Travertine - Onyx - Limestone Gemstone - Shellstone and Precioustone Crema Luna Limestone Limestone Crema Champagne Limestone Limestone Persiano Limestone

Total Page:16

File Type:pdf, Size:1020Kb

Travertine - Onyx - Limestone Gemstone - Shellstone and Precioustone Crema Luna Limestone Limestone Crema Champagne Limestone Limestone Persiano Limestone ONICE BIANCO ONYX BIANCO LASA "VENA ORO" MARBLE BIANCO LASA "FANTASTICO" MARBLE MOON WHITE (CROSS CUT) GRANITE CREMA ANTARTIDA GRANITE KASHMIR WHITE GRANITE BIANCO CARRARA "CD" MARBLE PALISSANDRO CLASSICO MARBLE CALACATTA BLUETTE MARBLE MILLENNIUM CREAM GRANITE BIANCO ANTICO GRANITE LABRADORITE BIANCA GRANITE MISTERY WHITE MARBLE BRECCIA MULTICOLORE BRECCIAS IMPERIAL WHITE GRANITE BELLINI GRANITE PERSA AVORIO GRANITE TYPHOON BORDEAUX GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE CREMA LUNA LIMESTONE LIMESTONE CREMA CHAMPAGNE LIMESTONE LIMESTONE PERSIANO LIMESTONE JURA GREY LIMESTONE FOSSIL LIMESTONE LIMESTONE SILVER QUARTZITE QUARTZITE VELVET TAUPE MARBLE GREY STONE MARBLE LAGOS BLUE LIMESTONE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE GIALLO ATLANTIDE MARBLE GOLEN DREAM MARBLE GIALLO PROVENZA LIMESTONE LIMESTONE ONICE MIELE (CROSS CUT) ONYX ONICE NUVOLATO "EXTRA" (CROSS CUT) ONYX ALABASTRO EGIZIANO ONYX GOLDEN CREMA GRANITE GOLDEN BEACH GRANITE GIALLO MATISSE GRANITE GIALLO SIENA MARBLE ONICE ARCO IRIS (VEIN CUT) ONYX GIALLO IMPERIALE / ORO BRASIL GRANITE GOLDEN TYPHOON GRANITE TRAVERTINO GIALLO TURCO (CROSS CUT) TRAVERTINE JURA BEIGE LIMESTONE TRAVERTINO GIALLO PERSIANO (VEIN CUT) TRAVERTINE VAN GOGH GRANITE NEW VENETIAN GOLD "ORIGINAL" GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE GOLDEN PERSA GRANITE ASIA GOLD GRANITE BARRICATO GRANITE FIJI GOLD GRANITE GIALLO FARFALLA "GOLD" GRANIT COPPER CANYON GRANITE GIALLO ANTICO MARBLE QUARTZITE GOLD QUARTZITE GOLDEN BUTTERFLY "ORIGINAL" GRANITE MASCARELLO "A" GRANITE DIASPRO GIALLO MARBLE GIALLO VICENZA "DARK" GRANITE CARPE DIEM GRANITE ONICE GLACIALE ONYX JUPARANÀ MOKA GRANITE GOLDEN NOIR GRANITE MAGMA GOLD / SEDNA GRANITE LAVA VECCHIA GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE ONICE VERDE PERSIANO (CROSS CUT) ONYX VERDE ACQUAMARINA MARBLE QUARTZITE VERDE QUARTZITE VERDE CHIARO GRANITE VERDE LIMONE GRANITE VERDE BAMBOO "LIGHT" (CROSS CUT) GRANITE GREEN SOAPSTONE (HONED) GRANITE VERDE REY IMPERIALE GRANITE WATERFALL GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE ONICE SMERALDO (VEIN CUT) ONYX ONICE VERDE PAKISTANO (CROSS CUT) ONYX VERDE LAPPONIA QUARTZITE RAIN FOREST "GREEN" SANDSTONE VERDE BAMBOO "CLASSIC" GRANITE EMERALD QUARTZITE "DARK" QUARTZITE COSTA SMERALDA "ORIGINAL" GRANITE VERDE SAVANA GRANITE IRISH GREEN MARBLE GOLDEN JADE GRANITE VERDE BORGOGNA GRANITE HARLEQUIN GRANITE VERDE FANTASTICO GRANITE GOLDEN LIGHTNING GRANITE VERDE IMPERIALE / GUATEMALA MARBLE VERDE UBATUBA "BAHIA" GRANITE GREEN BOWENITE "DARK" GRANITE VERDE RAMEGGIATO MARBLE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE ONICE FANTASTICO (VEIN CUT) ONYX BRECHE MEDUSE BRECCIAS MULTICOLOR RED GRANITE RED MALIBÙ GRANITE VERDE FUOCO GRANITE ROSSO FRANCIA / INCARNAT MARBLE RED FIRE GRANITE BRÈCHE DE VENDÔME (BENOU) BRECCIAS TRAVERTINO ROSSO PERSIANO (VEIN CUT) TRAVERTINE RED HOLLYWOOD GRANITE IRON