Simple Lie Algebras and Singularities

Total Page:16

File Type:pdf, Size:1020Kb

Simple Lie Algebras and Singularities Master thesis Simple Lie algebras and singularities Nicolas Hemelsoet supervised by Prof. Donna Testerman and Prof. Paul Levy January 19, 2018 Contents 1 Introduction 1 2 Finite subgroups of SL2(C) and invariant theory 3 3 Du Val singularities 10 3.1 Algebraic surfaces . 10 3.2 The resolution graph of simple singularities . 16 4 The McKay graphs 21 4.1 Computations of the graphs . 21 4.2 A proof of the McKay theorem . 26 5 Brieskorn's theorem 29 5.1 Preliminaries . 29 5.2 Quasi-homogenous polynomials . 36 5.3 End of the proof of Brieskorn's theorem . 38 6 The Springer resolution 41 6.1 Grothendieck's theorem . 42 6.2 The Springer fiber for g of type An ............................ 45 7 Conclusion 46 8 Appendix 48 1 Introduction Let Γ be a binary polyhedral group, that is a finite subgroup of SL2(C). We can obtain two natural 2 graphs from Γ: the resolution graph of the surface C =Γ, and the McKay graph of the representation Γ ⊂ SL2(C). The McKay correspondance states that such graphs are the same, more precisely the 2 resolution graphs of C =Γ will give all the simply-laced Dynkin diagrams, and the McKay graphs will give all the affine Dynkin diagrams, where the additional vertex is the vertex corresponding to the trivial representation. 2 Γ For computing the equations of C =Γ := Spec(C[x; y] ) we need to compute the generators and Γ −1 relations for the ring C[x; y] . As an example, if Γ = Z=nZ generated by g = diag(ζ; ζ ) with −1 ζ a primitive n-th root of unity, the action on C[x; y] is g · x = ζ x and g · y = ζy (this is the contragredient representation). The invariants are u = xn; v = yn and w = xy, the unique relation 1 n is uv = w which is a singularity of type An−1. Any binary polyhedral group will give similarly a surface with an isolated singularity at the origin, called a Du Val singularity or a simple singularity. The McKay correspondance states that the resolution graph of a Du Val singularity is a Dynkin diagram and that the McKay graph of the corresponding binary group is the corresponding affine Dynkin diagram. This already gives a link between simple Lie algebras of type ADE and simple singularities, but in fact they arise naturally inside the Lie algebra itself ! More precisely, let g be a complex Lie algebra of type An;Dn;E6;E7 or E8, and G the connected, simply-connected corresponding complex Lie group. We will look at the adjoint action of G on g. This induces an action of G G on C[g] and since G is reductive, by Hilbert's theorem C[g] is finitely generated. We get a G morphism of algebraic varieties F : g ! g=G (where g=G := Spec(C[g] ) is the categorical quo- G tient) corresponding to the inclusion C[g] ⊂ C[g]. In the case of g = sln the map is simply n−1 2 3 n χ : sln ! C ;M 7! (tr(M ); tr(M );:::; tr(M )). We will see that dim g=G = r where r is the rank of G. Let x 2 g be a subregular (meaning that dim ZG(x) = r+2) nilpotent element. Let S be a transverse slice at x, that is a subvariety S of g such that the natural map TxS ⊕ Tx(G · x) ! g is ∼ surjective (we identify Txg = g). Then, if N (g) is the nilpotent cone of g, we obtain that N (g) \ S is a Du Val singularity of the same type as the Lie algebra ! This gives a connection between simple Lie algebras and simple surface singularities. Moreover, the restriction of F to S is the semiuniversal deformation of the singularity, meaning in some sense that all deformations of this singularity can be obtained by pullback of the map S ! g=G. This theorem was conjectured by Grothendieck and showed by Brieskorn for the ADE case. Slodowy extended it to Lie algebras of type BCFG. ∗ The proof of the Brieskorn's theorem uses an action of C on S and on g=G, with respect to ∗ which the quotient morphism is C -equivariant. This will give us concrete information about the morphism S ! g=G by computing the associated weights and we will be able to identify this mor- ∗ phism with the semiuniversal deformation, which also admits an action of C with the same weights. Next, we will use the Springer