Cripto-1: a Multifunctional Modulator During Embryogenesis and Oncogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Cripto-1: a Multifunctional Modulator During Embryogenesis and Oncogenesis Oncogene (2005) 24, 5731–5741 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis Luigi Strizzi1, Caterina Bianco1, Nicola Normanno2 and David Salomon*,1 1Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; 2Division of Haematological Oncology and Department of Experimental Oncology, ITN-Fondazione Pascale, 80131 Naples, Italy It is increasingly evident that genes known to perform tions within stem cells or alterations in signaling critical roles during early embryogenesis, particularly pathways within the stem cell niche are almost certainly during stem cell renewal, pluripotentiality and survival, central to the early appearance of premalignant cells. are also expressed during the development of cancer. In Stem cells, therefore, represent desirable targets for the this regard, oncogenesis may be considered as the development of future cancer therapies (Reya et al., recapitulation of embryogenesis in an inappropriate 2001; Beachy et al., 2004). Growth factors that are temporal and spatial manner. The epidermal growth important in development, oncogenesis and stem cell factor-Cripto-1/FRL1/cryptic family of proteins consists self-renewal include members of the Hedgehog (Hh), of extracellular and cell-associated proteins that have Wnt, Notch, transforming growth factor beta (TGFb/ been identified in several vertebrate species. During early Activin/Nodag/BMP) and epidermal growth factor- embryogenesis, epidermal growth factor-Cripto-1/FRL1/ Cripto-1/FRL1/cryptic (EGF-CFC) superfamilies cryptic proteins perform an obligatory role as coreceptors (Salomon et al., 2000; Shen and Schier, 2000; Kodja- for the transforming growth factor-beta subfamily of bachian, 2001; Kleber and Sommer, 2004; Nelson and proteins, which includes Nodal. Cripto-1 has also been Nusse, 2004; Tabata and Takei, 2004). shown to function as a ligand through a Nodal/Alk4- independent signaling pathway that involves binding to Identification and structure of the EGF-CFC gene family glypican-1 and the subsequent activation through src of phosphoinositol-3 kinase/Akt and ras/mitogen-activated Human Cripto-1 (CR-1), also known as teratocarcino- protein kinase intracellular pathways. Expression of ma-derived growth factor-1 (TDGF-1), is a member of Cripto-1 is increased in several human cancers and its the EGF-CFC protein family (Salomon et al., 2000). overexpression is associated with the development of Orthologous genes have been identified in the mouse mammary tumors in mice. Here, we review the role of (Cr-1) (Dono et al., 1993), chicken (Colas and Schoen- Cripto-1 during embryogenesis, cell migration, invasion wolf, 2000), zebrafish (Zhang et al., 1998) and Xenopus and angiogenesis and how these activities may relate to (FRL1) (Kinoshita et al., 1995). Related genes include cellular transformation and tumorigenesis. We also briefly mouse cryptic (Cfc1) and human cryptic (CFC1) (Shen discuss evidence suggesting that Cripto-1 may be involved et al., 1997; Bamford et al., 2000; Shen and Schier, 2000; in stem cell maintenance. de la Cruz et al., 2002). EGF-CFC family members Oncogene (2005) 24, 5731–5741. doi:10.1038/sj.onc.1208918 contain an NH2-terminal signal peptide, a modified EGF-like region, a conserved cysteine-rich domain Keywords: Cripto-1; embryogenesis; oncogenesis; EHT; (CFC motif) and a short hydrophobic COOH-terminus engiogenesis; therapy that contains additional sequences for glycosyl- phosphatidylinositol (GPI) cleavage and attachment (Minchiotti et al., 2000) (Figure 1). In addition, all EGF-CFC proteins contain a consensus O-linked Introduction fucosylation site within the EGF-like motif that is necessary for their ability to function as coreceptors for Embryonic genes are important in regulating asym- the