RED GRANITE NEW IMPERIAL RED GRANITE BRECCIA PONTIFICIA BRECCIAS CHANDONE ROUGE GRANIT DIASPRO ROSSO MARBLE NEW DAMASCO QUARTZITE ROSSO LEVANTO ITALIANO MARBLE OCEAN RED GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE ALBA CHIARA MARBLE OXFORD ROSE MARBLE ONICE PINK "TOP" ONYX RIVERSTONE "V.C." GRANITO ROSSO BALMORAL GRANITO ROSSO DAMASCO MARMO BEIGE QUARTZITE QUARTZITE INDIAN JUPARANÀ PINK GRANITE ROSA BETA GRANITE ROSSO FRANCIA MARMO ROSSO LEVANTO ITALIANO MARMO ROSSO RUBINO MARMO JUPARANÀ COLOMBO GRANITE SPRING ROSE MARBLE JUPARANÀ FLORENCE GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE ONICE AMETISTA ONYX ACQUERELLO QUARTZITE VIARA ORIGINAL / PARANÀ GRANITE ONICE CAPPUCCINO (CROSS CUT) ONYX ONYX TRAVERTINE ONYX ONICE SULTANO (CROSS CUT) ONYX VIOLETTA GRANITE CIPOLLINO ONDULATO MARBLE POLINESIA GRANITE RAIN FOREST "BROWN" SANDSTONE BROWN QUARTZITE QUARTZITE ELEGANT DUNE GRANITE PARADISO BASH / LIGHT GRANITE PARADISO DARK ORIGINAL / CLASSICO GRANITE JUPARANÀ BORDEAUX GRANITE BROWN CHOCOLATE GRANITE MARRON BOIS / TIMBER BROWN GRANITE CABERNET BROWN GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE AUSTRAL DREAM QUARTZITE CEDARSONE / MONACO BROWN MARBLE STALATTITE BROWN ONYX BRONZE AMANI MARBLE TROPIC BROWN GRANITE BALTIC BROWN GRANITE BROWN STONE MARBLE MARRON GLACÈ MARBLE MAGIC BROWN (CROSS CUT) MARBLE GRANDE FOSSILE MARBLE LABRADOR ANTIQUE GRANITE MARRON IMPERIALE GRANITE FRAPPUCCINO ( VEIN CUT) QUARTZITE GRIGIO AMANI MARBLE NEW EMPEROR GRANITE CAPOLAVORO GRANITE ELEGANT BROWN GRANITE BROWN ANTIQUE GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE GOLDEN KOSMUS GRANITE EARTH GLITTER GRANIT E MAGMA BLACK GRANITE BLACK BEAUTY GRANITE BLACK COSMIC GRANITE PORT LAURENT MARBLE FOSSIL BLACK MARBLE NEW CAMBRIAN BLACK GRANITE PURPLE BOREALE GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE AZUL ARAN GRANITE PERSA BLUE GRANITE LAPIS EYES GRANITE LABRADORITE BLUE AUSTRALE GRANITE LABRADORITE BIG BLUE / RIVER BLUE GRANITE BLUE GREEN LABRADORITE GRANITE BLUE JEANS GRANITE BLUE LOUISE GRANITE LABRADORITE MULTICOLOR GRANITE BRASS BLUE / BLUE DREAM GRANITE SAPPHIRE BLUE / SAPPHIRE BROWN GRANITE FARFALLA BLUE GRANITE AZUL MACAUBAS QUARTZITE AZUL IMPERIALE QUARTZITE AZUL BAHIA GRANITE LABRADOR BLUE PEARL "GT" GRANITE LABRADOR EMERALD PEARL GRANITE BLUE VOLGA GRANITE MARBLE - GRANITE - TRAVERTINE - ONYX - LIMESTONE GEMSTONE - SHELLSTONE AND PRECIOUSTONE GEMSTONE CLASSIC QUARTZ ROSE QUARTZ WILD AGATE RETRO PETRIFIED WOOD BLOOD MULTICOLOR AGATE RUBY CARNELIAN TIGER EYE "BLUE" TIGER IRON RED GEMSTONE GRAPHIC FELDSPAR OCEAN JASPER SMOKY QUARTZ "LIGHT" HAEMATOID QUARTZ LAPIS LAZULI "A-PLUS" MILKY OPALE TIGER EYE "RED" GREEN MALACHITE "ORIGINAL" SHELLSTONE BLUE AGATE SMOKY QUARTZ "DARK" AMETHYST LABRADORITE GREEN ABALONE GOLDEN MOTHER OF PEARL WHITE MOTHER OF PEARL (RAINBOW) BLACK MOTHER OF PEARL SHELLSTONE 3D BROWN PETRIFIED WOOD TIGER EYE GOLD RED JASPER CARNELIAN BROWN GREEN ABALONE GOLDEN MOTHER OF PEARL WHITE MOTHER OF PEARL (RAINBOW) BLACK MOTHER OF PEARL PRECIOUSTONE GEM & SHELLSTONE TYPE AND USE OF OUR MATERIALS FINISHES Marble is a calcareous rock with a mid-range in its hardness, formed usually by fine grain crystals. This composition marble granite MARBLE contributes to a mirror like polish