Neurexin Directs Partner-Specific Synaptic Connectivity in C. Elegans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanisms of Acetylcholine Receptor Loss in Myasthenia Gravis
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.43.7.601 on 1 July 1980. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1980, 43, 601-610 Mechanisms of acetylcholine receptor loss in myasthenia gravis DANIEL B DRACHMAN, ROBERT N ADAMS, ELIS F STANLEY, AND ALAN PESTRONK From the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA SUMMARY The fundamental abnormality affecting the neuromuscular junctions of myasthenic patients is a reduction of available AChRs, due to an autoimmune attack directed against the receptors. Antibodies to AChR are present in most patients, and there is evidence that they have a predominant pathogenic role in the disease, aided by complement. The mechanism of antibody action involves acceleration of the rate of degradation of AChRs, attributable to cross-linking of the receptors. In addition, antibodies may block AChRs, and may participate in producing destructive changes, perhaps in conjunction with complement. The possibility that cell-mediated mechanisms may play a role in the autoimmune responses of some myasthenic patients remains to be explored. Although the target of the autoimmune attack in myasthenic patients is probably always the acetyl- Protected by copyright. choline receptors, it is not yet clear which of these immune mechanisms are most important. It is likely that the relative role of each mechanism varies from patient to patient. One of the goals of future research will be to identify the relative importance of each -
FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Report FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development Matthew L. O’Sullivan,1,5 Joris de Wit,1,5 Jeffrey N. Savas,2 Davide Comoletti,3 Stefanie Otto-Hitt,1,6 John R. Yates III,2 and Anirvan Ghosh1,4,* 1Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA 2Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA 3Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA 4CNS Discovery, F. Hoffmann-La Roche, 4070 Basel, Switzerland 5These authors contributed equally to this work 6Present address: Department of Natural Sciences, Carroll College, Helena, MT 59625, USA *Correspondence: [email protected] DOI 10.1016/j.neuron.2012.01.018 SUMMARY much effort has been expended investigating the mechanisms of a-latrotoxin action (Su¨ dhof, 2001), nothing is known about Latrophilins (LPHNs) are a small family of G protein- the endogenous function of latrophilins in vertebrates. Further coupled receptors known to mediate the massive evidence for the importance of latrophilins in the proper synaptic exocytosis caused by the black widow functioning of neural circuits comes from recent human spider venom a-latrotoxin, but their endogenous genetics studies that have linked LPHN3 mutations to attention ligands and function remain unclear. Mutations in deficit hyperactivity disorder (ADHD), a common and highly LPHN3 are strongly associated with attention deficit heritable developmental psychiatric disorder (Arcos-Burgos et al., 2010; Domene´ et al., 2011; Jain et al., 2011; Ribase´ s hyperactivity disorder, suggesting a role for latrophi- et al., 2011). -
Edinburgh Research Explorer
Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S. -
Protease Effects on the Structure of Acetylcholine Receptor Membranes from Torpedo Californica
PROTEASE EFFECTS ON THE STRUCTURE OF ACETYLCHOLINE RECEPTOR MEMBRANES FROM TORPEDO CALIFORNICA MICHAEL W. KLYMKOWSKY, JOHN E . HEUSER, and ROBERT M. STROUD From the Department of Biochemistry & Biophysics, University of California at San Francisco, San Francisco, California 94143 . Dr . Klymkowsky's present address is MRC Neuroimmunology Project, Department of Zoology, University College London, London WC IE, 6BT, England ABSTRACT Protease digestion of acetylcholine receptor-rich membranes derived from Torpedo californica electroplaques by homogenization and isopycnic centrifugation results in degradation of all receptor subunits without any significant effect on the appearance in electron micrographs, the toxin binding ability, or the sedimentation value of the receptor molecule . Such treatment does produce dramatic changes in the morphology of the normally 0.5- to 2-lm-diameter spherical vesicles when observed by either negative-stain or freeze-fracture electron microscopy . Removal of peripheral, apparently nonreceptor polypeptides by alkali stripping (Neubig et al ., 1979, Proc. Natl. Acad. Sci. U. S. A. 76:690-694) results in increased sensitivity of the acetylcholine receptor membranes to the protease trypsin as indicated by SDS gel electrophoretic patterns and by the extent of morphologic change observed in vesicle structure . Trypsin digestion of alkali-stripped receptor membranes results in a limit degradation pattern of all four receptor subunits, whereupon all the vesicles undergo the morphological transformation to minivesicles -
Interplay Between Gating and Block of Ligand-Gated Ion Channels
brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes. -
Cellular Trafficking of Nicotinic Acetylcholine Receptors
npg Acta Pharmacol Sin 2009 Jun; 30 (6): 656–662 Review Cellular trafficking of nicotinic acetylcholine receptors Paul A ST JOHN* Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ 85724, USA Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular loca- tion and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs. Keywords: membrane traffic; protein traffic; biosynthesis; endocytosis; endoplasmic reticulum-associated degradation Acta Pharmacologica Sinica (2009) 30: 656–662; doi: 10.1038/aps.2009.76 Introduction ways, but two particular perturbations have been especially well studied and exert their effects at least in part by altering Nicotinic acetylcholine receptors (nAChRs) mediate the trafficking of nAChRs: 1) denervation changes the total synaptic transmission in the CNS, in autonomic ganglia, and number, the distribution, and the turnover rate of nAChRs in at neuromuscular junctions and other peripheral synapses. skeletal muscle; 2) prolonged exposure to nicotine increases The functional properties of these synapses differ, but in each the total number of nAChRs in neurons. Several of the stud- case, properly functional signaling requires cellular control ies reviewed here addressed the mechanisms by which these of the number, type, and location of nAChRs. Trafficking treatments alter nAChR trafficking. Other authors in this of nAChRs – the movement of nAChRs between compart- special issue will address other aspects of the effects of nico- ments of a cell, including the cell's biosynthetic and degrada- tine on nAChRs. -
Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor
Genes 2013, 4, 171-197; doi:10.3390/genes4020171 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor Wymke Ockenga, Sina Kühne, Simone Bocksberger, Antje Banning and Ritva Tikkanen * Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: [email protected] (W.O.); [email protected] (S.K.); [email protected] (S.B.); [email protected] (A.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-641-9947-420; Fax: +49-641-9947-429. Received: 31 January 2013; in revised form: 10 March 2013 / Accepted: 25 March 2013 / Published: 2 April 2013 Abstract: Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. -
Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile
Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile Julien Patenaude and Claude Perreault This information is current as J Immunol 2016; 196:4760-4770; Prepublished online 29 of October 1, 2021. April 2016; doi: 10.4049/jimmunol.1502499 http://www.jimmunol.org/content/196/11/4760 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/04/29/jimmunol.150249 Material 9.DCSupplemental References This article cites 65 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/196/11/4760.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile Julien Patenaude and Claude Perreault In order to understand the role of mesenchymal cells (MCs) in the adult thymus, we performed whole transcriptome analyses of primary thymic, bone, and skin MCs. -
Modulatory Roles of ATP and Adenosine in Cholinergic Neuromuscular Transmission
International Journal of Molecular Sciences Review Modulatory Roles of ATP and Adenosine in Cholinergic Neuromuscular Transmission Ayrat U. Ziganshin 1,* , Adel E. Khairullin 2, Charles H. V. Hoyle 1 and Sergey N. Grishin 3 1 Department of Pharmacology, Kazan State Medical University, 49 Butlerov Street, 420012 Kazan, Russia; [email protected] 2 Department of Biochemistry, Laboratory and Clinical Diagnostics, Kazan State Medical University, 49 Butlerov Street, 420012 Kazan, Russia; [email protected] 3 Department of Medical and Biological Physics with Computer Science and Medical Equipment, Kazan State Medical University, 49 Butlerov Street, 420012 Kazan, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-843-236-0512 Received: 30 June 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: A review of the data on the modulatory action of adenosine 5’-triphosphate (ATP), the main co-transmitter with acetylcholine, and adenosine, the final ATP metabolite in the synaptic cleft, on neuromuscular transmission is presented. The effects of these endogenous modulators on pre- and post-synaptic processes are discussed. The contribution of purines to the processes of quantal and non- quantal secretion of acetylcholine into the synaptic cleft, as well as the influence of the postsynaptic effects of ATP and adenosine on the functioning of cholinergic receptors, are evaluated. As usual, the P2-receptor-mediated influence is minimal under physiological conditions, but it becomes very important in some pathophysiological situations such as hypothermia, stress, or ischemia. There are some data demonstrating the same in neuromuscular transmission. It is suggested that the role of endogenous purines is primarily to provide a safety factor for the efficiency of cholinergic neuromuscular transmission. -
Effects of the Histamine H3 Receptor Antagonist ABT-239 on Cognition
Pharmacological Reports Copyright © 2012 2012, 64, 13161325 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences EffectsofthehistamineH3 receptorantagonist ABT-239oncognitionandnicotine-induced memoryenhancementinmice MartaKruk1,JoannaMiszkiel2,AndrewC.McCreary3, EdmundPrzegaliñski2,Ma³gorzataFilip2,4,Gra¿ynaBia³a1 1 DepartmentofPharmacologyandPharmacodynamics,MedicalUniversityofLublin,ChodŸki4A, PL20-093Lublin,Poland 2 LaboratoryofDrugAddictionPharmacology,InstituteofPharmacology,PolishAcademyofSciences,Smêtna12, PL31-343Kraków,Poland 3 BrainsOn-Line,deMudden16,9747AWGroningen,TheNetherlands 4 DepartmentofToxicology,FacultyofPharmacy,JagiellonianUniversity,CollegeofMedicine,Medyczna9, PL30-688Kraków,Poland Correspondence: Gra¿ynaBia³a,e-mail:[email protected] Abstract: Background: The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been re- ported extensively. However, the role of histamine H3 receptor mechanisms interacting with nicotinic mechanisms has not previ- ouslybeen extensivelyinvestigated. Methods: The current study was conducted to determine the interactions of nicotinic and histamine H3 receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2- methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H3 receptor antagonist/inverse -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
Specific Labeling of Synaptic Schwann Cells Reveals Unique Cellular And
RESEARCH ARTICLE Specific labeling of synaptic schwann cells reveals unique cellular and molecular features Ryan Castro1,2,3, Thomas Taetzsch1,2, Sydney K Vaughan1,2, Kerilyn Godbe4, John Chappell4, Robert E Settlage5, Gregorio Valdez1,2,6* 1Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, United States; 2Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States; 3Neuroscience Graduate Program, Brown University, Providence, United States; 4Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, United States; 5Department of Advanced Research Computing, Virginia Tech, Blacksburg, United States; 6Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States Abstract Perisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner. We have identified neuron-glia antigen 2 (NG2) as a unique molecular marker of S100b+ PSCs in skeletal muscle. NG2 is expressed in Schwann cells already associated with the NMJ, indicating that it is a marker of differentiated PSCs. Using a newly generated transgenic mouse in which PSCs are specifically labeled, we show that PSCs have a unique molecular signature that includes genes known to play critical roles in *For correspondence: PSCs and synapses. These findings will serve as a springboard for revealing drivers of PSC [email protected] differentiation and function.