TGFb-related proteins, Nodal or Vg1/GDF-1 metric cell division, pluripotentiality and/or in main- (Schiffer et al., 2001; Yan et al., 2002). Most of the taining cellular and tissue-specific niches that are EGF-CFC proteins are cell-associated glycoproteins necessary for stem cell survival (Kopper and Hajdu, that contain from 171 to 202 amino acids and that 2004; Ohlstein et al., 2004; Sell, 2004). Genetic muta- range from 18 to 21 kDa in size. However, the native mouse and human Cripto-1 proteins are 24, 28 and 36 kDa in size and additional proteins ranging from 14 *Correspondence: DS Salomon, Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory, National Cancer to 60 kDa have also been identified and are the result of Institute, National Institutes of Health, Buillding 37, Room 118B, differential glycosylation at N- and O-linked asparagine Bethesda, MD 20892, USA; E-mail: [email protected] and serine residues (Brandt et al., 1994; Kenney et al., Cripto-1: a modulator during embryogenesis and oncogenesis L Strizzi et al 5732 O-fucose (Thr 88) 1 169 188 NH2 Signal sequence EGF-like domain CFC-domain GPI site COOH O-linked N-linked O-linked (Ser 40) (Asn 79) (Ser 161) Figure 1 Schematic diagram illustrating the different domains composing the Cripto-1 glycoprotein 1996; Seno et al., 1998; Niemeyer et al., 1999; Minchiotti absence of head and trunk mesoderm, loss of prechordal et al., 2000; Schiffer et al., 2001). The mouse Cr-1 plate and ventral neuroectoderm, impairment of gas- protein can be released by treatment of cells with trulation movements, loss of A/P axis positioning and phosphatidylinositol-specific phospholipase C (PI-PLC) left/right laterality defects (Zhang et al., 1998; Gritsman (Minchiotti et al., 2000). Removing the COOH-terminal et al., 1999). One-eyed pinhead, like mouse Cr-1, is stretch of residues where GPI linkage occurs generates absolutely required for the migration of mesendoderm soluble forms of biologically active mouse and human cells through the primitive streak (Warga and Kane, Cripto-1 (Xu et al., 1999; Minchiotti et al., 2001; Bianco 2003). Mutations of oep effectively block the ability of et al., 2002b, 2003; Yan et al., 2002). Full activity epiblast cells to migrate and induce a more cohesive requires the presence of a peptide containing only an interaction between these cells. This effect is indepen- intact EGF domain and CFC domain (Minchiotti et al., dent of the two zebrafish Nodal-related genes, squint 2001; Yan et al., 2002). However, whether there are (Sqt) and Cyclops (Cyc), suggesting that these pheno- significant qualitative and/or quantitative differences in types are unique to oep. the biological activities that are regulated by Cripto-1 Mouse Cr-1 is expressed in the precardiac mesoderm between the soluble versus cell-associated forms is not and performs an essential role during the early stages of yet known since Cripto-1 can function both as a cardiac lineage specification and differentiation (Dono coreceptor in cis (autocrine/cell-autonomous) and as et al., 1993). Homozygous knockout of the Cr-1 gene ligand in trans (paracrine/cell-nonautonomous) (Yan (Cr-1À/À) in pluripotential embryonic stem (ES) cells et al., 2002). impairs their ability to spontaneously differentiate in vitro into cardiomyocytes (Parisi et al., 2003) without Function of Cripto-1 during embryonic development affecting the ability of ES cells to differentiate into other cell types (Xu et al., 1998). In fact, Cr-1À/À ES cells Genetic studies in zebrafish and mice have defined an actually show extensive neural differentiation in vitro essential role for Nodal that functions through Cripto-1 and in vivo suggesting that neuroectodermal differentia- in the formation of the primitive streak, patterning of tion is the preferred default pathway that occurs in the the Anterior/Posterior axis (A/P) and specification of absence of Cr-1 expression (Parish et al., 2005; Sonntag mesoderm