finish, which is exceptional in stone. It is suitable for internal use. Granite is an igneous rock of volcanic origin and is composed of 30% quartz and 60% feldspar, which give it a high-range in hardness. It is very resistant to high wear and tear, with superior abrasion resistance and compressive strength. It is available in a wide range of colours. Historically it was used to be available only in a homogeneous GRANITE grain, now it is available in veined and patterned varieties. Granite is an excellent material for internal and external building use because of its hardness and resistance to all types of weather. POLISHED IRISH GREEN POLISHED BROWN CHOCOLATE It is a porous calcareous rock. Travertine may vary in colour from white to silver-grey, to yellow, red, and dark brown. Easy to work: the surface is suitable for a honed, polished or antiqued finish. It is mainly used for internal applications; TRAVERTINE however it can also be used externally in warm climates. Onyx is a calcareous material with a very fine, tight grain and many veins running concentrically to one another. This translucent stone is synonymous with luxury living and has been used to decorate the living spaces of the rich and ONYX famous. It takes a high polish which is part of its great beauty. HONED IRISH GREEN LETHER BROWN CHOCOLATE When the word ‘stone’ is used in the context of slab dimensional stone, it usually refers to limestone, slate and other sedimentary rock. Generally, they are rarely polished. They are suitable for internal use, and in block format are used LIMESTONE in external applications. Quartzite has the same physical-mechanical features as granite. It has high-range hardness, and is often used in QUARTZITE similar external applications to granite depending on the particular type. It is suitable for internal applications. LETHER IRISH GREEN RIVEN BROWN CHOCOLATE Volcanic rocks, Serpentine have a compressive strength similar to Granite. Generally it is a green colour, with lighter or darker shade. It sometimes includes some shades or red. It is generally suitable both for external applications SERPENTINE (depending on the particular stone) and for internal applications. Precious stone is now available in large format slabs. They are made from many beautiful stones including Quartz, Amethyst, Petrified Wood and Fossils. The slabs are 3 cm and also 2 cm thick, which make them very suitable for further fabrication. Each slab is a unique work of art from nature. Subject to the precaution that they are not placed PRECIOUSTONE close to intense heat, or anyplace where there is a sudden change in temperature. For internal use only. BRUSHED IRISH GREEN HYDRO BROWN CHOCOLATE Rare gemstones, such Lapis Lazuli, Malachite, Jasper and others are now available in large format slabs which are 3 cm thick. The gemstone veneer is hand selected from specimen pieces and comes with a white marble backing slab. These gemstone slabs create extraordinary bursts
Recommended publications
  • How to Identify Rocks and Minerals