resolution to present a nice way of resolving the singular fibers of the map χ : g ! g=G. There is a very nice interaction between such resolutions and flag varieties. Here is how this master project is organized : in section 1 we compute the equation of the 2 surface C =Γ where Γ ⊂ SL2(C) is a finite group. In section 2 we study the geometry of such surfaces, in particular computing their minimal resolution. In section 3 we compute the McKay graphs of the binary tetrahedral groups. In section 4 we turn to Lie algebras and study the map χ : g ! g=G and its restriction to a transverse slice σ : S ! g=G, in order to prove Brieskorn's 2 theorem. In section 5, we present Springer's resolution of the nilpotent variety, which provides a nice and natural resolution of the Du Val singularities. 2 Finite subgroups of SL2(C) and invariant theory Let Γ be a finite subgroup of SL2(C). The list of such groups up to conjugacy is well known, cf [11] , chapter 1 (in fact we follow closely this chapter of the lecture notes by Dolgachev in this subsection, especially when we use relative invariants and Grundformen) or [32] for more details. By a standard averaging argument, any finite subgroup of SL2(C) is conjugate to a finite subgroup ∼ of SU2. There is a canonical map SU2 ! PSU2 = SO3, and in fact any finite group in SU2 is the pullback of a finite subgroup of SO3 (with the exception of cyclic groups of odd order) ! Later we will write explicit generators for each group, so now we just write the list : • Type An : Γ is cyclic of order n • Type Dn : Γ has order 4(n − 2), and is called the binary dihedral group of order 4(n − 2). • Type E6 : Γ has order 24, is called the binary tetrahedral group and is the pullback of A4 ⊂ SO3. • Type E7 : Γ has order 48, is called the binary octahedral group and is the pullback of S4 ⊂ SO3. • Type E8 : Γ has order 120, is called the binary icosahedral group and is the pullback of A5 ⊂ SO3. We will quickly sketch how to find this list, since the proof will also give us another useful fact concerning the orbits of the action of Γ on S2. We first claim that there is an exact sequence 1 ! {±1g ! SU2 ! SO3 ! 1 To show this, a possible way is to use that SU2 is isomorphic to the group of quaternions of norm 1, and then acts by conjugaiton on the "pure quaternions" ai + bj + ck which form a real vector ∼ 3 space V = R . In fact, it turns out that this morphism SU2 ! GL3(R) has image SO3, because 2 an element of SU2 preserve norm, and the restriction of the norm of C on V identify with the usual scalar product. Next, we claim that every finite subgroup in SU2 (except cyclic groups of odd order) is the pullback of a finite group in SO3. This can be proven by showing that finite subgroups Γ ⊂ SU2 which do not contain −1 are exactly cyclic odd subgroups. We write Γ for the image of 3 3 Γ ⊂ SU2 by the surjection SU2 ! SO3 (topologically this is the covering map S ! RP ). Now admitting the previous facts, to classify finite subgroups of SU2 we can just look at finite subgroups 3 of SO3. 2 Now let Λ a non-trivial finite subgroup of SO3. Let P be the set of points x 2 S with stabΛ(x) 6= 1. We will show the following lemma, essential for the classification : Lemma 2.1. Λ acts on P and there are only 2 orbits if Λ is cyclic, and 3 if Λ is not cyclic. Proof. Let us show that Λ acts on P : if x 2 P , that is there is h 2 Λnf1g with hx = x by definition, then for g 2 Λ(ghg−1)(gx) = ghx = gx, that is gx 2 P , so indeed Λ acts on P . 1 P g 1 If N is the number of orbits, then we have N = jΛj g2Λ jP j so N = jΛj (2(jΛj − 1) + jP j) : indeed, if g = 1 every x 2 P is fixed, else there are exactly two fixed points. Picking a representative xi in P each orbit we can write jP j = i jΛ · xij. Using that jstab(xi)j = jΛj=jΛ · xij we have 1 X 1 X 1 2 1 − = N − = 1 − jΛj jstab(x )j jstab(x )j i i i i Now, the left hand side is in [1; 2). On the other hand, the stabilizer has order at least 2 for all orbits, so we have 1 ≤ 1 − 1 ≤ 1, showing that 2 ≤ N ≤ 3. 2 |stab(xi)j If N = 2 then we obtain 2 = jP j, i.e there are two orbits in P and x1; x2 are on the same axis so Λ is cyclic.