and endoderm (mesoendoderm) during gas- et al., 2005). Chimeric embryos that were generated trulation, whereas later in embryogenersis Nodal func- between wild-type and Cr-1À/À ES cells in vitro were tions through cryptic in the establishment of Left/Right normal indicating that Cr-1 produced by the wild-type (L/R) asymmetry of developing organs (Ding et al., host cells could rescue the mutant phenotype in a 1998; Yan et al., 1999; Schier and Shen, 2000; Hamada paracrine manner (Xu et al., 1998). Germline disruption et al., 2002; Schier, 2003). Cr-1-null mice (Cr-1À/À) die at of Cr-1 in Cr-1À/À embryos results in the formation of day 7.5 due to their inability to gastrulate and form embryos that possess a head without a trunk demon- appropriate germ layers (Liguori et al., 1996; Ding et al., strating that there is a severe deficiency in embryonic 1998). Nodal, which functions through Cripto-1, co- mesoderm and endoderm without a loss of anterior operates with wnt3 in the mouse in initiating the neuroectoderm formation (Xu et al., 1999). specification of mesoderm and endoderm formation and in regulating the development of dorsal and anterior mesoderm and head structures (Harland and Gerhart, 1997; Beddington and Robertson, 1999; Liu et al., 1999; Intracellular signal transduction pathways that mediate Thisse et al., 2000; Kodjabachian, 2001; Robb and Tam, Cripto-1 activity 2004). In contrast, Cripto-1 in conjunction with Fgf8 and brachyury are important for initiating and main- Cripto-1 is involved in the activation of several different taining the migration of mesodermal cells through the signaling pathways during embryonic development and primitive streak (Conlon and Smith, 1999; Ciruna and cellular transformation (Bianco et al., 2004). The major Rossant, 2001; Griffin and Kimelman, 2003; Warga and signaling pathways activated by Cripto-1 are a Nodal/ Kane, 2003). Mutations in zebrafish of the Cripto-1 ALK4/ALK7/Smad-2 signaling pathway and a Glypican-1/ ortholog, one-eyed pinhead (oep) result in cyclopia, an c-Src/MAPK/AKT signaling pathway. Oncogene Cripto-1: a modulator during embryogenesis and oncogenesis L Strizzi et al 5733 Nodal/ALK4/ALK7/Smad-2 signaling pathway signaling, CR-1 and Nodal may have distinct functional roles independently of one another.
Recommended publications
  • Cripto-1 As a Potential Target of Cancer Stem Cells for Immunotherapy
    cancers Review Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy Hiroko Ishii 1 , Said M. Afify 2,3 , Ghmkin Hassan 2 , David S. Salomon 4 and Masaharu Seno 2,* 1 GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan; [email protected] 2 Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; saidafi[email protected] (S.M.A.); [email protected] (G.H.) 3 Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt 4 Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; [email protected] * Correspondence: [email protected]; Tel.: +81-86-251-8216 Simple Summary: Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Citation: Ishii, H.; Afify, S.M.; Hassan, G.; Salomon, D.S.; Seno, M.
    [Show full text]
  • Reproductionresearch
    REPRODUCTIONRESEARCH Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus–oocyte complexes Ester S Caixeta, Melanie L Sutton-McDowall1, Robert B Gilchrist1, Jeremy G Thompson1, Christopher A Price2, Mariana F Machado, Paula F Lima and Jose´ Buratini Departamento de Fisiologia, Instituto de Biocieˆncias, Universidade Estadual Paulista, Rubia˜o Junior, Botucatu, Sa˜o Paulo 18618-970, Brazil, 1The Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5005, Australia and 2Centre de Recherche en Reproduction Animale, Faculte´ de Me´decine Ve´te´rinaire, Universite´ de Montre´al, St-Hyacinthe, Quebec, Canada J2S 7C6 Correspondence should be addressed to J Buratini; Email: [email protected] Abstract Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus–oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture.