    How to Identify Rocks and Minerals fluorite calcite epidote quartz gypsum pyrite copper fluorite galena By Jan C. Rasmussen (Revised from a booklet by Susan Celestian) 2012 Donations for reproduction from: Freeport McMoRan Copper & Gold Foundation Friends of the Arizona Mining & Mineral Museum Wickenburg Gem & Mineral Society www.janrasmussen.com ii NUMERICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals. MINERALS: IGNEOUS ROCKS: 1 Talc 2 Gypsum 50 Apache Tear 3 Calcite 51 Basalt 4 Fluorite 52 Pumice 5 Apatite* 53 Perlite 6 Orthoclase (feldspar group) 54 Obsidian 7 Quartz 55 Tuff 8 Topaz* 56 Rhyolite 9 Corundum* 57 Granite 10 Diamond* 11 Chrysocolla (blue) 12 Azurite (dark blue) METAMORPHIC ROCKS: 13 Quartz, var. chalcedony 14 Chalcopyrite (brassy) 60 Quartzite* 15 Barite 61 Schist 16 Galena (metallic) 62 Marble 17 Hematite 63 Slate* 18 Garnet 64 Gneiss 19 Magnetite 65 Metaconglomerate* 20 Serpentine 66 Phyllite 21 Malachite (green) (20) (Serpentinite)* 22 Muscovite (mica group) 23 Bornite (peacock tarnish) 24 Halite (table salt) SEDIMENTARY ROCKS: 25 Cuprite 26 Limonite (Goethite) 70 Sandstone 27 Pyrite (brassy) 71 Limestone 28 Peridot 72 Travertine (onyx) 29 Gold* 73 Conglomerate 30 Copper (refined) 74 Breccia 31 Glauberite pseudomorph 75 Shale 32 Sulfur 76 Silicified Wood 33 Quartz, var. rose (Quartz, var. chert) 34 Quartz, var. amethyst 77 Coal 35 Hornblende* 78 Diatomite 36 Tourmaline* 37 Graphite* 38 Sphalerite* *= not generally in kits. Minerals numbered 39 Biotite* 8-10, 25, 29, 35-40 are listed for information 40 Dolomite* only. www.janrasmussen.com iii ALPHABETICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals.
    [Show full text]
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Slabs | Tiles | Accessories Bring Your Vision to Life
    SLABS | TILES | ACCESSORIES BRING YOUR VISION TO LIFE ¨STONES MARBLE ONYX LIMESTONE GRANITE TRAVERTINE QUARTZITE SEMI-PRECIOUS SPECIALTY STONE SLATE AGGLOMERATES MOSAICS MAGNUM OPUSTONE There is nothing quite like it. When you encounter the ideal stone, nothing else even comes close. More than just color, tone, texture and complexity, our stone must possess a certain character that elevates it and brings it to life. Richness, depth, a soul. We travel the globe to source the finest possible stones in a relentless pursuit of perfection. From quarry to quarry, we seek out and purchase the very best, the most distinctive, the only stones worthy of being Opustone. And we back it up with phenomenal industry-leading service, the kind of service you would only expect from a company that brings you the finest stones on earth. After all, we are not merely distributors of natural and manufactured stone. We assemble a distinctive, natural palette of materials for the design and creation of unique living spaces. Our stones were destined to be lived with. Nothing but Opustone will ever do. ¨GRANITE ¨MARBLE LEGENDARY AND TIMELESS. DESIGNED BY NATURE TO DEFINE THE SPACES WHERE HISTORY TAKES PLACE. ONYX¨ DEEP AND PONDEROUS. LOOK CLOSELY AND DISCOVER VAST WORLDS WITHIN. ¨LIMESTONE DEFINE YOUR SPACE WITH SUBTLE COLORS AND COMPLEX TEXTURES. BEAUTY ENDURES, SOLID AND ETERNAL, GRANITE¨ WAVES OF COLOR MELDING INTO ONE. COMPLEXITY IN ITS MOST SIMPLE FORM. ¨TRAVERTINE QUARTZITE¨ A DRAMATIC EXPERIENCE IN RICH TONES AND STRIKING DETAIL. ¨SEMI-PRECIOUS TRANSCENDING TIME WHERE. VISIONS BECOME REALITY. SPECIALTY STONE¨ ELEGANCE THAT GOES WELL BEYOND THE GOES WELL BEYOND ELEGANCE THAT OF THE ORDINARY.