Recommended publications
  • Arxiv:1810.05857V3 [Math.AG] 11 Jun 2020
    HYPERDETERMINANTS FROM THE E8 DISCRIMINANT FRED´ ERIC´ HOLWECK AND LUKE OEDING Abstract. We find expressions of the polynomials defining the dual varieties of Grass- mannians Gr(3, 9) and Gr(4, 8) both in terms of the fundamental invariants and in terms of a generic semi-simple element. We restrict the polynomial defining the dual of the ad- joint orbit of E8 and obtain the polynomials of interest as factors. To find an expression of the Gr(4, 8) discriminant in terms of fundamental invariants, which has 15, 942 terms, we perform interpolation with mod-p reductions and rational reconstruction. From these expressions for the discriminants of Gr(3, 9) and Gr(4, 8) we also obtain expressions for well-known hyperdeterminants of formats 3 × 3 × 3 and 2 × 2 × 2 × 2. 1. Introduction Cayley’s 2 × 2 × 2 hyperdeterminant is the well-known polynomial 2 2 2 2 2 2 2 2 ∆222 = x000x111 + x001x110 + x010x101 + x100x011 + 4(x000x011x101x110 + x001x010x100x111) − 2(x000x001x110x111 + x000x010x101x111 + x000x100x011x111+ x001x010x101x110 + x001x100x011x110 + x010x100x011x101). ×3 It generates the ring of invariants for the group SL(2) ⋉S3 acting on the tensor space C2×2×2. It is well-studied in Algebraic Geometry. Its vanishing defines the projective dual of the Segre embedding of three copies of the projective line (a toric variety) [13], and also coincides with the tangential variety of the same Segre product [24, 28, 33]. On real tensors it separates real ranks 2 and 3 [9]. It is the unique relation among the principal minors of a general 3 × 3 symmetric matrix [18].
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • From Singularities to Graphs
    FROM SINGULARITIES TO GRAPHS PATRICK POPESCU-PAMPU Abstract. In this paper I analyze the problems which led to the introduction of graphs as tools for studying surface singularities. I explain how such graphs were initially only described using words, but that several questions made it necessary to draw them, leading to the elaboration of a special calculus with graphs. This is a non-technical paper intended to be readable both by mathematicians and philosophers or historians of mathematics. Contents 1. Introduction 1 2. What is the meaning of those graphs?3 3. What does it mean to resolve a surface singularity?4 4. Representations of surface singularities around 19008 5. Du Val's singularities, Coxeter's diagrams and the birth of dual graphs 10 6. Mumford's paper on the links of surface singularities 14 7. Waldhausen's graph manifolds and Neumann's calculus on graphs 17 8. Conclusion 19 References 20 1. Introduction Nowadays, graphs are common tools in singularity theory. They mainly serve to represent morpholog- ical aspects of surface singularities. Three examples of such graphs may be seen in Figures1,2,3. They are extracted from the papers [57], [61] and [14], respectively. Comparing those figures we see that the vertices are diversely depicted by small stars or by little circles, which are either full or empty. These drawing conventions are not important. What matters is that all vertices are decorated with numbers. We will explain their meaning later. My aim in this paper is to understand which kinds of problems forced mathematicians to associate graphs to surface singularities.