    [Show full text]
  • Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Hippocampus: Modulation of Expression by Seizures and Anti- Excitotoxic Action
    The Journal of Neuroscience, January 1, 1999, 19(1):133–146 Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Hippocampus: Modulation of Expression by Seizures and Anti- Excitotoxic Action Lisa A. Opanashuk,1 Robert J. Mark,1,2 Julie Porter,1 Deborah Damm,3 Mark P. Mattson,1,2 and Kim B. Seroogy1 1Department of Anatomy and Neurobiology and 2Sanders-Brown Research Center on Aging, University of Kentucky, Lexington, Kentucky 40536, and 3Scios Inc., Mountain View, California 94043 The expression of heparin-binding epidermal growth factor-like around hippocampal pyramidal CA3 and CA1 neurons. At 48 hr growth factor (HB-EGF), an EGF receptor ligand, was investi- after kainate treatment, HB-EGF mRNA remained elevated in gated in rat forebrain under basal conditions and after kainate- vulnerable brain regions of the hippocampus and amygdaloid induced excitotoxic seizures. In addition, a potential neuropro- complex. Western blot analysis revealed increased levels of tective role for HB-EGF was assessed in hippocampal cultures. HB-EGF protein in the hippocampus after kainate administra- In situ hybridization analysis of HB-EGF mRNA in developing tion, with a peak at 24 hr. Pretreatment of embryonic hippocam- rat hippocampus revealed its expression in all principle cell pal cell cultures with HB-EGF protected neurons against kai- 21 layers of hippocampus from birth to postnatal day (P) 7, nate toxicity. The kainate-induced elevation of [Ca ]i in whereas from P14 through adulthood, expression decreased in hippocampal neurons was not altered in cultures pretreated the pyramidal cell layer versus the dentate gyrus granule cells. with HB-EGF, suggesting an excitoprotective mechanism dif- After kainate-induced excitotoxic seizures, levels of HB-EGF ferent from that of previously characterized excitoprotective mRNA increased markedly in the hippocampus, as well as in growth factors.
    [Show full text]
  • Regulation of Mitogen-Activated Protein Kinase and Phosphoinositide 3-Kinase Signaling by Wild-Type and Oncogenic Ras
    REGULATION OF MITOGEN-ACTIVATED PROTEIN KINASE AND PHOSPHOINOSITIDE 3-KINASE SIGNALING BY WILD-TYPE AND ONCOGENIC RAS by Amy Young DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN I RANCISCO Copyright 2011 by Amy Young ii ACKNOWLEDGEMENTS It is hard to believe that my graduate career has finally come to an end. The work presented here could not have been possible without the support and generosity of the many people I have had the privilege to work with during my time at UCSF. First and foremost, I would like to thank my graduate advisor Frank McCormick for his guidance and support during my time as a student in his lab. I have learned a tremendous amount while training in the lab, and I sincerely appreciate Frank’s enthusiasm for science, his optimism for our projects, and the freedom he gives us to pursue our scientific research. I also want to thank Frank for being a very kind and generous mentor - I have been incredibly lucky to have been a member of the McCormick lab, and I value all of the opportunities and experiences I have had over the past several years. I would like to thank the members of my thesis committee, Allan Balmain and David Stokoe, for their advice and encouragement. I appreciate the time they sacrificed to provide feedback on my projects, and I am honored to have trained under some of the brightest minds in the field of Ras signaling.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials + - NUMB E2F2 PCBP2 CDKN1B MTOR AKT3 HOXA9 HNRNPA1 HNRNPA2B1 HNRNPA2B1 HNRNPK HNRNPA3 PCBP2 AICDA FLT3 SLAMF1 BIC CD34 TAL1 SPI1 GATA1 CD48 PIK3CG RUNX1 PIK3CD SLAMF1 CDKN2B CDKN2A CD34 RUNX1 E2F3 KMT2A RUNX1 T MIXL1 +++ +++ ++++ ++++ +++ 0 0 0 0 hematopoietic potential H1 H1 PB7 PB6 PB6 PB6.1 PB6.1 PB12.1 PB12.1 Figure S1. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of hematopoietic lineage genes (microarray analysis). Hematopoietic-competent cells (H1, PB6.1, PB7) were separated from hematopoietic-deficient ones (PB6, PB12.1). In this experiment, all hPSCs were tested in duplicate, except PB7. Genes under-expressed or over-expressed in blood-deficient hPSCs are indicated in blue and red respectively (related to Table S1). 1 C) Mesoderm B) Endoderm + - KDR HAND1 GATA6 MEF2C DKK1 MSX1 GATA4 WNT3A GATA4 COL2A1 HNF1B ZFPM2 A) Ectoderm GATA4 GATA4 GSC GATA4 T ISL1 NCAM1 FOXH1 NCAM1 MESP1 CER1 WNT3A MIXL1 GATA4 PAX6 CDX2 T PAX6 SOX17 HBB NES GATA6 WT1 SOX1 FN1 ACTC1 ZIC1 FOXA2 MYF5 ZIC1 CXCR4 TBX5 PAX6 NCAM1 TBX20 PAX6 KRT18 DDX4 TUBB3 EPCAM TBX5 SOX2 KRT18 NKX2-5 NES AFP COL1A1 +++ +++ 0 0 0 0 ++++ +++ ++++ +++ +++ ++++ +++ ++++ 0 0 0 0 +++ +++ ++++ +++ ++++ 0 0 0 0 hematopoietic potential H1 H1 H1 H1 H1 H1 PB6 PB6 PB7 PB7 PB6 PB6 PB7 PB6 PB6 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 Figure S2. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of germ layer differentiation genes (microarray analysis) Selected ectoderm (A), endoderm (B) and mesoderm (C) related genes differentially expressed between hematopoietic-competent (H1, PB6.1, PB7) and -deficient cells (PB6, PB12.1) are shown (related to Table S1).