    [Show full text]
  • List of Stones
    LIST OF STONES cognac colour diamond DN prehnite PR diamond D pyrite PY, MA heat enhanced black diamond DB quartzite QW amazonite AZ treated quartz RA amber AMB, R rhodolite RHL, RHG, RHP amethyst AM, AMP rock crystal RC, BK aquamarine AQ rose quartz RQ black onyx ON, O ruby RU black spinel SPB, ME sapphire SA black/white agate cameo CAM smoky quartz SQ blue topaz BTP, TPA smoky quartz/mother of pearl doublet P carnelian CAR, K tanzanite TZ chalcedony CA tourmalinated quartz BRU chrysoprase CH treated quartz RA citrine CI, CIG, CIC, CIY treated topaz, paraiba blue TPP cognac quartz CQ treated topaz, pink TPK garnet GR, GA treated pink sapphire PSA green quartz GQ, GAM turquoise TQ grey moonstone MSG whisky quartz WQ, BQ hematite HEM white agate AGW iolite IO, IOB white opal WOP labradorite LBG black crystal NCK lapis lazuli LP, L black cubic zirconia CZK lemon quartz LQ blue cubic zirconia CZB light colour amethyst PAM brown cubic zirconia BCZ moonstone MS champagne coloured cubic zirconia CCZ nephrite-jade NJA cubic zirconia CZ orange moonstone MSO dark blue synthetic spinel SSB peridot PE, PEA dark green cubic zirconia CZN pink opal POP green cubic zirconia GCZ pink rock PRO, RNI grey crystal NGY pink sapphire PSA honey cubic zirconia CZM pink tourmaline TU lavender cubic zirconia LCZ light blue cubic zirconia CZA copper coloured cultured pearl PRC, RRC light blue synthetic spinel SSL golden mabe cultured pearl PGO light rose cubic zirconia TCZ green cultured pearl PG lime cubic zirkonia CZL grey faceted cultured pearl PSG orange cubic
    [Show full text]
  • Geological Field Trip 1 from Opals and Ancient Mountaintops to Ice Age Lakes Guide Written by Dr
    1 Geological Field Trip 1 From Opals and Ancient Mountaintops to Ice Age Lakes Guide written by Dr. E.K. Peters WSU Geology Department OVERVIEW: The first portion of the trip is in central Pullman and may be most easily accomplished on foot. It consists of five stops, "A" through "E," and can be done in an hour or two. The rest of the trip requires a vehicle and will take the remainder of a long day. SKETCH MAP OF THE TRIP Start: Kate Webster Physical Science Building, WSU-Pullman Campus, College Avenue Proceed west on the service portion of College Avenue, under the skywalk of Owen Science Library and then onto the regular section of College Avenue. Continue west, going downhill. The steepest portion of College Avenue takes you 2 past engineering buildings on your right and then by WSU's power plant at the bottom of the hill. Stop A: Depending on the season, you may see large piles of bituminous coal at the power plant. Coal is the compressed and compacted remains of ancient plants. You can think of it as fossil plant matter, made mostly of carbon. There are three common grades of coal used in the world: 1. Brown coal or lignite: this is low grade coal. It has abundant nitrogen and sulfur impurities. It therefore does not burn cleanly. The nitrogen and sulfur compounds go up in the smoke and then combine with water droplets in the air to make "acid rain" (small amounts of nitric and sulfuric acids). Lignite (brown coal) is used in China today, but not in the U.S.
