Properties and Behavior of Quartz for the Silicon Process

Total Page:16

File Type:pdf, Size:1020Kb

Properties and Behavior of Quartz for the Silicon Process Kurt Aasly Properties and behavior of quartz for the silicon process Thesis for the degree of philosophiae doctor Trondheim, August 2008 Norwegian University of Science and Technology Faculty of Engineering Science and Technology Department of Geology and Mineral Resources Engineering NTNU Norwegian University of Science and Technology Thesis for the degree of philosophiae doctor Faculty of Engineering Science and Technology Department of Geology and Mineral Resources Engineering © Kurt Aasly ISBN 978-82-471-1163-5 (printed ver.) ISBN 978-82-471-1164-2 (electronic ver.) ISSN 1503-8181 Doctoral theses at NTNU, 2008:236 Printed by NTNU-trykk Preface The work presented in this PhD-thesis was carried out at the Department of Geology and Mineral Resources Engineering at NTNU from June 2003 until May 2008. The project was mainly funded as a four-year PhD position by the Department of Geology and Mineral Resources Engineering. However, Elkem AS funded the analytical and experimental work and made traveling to conferences etc. possible. Elkem AS also co-sponsored the purchase of necessary analytical equipment. The PhD-project was carried out in close cooperation with other researchers in the Strategic University Program “The value chain from mineral deposit to beneficiated product with emphasis on Quartz”. However, this particular PhD- project was not funded by this SUP, but the cooperation with several PhD- candidates through the SUP gave additional motivation and contribution to the results of this PhD. First of all, I want to thank my supervisors Professor Terje Malvik at the Department of Geology and Mineral Resources Engineering and Dr. ing. Edin Myrhaug at Elkem AS for their encouragement and support, and for their contributions with ideas for the analytical work and investigations. Paper IV is the result of cooperation with Prof. Jens Götze at the department of Mineralogy at TU-Bergakademie Freiberg. He helped with carrying out the cathodoluminescence microscopy and spectroscopy investigations as well as discussing the results. I want to thank him for welcoming me to Freiberg and sitting down with me for the week it took to carry out the CL investigations. All the discussions with my fellow PhD-candidates, both technical discussions and social discussions have been of great importance. Special thanks to Kari Moen and Bjørn E. Sørensen for many important discussions around quartz and technical questions. Thanks to Trond Brenden-Veisal and Halvard Tveit at Elkem AS for many good discussions and contributions to the thesis work through the reference group. i Arild Monsøy and Kjetil Eriksen at the IGB preparation lab are thanked for their important help with preparing the polished thin sections and thick sections as well as preparing samples for the shock-heating experiments. Kjell Kvam and Torill Sørløkk were important for carrying out the XRD- and DTA analysis. Thanks to Steinar Prytz at SINTEF Materials and Chemistry for help with shock heating of quartz in the ASEA induction furnace. Thanks to Elkem AS for giving me the chance to spend my first few months to finish my thesis before I started working fully on my new challenges. Finally and most importantly, I would like to thank my wife Kari and two little daughters Sofie and Guro for being there in the everyday life and being patient and supportive through my PhD work. I love you! Trondheim, May 2008 Kurt Aasly ii Abstract This PhD-thesis is a result of the study on important properties of quartz as a raw material for the metallurgical production of ferrosilicon and silicon metal. This includes defining mechanical properties important for the size reduction experienced during transport and storage and thermo-mechanical properties of quartz that is important for how the quartz reacts to the high temperatures experienced as it is charged on the furnace. Additionally, softening properties of quartz have been briefly discussed in some of the papers. Another important goal has been to test analytical and experimental methods for investigating the various properties. The investigations of important factors for the mechanical properties of ores and industrial minerals have been carried out as a literature study. The mining operation and transport from mine to smelter has been discussed and several factors that are significant for achieving best possible mechanical properties of the quartz have been identified. The most important factors are related to production in the mine and processing plant, which should be carefully planned to minimize the amount of blast-induced damage in the rock and thus achieve the best possible mechanical strength of the raw material. The amount of fines can be minimized by controlling the handling of the raw materials during the transport and storage. It is especially important to avoid high drops, both high single drops and accumulated height of all the drops in total. Investigations of the thermo-mechanical properties of quartz have been carried out by using different experimental and characterization methods. The petrographic investigations of the raw materials by polarized light microscopy have been important. Thermo-mechanical investigations have been high-temperature microthermometry and shock heating of quartz samples in an induction furnace with subsequent investigations of the heated material. The subsequent investigation included polarized- and fluorescence light microscopy of polished thin sections, cathodoluminescence microscopy and spectroscopy and x-ray diffraction. Combining high-temperature microthermometry and shock-heating