    [Show full text]
  • Cripto Regulates Skeletal Muscle Regeneration and Modulates Satellite Cell Determination by Antagonizing Myostatin
    Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Ombretta Guardiola, Peggy Lafuste, Silvia Brunelli, Salvatore Iaconis, Thierry Touvier, Philippos Mourikis, Katrien de Bock, Enza Lonardo, Gennaro Andolfi, Ann Bouché, et al. To cite this version: Ombretta Guardiola, Peggy Lafuste, Silvia Brunelli, Salvatore Iaconis, Thierry Touvier, et al.. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myo- statin.. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2012, 109 (47), pp.E3231-40. 10.1073/pnas.1204017109. inserm-00769969 HAL Id: inserm-00769969 https://www.hal.inserm.fr/inserm-00769969 Submitted on 5 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Classification: Biological Sciences, Developmental Biology; 2 3 CRIPTO REGULATES SKELETAL MUSCLE REGENERATION AND MODULATES SATELLITE 4 CELL DETERMINATION BY ANTAGONIZING MYOSTATIN 5 6 Ombretta Guardiola1,2*, Peggy Lafuste3,4,5,*, Silvia Brunelli6,7,§, Salvatore Iaconis1,2,§, 7 Thierry Touvier8, Philippos Mourikis9, Katrien De Bock3,4, Enza Lonardo1,2, Gennaro 8 Andolfi1,2, Ann Bouché3, Giovanna L. Liguori2, Michael M. Shen10, Shahragim Tajbakhsh9, 9 Giulio Cossu11, Peter Carmeliet3,4,‡ and Gabriella Minchiotti1,2‡^ 10 1.
    [Show full text]
  • Ecsit Is Required for Bmp Signaling and Mesoderm Formation During Mouse Embryogenesis
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis Changchun Xiao,1 Jae-hyuck Shim,1,6 Michael Klüppel,5,6 Samuel Shao-Min Zhang,3,6 Chen Dong,1,7 Richard A. Flavell,1 Xin-Yuan Fu,3 Jeffrey L. Wrana,5 Brigid L.M. Hogan,4 and Sankar Ghosh1,2,8 1Section of Immunobiology, 2Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, and 3Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; 4Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; 5Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Bone morphogenetic proteins (Bmps) are members of the transforming growth factor ␤ (TGF␤) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Cripto Regulates Skeletal Muscle Regeneration and Modulates
    Cripto regulates skeletal muscle regeneration and PNAS PLUS modulates satellite cell determination by antagonizing myostatin Ombretta Guardiolaa,b,1, Peggy Lafustec,d,e,1, Silvia Brunellif,g,2, Salvatore Iaconisa,b,2, Thierry Touvierh, Philippos Mourikisi, Katrien De Bockc,d, Enza Lonardoa,b, Gennaro Andolfia,b, Ann Bouchéc, Giovanna L. Liguorib, Michael M. Shenj, Shahragim Tajbakhshi, Giulio Cossuk, Peter Carmelietc,d,3, and Gabriella Minchiottia,b,3,4 aStem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; bInstitute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; cLaboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Flemish Institute of Biotechnology, 3000 Leuven, Belgium; dLaboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; eInstitut National de la Santé et de la Recherche Médicale, U955, Team 10 “Cell Interactions in the Neuromuscular System,” University Paris Est Creteil, F-94000 Creteil, France; fDivision of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy; gDepartment of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy; hEugenio Medea Scientific Institute, 23842 Bosisio Parini, Italy; iStem Cells and Development Unit, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée, 2578
    [Show full text]
  • Human Amphiregulin Quantikine ELISA
    Quantikine® ELISA Human Amphiregulin Immunoassay Catalog Number DAR00 For the quantitative determination of human Amphiregulin concentrations in cell culture supernates, cell lysates, serum, plasma, saliva, and urine. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE .................................................................................................................................2 TECHNICAL HINTS .................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................3 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 PRECAUTIONS .........................................................................................................................................................................4