    [Show full text]
  • The Dalradian Rocks of the North-East Grampian Highlands of Scotland
    Revised Manuscript 8/7/12 Click here to view linked References 1 2 3 4 5 The Dalradian rocks of the north-east Grampian 6 7 Highlands of Scotland 8 9 D. Stephenson, J.R. Mendum, D.J. Fettes, C.G. Smith, D. Gould, 10 11 P.W.G. Tanner and R.A. Smith 12 13 * David Stephenson British Geological Survey, Murchison House, 14 West Mains Road, Edinburgh EH9 3LA. 15 [email protected] 16 0131 650 0323 17 John R. Mendum British Geological Survey, Murchison House, West 18 Mains Road, Edinburgh EH9 3LA. 19 Douglas J. Fettes British Geological Survey, Murchison House, West 20 Mains Road, Edinburgh EH9 3LA. 21 C. Graham Smith Border Geo-Science, 1 Caplaw Way, Penicuik, 22 Midlothian EH26 9JE; formerly British Geological Survey, Edinburgh. 23 David Gould formerly British Geological Survey, Edinburgh. 24 P.W. Geoff Tanner Department of Geographical and Earth Sciences, 25 University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow 26 27 G12 8QQ. 28 Richard A. Smith formerly British Geological Survey, Edinburgh. 29 30 * Corresponding author 31 32 Keywords: 33 Geological Conservation Review 34 North-east Grampian Highlands 35 Dalradian Supergroup 36 Lithostratigraphy 37 Structural geology 38 Metamorphism 39 40 41 ABSTRACT 42 43 The North-east Grampian Highlands, as described here, are bounded 44 to the north-west by the Grampian Group outcrop of the Northern 45 Grampian Highlands and to the south by the Southern Highland Group 46 outcrop in the Highland Border region. The Dalradian succession 47 therefore encompasses the whole of the Appin and Argyll groups, but 48 also includes an extensive outlier of Southern Highland Group 49 strata in the north of the region.
    [Show full text]
  • Quartzite Rocks Transported Long Distances Northwest States and Adjacent Canada
    Part IV Quartzite Rocks Transported Long Distances Northwest States and Adjacent Canada During uplift and erosion of the continents, a wide variety of rocks were eroded by Flood currents rushing off the continents. The softer rocks, like siltstone, sandstone, limestone, basalt, and granite, would be rapidly pulverized during transport. The resistant rocks would be carried down current and quickly rounded. These resistant rocks would became smaller the farther the rocks were transported. If the distance of transport was far enough, however, even resistant rocks would be totally annihilated into fine particles. But before the resistant rocks could be totally pulverized, many of them were deposited on the Earth’s surface, leaving a trail left behind that demonstrates the powerful currents sweep- ing off the continents during the Retreating Stage of the Flood. The finer-grained rocks that were pulverized would sometimes be deposited with the resistant rocks, but much of this sediment would be carried off the continents. If the resistant rock type is unique to a particular area, one can calculate the distance from the point of erosion to the rounded gravel deposits down current to see how far the unique type of rock was transported. We can compare such distances to the drainage pat- tern today to see if modern rivers were responsible for the transport, as mostly claimed within the uniformitarian paradigm. This part will summarize extensive research over about 20 years by Peter Klevberg, John Hergenrather, and myself on the numerous locations where well-rounded quartzite rocks are found on the surface in the northwest states and adjacent Canada.
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Treated Andamooka Matrix Opal
    NOTES AND NEW TECHNIQUES By Grahame Brow11 Mat~ixopal f~omAndamooka, in South Aust~alia,is a p~ecious opal-included po~ous ~ockthat is commonly colo~enhanced (ca~bonimp~egnated) to imitate the highly p~izedblack opal f~om Lightning Ridge in no~the~nNew South Wales, Aust~alia.This mate~ialhas been comme~ciallyavailable since the mid-1950s and is often ~efe~~edto as 44suga~t~eated." A basic sugay acid- ca~bonizingtechnique is used to ca~bonize,and thus dayken, the c~eam-colo~edmat~ix ofp~epolished stones so that the play-O$CO~OY is moye p~ominent. The ca~bonimp~egnato~ in t~eatedAn- damooka mat~ixopal can be ~eadilyident$ed with low-powe~ magn@cation. The carbon impregnation of matrix opal from (figure 4). The So~~tllAustralia Department of Andamool~a~in South Australia! has produced Mines and Energy estimated that in 1988 the many thousands of carats of treated opal with a Andamooka fields! at $A3 millionl were the third broad range of appearances (figure 1). Most un- most important opal deposit in Australia, in terms treated matrix opal from Andamoolza displays of value of rough produced (SADME! 1989); they little play-of-color and is virt~~allyworthless (fig- followed Mintabie ($A39 million) and Coober Pedy ure 2).However, carbon impregnation of the matrix ($A21 million). creates a darlz body color that shows off the play-of- According to Barnes and Townsend (1982)) colorl producing stones that may resemble blaclz precious opal usually occurs at Andamoolza in an opal froin Lightning Ridge and other localities essentially horizontal layer at or near the contact (figure 3).
