, Silvia Brunelli, Salvatore Iaconis, Thierry Touvier, Philippos Mourikis, Katrien de Bock, Enza Lonardo, Gennaro Andolfi, Ann Bouché, et al. To cite this version: Ombretta Guardiola, Peggy Lafuste, Silvia Brunelli, Salvatore Iaconis, Thierry Touvier, et al.. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myo- statin.. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2012, 109 (47), pp.E3231-40. 10.1073/pnas.1204017109. inserm-00769969 HAL Id: inserm-00769969 https://www.hal.inserm.fr/inserm-00769969 Submitted on 5 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Classification: Biological Sciences, Developmental Biology; 2 3 CRIPTO REGULATES SKELETAL MUSCLE REGENERATION AND MODULATES SATELLITE 4 CELL DETERMINATION BY ANTAGONIZING MYOSTATIN 5 6 Ombretta Guardiola1,2*, Peggy Lafuste3,4,5,*, Silvia Brunelli6,7,§, Salvatore Iaconis1,2,§, 7 Thierry Touvier8, Philippos Mourikis9, Katrien De Bock3,4, Enza Lonardo1,2, Gennaro 8 Andolfi1,2, Ann Bouché3, Giovanna L. Liguori2, Michael M. Shen10, Shahragim Tajbakhsh9, 9 Giulio Cossu11, Peter Carmeliet3,4,‡ and Gabriella Minchiotti1,2‡^ 10 1. -
Ecsit Is Required for Bmp Signaling and Mesoderm Formation During Mouse Embryogenesis
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis Changchun Xiao,1 Jae-hyuck Shim,1,6 Michael Klüppel,5,6 Samuel Shao-Min Zhang,3,6 Chen Dong,1,7 Richard A. Flavell,1 Xin-Yuan Fu,3 Jeffrey L. Wrana,5 Brigid L.M. Hogan,4 and Sankar Ghosh1,2,8 1Section of Immunobiology, 2Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, and 3Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; 4Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; 5Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Bone morphogenetic proteins (Bmps) are members of the transforming growth factor  (TGF) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
The Nuclear Receptor REVERB Represses the Transcription of Growthdifferentiation Factor 10 and 15 Genes in Rat Endometrium Strom
Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH The nuclear receptor REV-ERBa represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells Lijia Zhao1, Keishiro Isayama1, Huatao Chen1,*, Nobuhiko Yamauchi1, Yasufumi Shigeyoshi2, Seiichi Hashimoto3 & Masa-aki Hattori1 1 Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan 2 Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan 3 Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Keywords Abstract Circadian clock, decidualization, growth/ differentiation factors, REV-ERBa. Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream Correspondence genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expres- Masa-aki Hattori, Department of Animal and sion of Gdf10 and Gdf15 is significantly increased in the uterus during decidu- Marine Bioresource Sciences, Graduate alization, but the mechanism underlying the regulation of Gdf gene expression School of Agriculture, Kyushu University, in the uterus is poorly understood. Here, we focused on the function of the Hakozaki, Higashi-ku, Fukuoka 812-8581, cellular oscillators in the expression of Gdf family by using uterine endome- Japan. Tel: +81-92-642-2938 trial stromal cells (UESCs) isolated from pregnant Per2-dLuc transgenic rats. Fax: +81-92-642-2938 A significant decline of Per2-dLuc bioluminescence activity was induced in E-mail: [email protected] in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and ⁄ Present address Gdf15 of the Gdf was upregulated. -
Vg1-Nodal Heterodimers Are the Endogenous Inducers of Mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5*
RESEARCH ARTICLE Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5* 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; 2Center for Brain Science, Harvard University, Cambridge, United States; 3Broad Institute of MIT and Harvard, Cambridge, United States; 4Harvard Stem Cell Institute, Cambridge, United States; 5FAS Center for Systems Biology, Harvard University, Cambridge, United States Abstract Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta- related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. DOI: https://doi.org/10.7554/eLife.28183.001 Introduction *For correspondence: tessa. [email protected] (TGM); The induction of mesoderm and endoderm (mesendoderm) during embryogenesis and embryonic [email protected] (AFS) stem cell differentiation generates the precursors of the heart, liver, gut, pancreas, kidney and other internal organs. -
Cripto Regulates Skeletal Muscle Regeneration and Modulates
Cripto regulates skeletal muscle regeneration and PNAS PLUS modulates satellite cell determination by antagonizing myostatin Ombretta Guardiolaa,b,1, Peggy Lafustec,d,e,1, Silvia Brunellif,g,2, Salvatore Iaconisa,b,2, Thierry Touvierh, Philippos Mourikisi, Katrien De Bockc,d, Enza Lonardoa,b, Gennaro Andolfia,b, Ann Bouchéc, Giovanna L. Liguorib, Michael M. Shenj, Shahragim Tajbakhshi, Giulio Cossuk, Peter Carmelietc,d,3, and Gabriella Minchiottia,b,3,4 aStem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; bInstitute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; cLaboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Flemish Institute of Biotechnology, 3000 Leuven, Belgium; dLaboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; eInstitut National de la Santé et de la Recherche Médicale, U955, Team 10 “Cell Interactions in the Neuromuscular System,” University Paris Est Creteil, F-94000 Creteil, France; fDivision of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy; gDepartment of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy; hEugenio Medea Scientific Institute, 23842 Bosisio Parini, Italy; iStem Cells and Development Unit, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée, 2578 -
Defects in GPI Biosynthesis Perturb Cripto Signaling During Forebrain Development in Two New Mouse Models of Holoprosencephaly
874 Research Article Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly David M. McKean and Lee Niswander* HHMI, Department of Pediatrics, Cell Biology, Stem Cells and Development Graduate Program, and Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus Aurora, CO 80045, USA *Author for correspondence ([email protected]) Biology Open 1, 874–883 doi: 10.1242/bio.20121982 Received 16th May 2012 Accepted 6th June 2012 Summary Holoprosencephaly is the most common forebrain defect in involved in TGFb signaling, and we show that TGFb signaling is humans. We describe two novel mouse mutants that display a reduced both in vitro and in vivo. This work demonstrates the holoprosencephaly-like phenotype. Both mutations disrupt genes importance of the GPI anchor in normal forebrain development in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: and suggests that GPI biosynthesis genes should be screened for gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors association with human holoprosencephaly. normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored ß 2012. Published by The Company of Biologists Ltd. This is proteins are mislocalized in GPI biosynthesis mutants. an Open Access article distributed under the terms of the Disruption of the GPI-anchored protein Cripto (mouse) and Creative Commons Attribution Non-Commercial Share Alike TDGF1 (human ortholog) have been shown to result in License (http://creativecommons.org/licenses/by-nc-sa/3.0). holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an Key words: Holoprosencephaly (HPE), forebrain, HPE-like phenotype.