investigations has proved to provide useful knowledge about the effects of high temperatures on quartz. iii Results from earlier research have been confirmed showing that mica is the cause of the effects seen in the temperature interval 900 – 1000 °C. This has been shown by the total absence of tridymite in the samples and the fact that mica has been seen in the unheated reference samples. Cathodoluminescence microscopy and spectroscopy was used to investigate sample from shock-heating experiments and corresponding reference samples. These investigations show that cathodoluminescence is a useful tool for petrographic investigations of quartz. The shock-heated samples showed a significant change in cathodoluminescence characteristics that need to be investigated further to understand the cause of these changes. A spotted red luminescence was seen in two of the samples indicating the formation of cristobalite or the transition phase within these samples. Cristobalite has been shown in samples after heating to different temperatures in the interval 1250 to 1550 °C, although in different amount in the different types of quartz. However, the transformation rates seem to be more similar after prolonged heating at the highest temperature. Experiments also indicate that the quartz- cristobalite transformation may be a cause of the disintegration of quartz at high temperatures. This is related to the severe volume expansion as the quartz transforms to cristobalite via the amorphous intermediate transition phase. The last paper presented in the thesis presents investigations of two furnaces that have been producing ferrosilicon and silicon metal respectively. The results from these investigations show that cristobalite is formed relatively rapidly inside the furnace, however, indicating that the cristobalite formation takes place earlier at a distance from the electrode, than closer to the electrode. Another surprising discovery was to find tridymite in the ferrosilicon furnace. The investigations of silica phase transformation by shock-heating experiments did not show any tridymite even in the same type of quartz as used in the ferrosilicon furnace. The cause of the tridymite formation seen in this furnace is probably related to the total impurity content in the furnace as well as the long retention time of the quartz in the rather inactive parts of the furnace where the tridymite was found. iv Table of contents Preface i Abstract iii Contributions to the papers ix Part one: 1. Introduction ...................................................................................................................1 1.1 Objectives and Scope............................................................................................2 1.2 Outline of the thesis ..............................................................................................2 1.2.1 Part one.............................................................................................................2 1.2.2 Part two ............................................................................................................3 2. Background ...................................................................................................................5 2.1 The ferrosilicon and silicon metal production......................................................5 2.1.1 The Carbothermic Process of silicon................................................................5 2.1.2 Important properties of quartz..........................................................................6 2.1.3 Previous work on important properties of the quartz .......................................9 2.1.4 Quartz behavior in the furnace .........................................................................9 2.2 Quartz and quartz deposits.................................................................................12 2.2.1 Quartz.............................................................................................................12
Recommended publications
  • How to Identify Rocks and Minerals
    How to Identify Rocks and Minerals fluorite calcite epidote quartz gypsum pyrite copper fluorite galena By Jan C. Rasmussen (Revised from a booklet by Susan Celestian) 2012 Donations for reproduction from: Freeport McMoRan Copper & Gold Foundation Friends of the Arizona Mining & Mineral Museum Wickenburg Gem & Mineral Society www.janrasmussen.com ii NUMERICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals. MINERALS: IGNEOUS ROCKS: 1 Talc 2 Gypsum 50 Apache Tear 3 Calcite 51 Basalt 4 Fluorite 52 Pumice 5 Apatite* 53 Perlite 6 Orthoclase (feldspar group) 54 Obsidian 7 Quartz 55 Tuff 8 Topaz* 56 Rhyolite 9 Corundum* 57 Granite 10 Diamond* 11 Chrysocolla (blue) 12 Azurite (dark blue) METAMORPHIC ROCKS: 13 Quartz, var. chalcedony 14 Chalcopyrite (brassy) 60 Quartzite* 15 Barite 61 Schist 16 Galena (metallic) 62 Marble 17 Hematite 63 Slate* 18 Garnet 64 Gneiss 19 Magnetite 65 Metaconglomerate* 20 Serpentine 66 Phyllite 21 Malachite (green) (20) (Serpentinite)* 22 Muscovite (mica group) 23 Bornite (peacock tarnish) 24 Halite (table salt) SEDIMENTARY ROCKS: 25 Cuprite 26 Limonite (Goethite) 70 Sandstone 27 Pyrite (brassy) 71 Limestone 28 Peridot 72 Travertine (onyx) 29 Gold* 73 Conglomerate 30 Copper (refined) 74 Breccia 31 Glauberite pseudomorph 75 Shale 32 Sulfur 76 Silicified Wood 33 Quartz, var. rose (Quartz, var. chert) 34 Quartz, var. amethyst 77 Coal 35 Hornblende* 78 Diatomite 36 Tourmaline* 37 Graphite* 38 Sphalerite* *= not generally in kits. Minerals numbered 39 Biotite* 8-10, 25, 29, 35-40 are listed for information 40 Dolomite* only. www.janrasmussen.com iii ALPHABETICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals.