    [Show full text]
  • Defects in GPI Biosynthesis Perturb Cripto Signaling During Forebrain Development in Two New Mouse Models of Holoprosencephaly
    874 Research Article Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly David M. McKean and Lee Niswander* HHMI, Department of Pediatrics, Cell Biology, Stem Cells and Development Graduate Program, and Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus Aurora, CO 80045, USA *Author for correspondence ([email protected]) Biology Open 1, 874–883 doi: 10.1242/bio.20121982 Received 16th May 2012 Accepted 6th June 2012 Summary Holoprosencephaly is the most common forebrain defect in involved in TGFb signaling, and we show that TGFb signaling is humans. We describe two novel mouse mutants that display a reduced both in vitro and in vivo. This work demonstrates the holoprosencephaly-like phenotype. Both mutations disrupt genes importance of the GPI anchor in normal forebrain development in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: and suggests that GPI biosynthesis genes should be screened for gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors association with human holoprosencephaly. normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored ß 2012. Published by The Company of Biologists Ltd. This is proteins are mislocalized in GPI biosynthesis mutants. an Open Access article distributed under the terms of the Disruption of the GPI-anchored protein Cripto (mouse) and Creative Commons Attribution Non-Commercial Share Alike TDGF1 (human ortholog) have been shown to result in License (http://creativecommons.org/licenses/by-nc-sa/3.0). holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an Key words: Holoprosencephaly (HPE), forebrain, HPE-like phenotype.
    [Show full text]
  • Amphiregulin Is a Critical Downstream Effector of Estrogen Signaling in Era-Positive Breast Cancer Esther A
    Published OnlineFirst November 2, 2015; DOI: 10.1158/0008-5472.CAN-15-0709 Cancer Molecular and Cellular Pathobiology Research Amphiregulin Is a Critical Downstream Effector of Estrogen Signaling in ERa-Positive Breast Cancer Esther A. Peterson1, Edmund C. Jenkins1, Kristopher A. Lofgren1,2, Natasha Chandiramani1, Hui Liu1, Evelyn Aranda1, Maryia Barnett1,and Paraic A. Kenny1,2 Abstract Estrogen stimulation promotes epithelial cell proliferation in enriched in ERa-positive humanbreast tumor cells and required for estrogen receptor (ERa)-positive breast cancer. Many ERa target estrogen-dependent growth of MCF7 tumor xenografts. Further- genes have been enumerated, but the identities of the key effectors more, amphiregulin levels were suppressed in patients treated with mediating the estrogen signal remain obscure. During mouse endocrine therapy. Suppression of EGF receptor signaling appeared mammary gland development, the estrogen growth factor receptor necessary for the therapeutic response in this setting. Our (EGFR) ligand amphiregulin acts as an important stage-specific findings implicate amphiregulin as a critical mediator of the effector of estrogen signaling. In this study, we investigated the role estrogen response in ERa-positive breast cancer, emphasizing the of amphiregulin in breast cancer cell proliferation using human importance of EGF receptor signaling in breast tumor pathogenesis tissue samples and tumor xenografts in mice. Amphiregulin was and therapeutic response. Cancer Res; 75(22); 1–9. Ó2015 AACR. Introduction receptor (EGFR), is induced during the proliferative phase of mouse pubertal mammary growth, where it is a direct transcriptional Estrogen is an essential hormone for mammary gland devel- target of ERa (6, 7). Mammary glands of amphiregulin knockout opment and is a key driver of proliferation during the develop- þ mice have a striking defect in pubertal epithelial outgrowth but ment of estrogen receptor–positive (ERa ) breast tumors.
    [Show full text]