    [Show full text]
  • IODP 370 T-Limits Post Cruise Meeting, Field Trip, NW Highlands 4Th to 7Th June 2018
    IODP 370 T-Limits Post Cruise Meeting, Field Trip, NW Highlands 4th to 7th June 2018 Photo ISS-NASA Prepared and led by Stephen A. Bowden Field leaders: Alison J. Wright – Highland Geological Society & Donald Stewart – Aberdeen Geological Society Contributions from: Yazuru Yamamoto, Satoshi Toni, Man-Yin Tsang, Kiho Yang – core logging team during IODP 370 1 | Page 2 | Page A One Page Geology of the NW Highlands Lewisian A long history of structure deformation, volcanic activity and metamorphism formed a crystalline basement of gneisses that date to 3.1 to 2.7 Ga. These are termed the Lewisian, after the Isle of Lewis. The gneisses vary in their extent of deformation, and evidence different periods of intrusion with basic Scourie dykes dated to about 2.3 Ga, and younger less deformed pegmatite dykes (granitic) dated to 1.7 Ga. Torridonian The Torridonian comprises three sedimentary successions with unconformities or time-gaps between each, and with marked unconformity on the Lewisian Basement beneath. The Torridonian itself Is divided into the Stoer Group, and then the Diabaig and Applecross formations. The Stoer Group itself is notably older 1.2-1.1 Ga than the rest of the Torridonian group ~0.8 Ga. The Torridonian Group is typically held to have been deposited as part of a continental succession – but geochemical evidence contrary to this emerges from time to time. Lower Palaeozoic The Lower Palaeozoic is marine in character and unconformably overlies both the Torridonian and the Lewisian. The lower-most unit is the basal quartzite (a simple white quartzite- with occasional stylolites) ~ 560 Ma in age.
    [Show full text]
  • Silicon Production Using Long Flaming Coal and Improvement of Its Quality Indicators
    A. D. MEKHTIEV, M. J. TOLYMBEKOV, A. V. KIM, ZH. D. ZHOLDUBAEVA, ISSN 0543-5846 D. K. ISSIN, A. Z. ISSAGULOV, B. D. ISSIN METABK 53(4) 563-566 (2014) UDC – UDK 669.782:669.046:669.041:662.642=111 SILICON PRODUCTION USING LONG FLAMING COAL AND IMPROVEMENT OF ITS QUALITY INDICATORS Received – Primljeno: 2013-07-25 Accepted – Prihvaćeno: 2014-03-30 Preliminary Note – Prethodno priopćenje The object of this study is to explore possibility of metallothermic producing of crystalline silicon using various types of carbon reducing agents as a reducing agent. The experience of existing enterprises shows that one of the best carbon reducing agents qualifying silicon electric melting technology is charcoal. On the other hand, charcoal has a number of disadvantages, such as its scarcity, high cost and low mechanical strength. Experimental melts has shown the principal possibility of producing the crystalline silicon that meets the requirements of quartz standard using low ash special coke and long-flame coal as reducing agents. Key words: silicon, metalthermie, furnace charge, reducer, coke, electric melting, concentrate, quartzite, technology, metallurgy, iron, basicity, oxide, slag, ferroalloy INTRODUCTION small amount of slag – 2 - 3 % of the melted alloy mass General patterns of silica recovery using carbon can complicates the process and affects the quality of silicon, be determined by the thermodynamic analysis of Si-OC that’s why the main requirement to quartz, used as raw system. material for the melting of crystalline silicon, is its purity The main summary reactions associated with silicon (it shouldn’t contain such impurities as oxides of alumi- production, are: num, iron, calcium, titanium, and other elements).
    [Show full text]