    [Show full text]
  • Magnesium Ferrosilicon Alloy and Use Thereof in Manufacture of Nodular Cast Iron
    :uropaisches Patentamt 0 1 08 1 07 $ QJll Europeaniuropean Patent Office ® Publication number: B 1 Office)ffice europeen des brevets g) EUROPEAN PATENT SPECIFICATION §) Date of publication of patent specification: 13.01.88 (g) int. CI.4: C 22 C 33/08 |j) Application number: 83901516.1 Date of filing: 28.03.83 ® International application number: PCT/US83/00428 @ International publication number: WO 83/03848 10.11.83 Gazette 83/26 g) MAGNESIUM FERROSILICON ALLOY AND USE THEREOF IN MANUFACTURE OF NODULAR CAST IRON. (§) Priority: 21.04.82 US 370185 (73) Proprietor: SKW ALLOYS INC. 3801 Highland Avenue Niagara Falls New York 14305 (US) (§) Date of publication of application: 16.05.84 Bulletin 84/20 ® Inventor: DREMANN, Charles Earl Buckwalter Road (§) Publication of the grant of the patent: Phoenixville, PA 19460 (US) 13.01.88 Bulletin 88/02 @ Representative: Hale, Stephen Geoffrey et al ® Designated Contracting States: J.Y. & G.W. Johnson Furnival House 14/18 High DE FR GB Holborn London WC1V 6DE (GB) (58) References cited: FR-A-2443 510 GB-A-746406 GB-A- 885 896 GB-A-1 273 319 CD US-A-2 762 705 US-A-2873188 US-A-3 537 842 O US-A-3 703 922 US-A-4004 630 US-A-4224 069 00 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall CL be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been LU paid.
    [Show full text]
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Key to Rocks & Minerals Collections
    STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium
    [Show full text]
  • Slabs | Tiles | Accessories Bring Your Vision to Life
    SLABS | TILES | ACCESSORIES BRING YOUR VISION TO LIFE ¨STONES MARBLE ONYX LIMESTONE GRANITE TRAVERTINE QUARTZITE SEMI-PRECIOUS SPECIALTY STONE SLATE AGGLOMERATES MOSAICS MAGNUM OPUSTONE There is nothing quite like it. When you encounter the ideal stone, nothing else even comes close. More than just color, tone, texture and complexity, our stone must possess a certain character that elevates it and brings it to life. Richness, depth, a soul. We travel the globe to source the finest possible stones in a relentless pursuit of perfection. From quarry to quarry, we seek out and purchase the very best, the most distinctive, the only stones worthy of being Opustone. And we back it up with phenomenal industry-leading service, the kind of service you would only expect from a company that brings you the finest stones on earth. After all, we are not merely distributors of natural and manufactured stone. We assemble a distinctive, natural palette of materials for the design and creation of unique living spaces. Our stones were destined to be lived with. Nothing but Opustone will ever do. ¨GRANITE ¨MARBLE LEGENDARY AND TIMELESS. DESIGNED BY NATURE TO DEFINE THE SPACES WHERE HISTORY TAKES PLACE. ONYX¨ DEEP AND PONDEROUS. LOOK CLOSELY AND DISCOVER VAST WORLDS WITHIN. ¨LIMESTONE DEFINE YOUR SPACE WITH SUBTLE COLORS AND COMPLEX TEXTURES. BEAUTY ENDURES, SOLID AND ETERNAL, GRANITE¨ WAVES OF COLOR MELDING INTO ONE. COMPLEXITY IN ITS MOST SIMPLE FORM. ¨TRAVERTINE QUARTZITE¨ A DRAMATIC EXPERIENCE IN RICH TONES AND STRIKING DETAIL. ¨SEMI-PRECIOUS TRANSCENDING TIME WHERE. VISIONS BECOME REALITY. SPECIALTY STONE¨ ELEGANCE THAT GOES WELL BEYOND THE GOES WELL BEYOND ELEGANCE THAT OF THE ORDINARY.
    [Show full text]
  • Origin of Fibrosity and Banding in Agates from Flood Basalts: American Journal of Science, V
    Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Senior Integrative Exercise March 9, 2005 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. 2 Table of Contents AGATES: A LITERATURE REVEW………………………………………...……..3 Introduction………………....………………………………………………….4 Structural and compositional description of agates………………..………..6 Some problems concerning agate genesis………………………..…………..11 Silica Sources…………………………………………..………………11 Method of Deposition………………………………………………….13 Temperature of Formation…………………………………………….16 Age of Agates…………………………………………………………..17 LAKE SUPERIOR AGATES: AN ELECTRON BACKSCATTER DIFFRACTION (EBSD) ANALYSIS …………………………………………………………………..19 Abstract………………………………………………………………………...19 Introduction……………………………………………………………………19 Geologic setting………………………………………………………………...20 Methods……………………………………………………...…………………20 Results………………………………………………………….………………22 Discussion………………………………………………………………………26 Conclusions………………………………………………….…………………26 Acknowledgments……………………………………………………..………………28 References………………………………………………………………..……………28 3 Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Carleton College Senior Integrative Exercise March 9, 2005 Advisor: Cam Davidson 4 AGATES: A LITERATURE REVEW Introduction Agates, valued as semiprecious gemstones for their colorful, intricate banding, (Fig.1) are microcrystalline quartz nodules found in veins and cavities
    [Show full text]
  • List of Stones
    LIST OF STONES cognac colour diamond DN prehnite PR diamond D pyrite PY, MA heat enhanced black diamond DB quartzite QW amazonite AZ treated quartz RA amber AMB, R rhodolite RHL, RHG, RHP amethyst AM, AMP rock crystal RC, BK aquamarine AQ rose quartz RQ black onyx ON, O ruby RU black spinel SPB, ME sapphire SA black/white agate cameo CAM smoky quartz SQ blue topaz BTP, TPA smoky quartz/mother of pearl doublet P carnelian CAR, K tanzanite TZ chalcedony CA tourmalinated quartz BRU chrysoprase CH treated quartz RA citrine CI, CIG, CIC, CIY treated topaz, paraiba blue TPP cognac quartz CQ treated topaz, pink TPK garnet GR, GA treated pink sapphire PSA green quartz GQ, GAM turquoise TQ grey moonstone MSG whisky quartz WQ, BQ hematite HEM white agate AGW iolite IO, IOB white opal WOP labradorite LBG black crystal NCK lapis lazuli LP, L black cubic zirconia CZK lemon quartz LQ blue cubic zirconia CZB light colour amethyst PAM brown cubic zirconia BCZ moonstone MS champagne coloured cubic zirconia CCZ nephrite-jade NJA cubic zirconia CZ orange moonstone MSO dark blue synthetic spinel SSB peridot PE, PEA dark green cubic zirconia CZN pink opal POP green cubic zirconia GCZ pink rock PRO, RNI grey crystal NGY pink sapphire PSA honey cubic zirconia CZM pink tourmaline TU lavender cubic zirconia LCZ light blue cubic zirconia CZA copper coloured cultured pearl PRC, RRC light blue synthetic spinel SSL golden mabe cultured pearl PGO light rose cubic zirconia TCZ green cultured pearl PG lime cubic zirkonia CZL grey faceted cultured pearl PSG orange cubic
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry * Chapter T. Nondetrital Siliceous Sediments GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Data of Geochemistry Michael Fleischer, Technical Editor Chapter T. Nondetrital Siliceous Sediments By EARLE R. CRESSMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. DATA OP GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bul­ letins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface type. CHAPTER A. The chemical elements B. Cosmochemistry C. Internal structure and composition of the Earth D. Composition of the earth's crust E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring G. Chemical composition of rivers and lakes, by Daniel A. Livingstone H. Chemistry of the oceans I.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • The Geological Distribution of Chert in the Brooks Range
    August 30,1995 Price: $2.00 Division of Geological & Geophysical Surveys PUBLIC-DATA FILE 95-32 THE GEOLOGICAL DISTRIBUTION OF CHERT IN THE BROOKS RANGE by C.G. Mull August 1995 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645 THE GEOLOGICAL DISTRIBUTION OF QHERT IN THE BROOKS RANGE CONTENTS ABSTRACT THE ORIGIN OF CHERT IN THE BROOKS RANGE DISTRIBUTION OF CHERT IN THE BROOKS RANGE Banded Cav to black chert fLisburne Group) Jet black chert (Akmalik Ched Gray and m-wn n chert @JcsIkpuJs. Fo-atchak . CheN Tan to gray to black banded chert fOt& Formation) Bri~htred, maroon. and gem chert SUMMARY FIGURES Fig. 1. Distribution of Lisburne Group limestone Fig. 2. Distribution of Akrnalik Chert. Fig. 3. Distribution of Siksikpuk Fonnation and Imnaitchiak Chert Fig. 4. Distribution of Otuk Formation. Fig. 5. Distribution of red and green chert THE GEOLOGICAL DISTRIBUTION OF CHERT IN THE BROOKS RANGE Text of a paper read at Alaska Anthropological Association 22nd Annual Meeting, March 23-25,1995, Anchorage, Alaska ABSTRACT Geological mapping in the Brooks Range shows that high quality chert for tool making is abundant in sedimentary rocks in a number of areas along the northern flank and particularly in the foothills of the central and western Brooks Range. These cherts are dominantly black, light to dark gray, greenish gray, banded gray to black, or tan.
    [Show full text]