    [Show full text]
  • Emigration of Mathematicians from Outside German-Speaking Academia 1933–1963, Supported by the Society for the Protection of Science and Learning
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 39 (2012) 84–104 www.elsevier.com/locate/yhmat Emigration of mathematicians from outside German-speaking academia 1933–1963, supported by the Society for the Protection of Science and Learning Rolf Nossum * Department of Mathematics, University of Agder, P.O. Box 422, N-4604 Kristiansand, Norway Available online 14 September 2011 Abstract Racial and political persecution of German-speaking scholars from 1933 onward has already been exten- sively studied. The archives of the Society for the Protection of Science and Learning (SPSL), which are depos- ited in the Western Manuscripts Collection at the Bodleian Library in Oxford, is a rich source of information about the emigration of European scientists, also those who did not come from German-speaking institutions. This is an account of the support given by the SPSL to the persecuted mathematicians among them. The chal- lenges faced by these emigrants included, in addition to anti-Semitism and xenophobia in their countries both of origin and of destination, the restricted financial means of the SPSL, and the sometimes arbitrary assessment of academic merits. Ó 2011 Elsevier Inc. All rights reserved. Zusammenfassung Der rassistischen und politischen Verfolgung deutschsprachiger Wissenschaftler nach 1933 wurden bereits umfassende Studien gewidmet. Die Akten der Society for the Protection of Science and Learning (SPSL), die bei der Western Manuscripts Collection der Bodleian Library in Oxford deponiert sind, bieten umfangreiche Informationen zur Emigration auch derjenigen europäischen Wissenschaftler, die nicht deutschsprachig sozial- isiert waren. Hier soll die Unterstützung der SPSL für verfolgte nicht-deutschsprachige Mathematiker beschrie- ben werden.
    [Show full text]
  • Search Problems in Algebraic Complexity, GCT, and Hardness Of
    Search Problems in Algebraic Complexity, GCT, and Hardness of Generators for Invariant Rings Ankit Garg Microsoft Research, Bangalore, India [email protected] Christian Ikenmeyer University of Liverpool, UK [email protected] Visu Makam Institute for Advanced Study, Princeton, NJ, USA [email protected] Rafael Oliveira University of Waterloo, Canada [email protected] Michael Walter Korteweg-de Vries Institute for Mathematics, Institute for Theoretical Physics, Institute for Logic, Language & Computation, University of Amsterdam, The Netherlands [email protected] Avi Wigderson Institute for Advanced Study, Princeton, NJ, US [email protected] Abstract We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SLn(C)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computing succinct encodings for generators for invariant rings. 2012 ACM Subject Classification Theory of computation → Algebraic complexity theory Keywords and phrases generators for invariant rings, succinct encodings Digital Object Identifier 10.4230/LIPIcs.CCC.2020.12 Related Version https://arxiv.org/abs/1910.01251v1 Funding Christian Ikenmeyer: DFG grant IK 116/2-1. Visu Makam: NSF grant No. DMS -1638352 and NSF grant No. CCF-1412958.
    [Show full text]
  • The Role of GH Hardy and the London Mathematical Society
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres.
    [Show full text]
  • Invariant Polynomials and Molien Functions
    JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 2 FEBRUARY 1998 Invariant polynomials and Molien functions Michael Forger Departamento de Matema´tica Aplicada, Instituto de Matema´tica e Estatı´stica, Universidade de Sa˜o Paulo, Caixa Postal 66281, BR-05315-970 Sa˜o Paulo, Brazil ~Received 12 February 1997; accepted for publication 9 June 1997! The Molien function associated with a finite-dimensional representation of a com- pact Lie group is a useful tool in representation theory because it acts as a gener- ating function for counting the number of invariant polynomials on the representa- tion space. The main purpose of this paper is to introduce a more general ~and apparently new! generating function which, in the same sense, counts not only the number of invariant real polynomials in a real representation or the number of invariant complex polynomials in a complex representation, as a function of their degree, but encodes the number of invariant real polynomials in a complex repre- sentation, as a function of their bidegree ~the first and second component of this bidegree being the number of variables in which the polynomial is holomorphic and antiholomorphic, respectively!. This is obviously an additional and non-trivial piece of information for representations which are truly complex ~i.e., not self- conjugate! or are pseudo-real, but it provides additional insight even for real rep- resentations. In addition, we collect a number of general formulas for these func- tions and for their coefficients and calculate them in various irreducible representations of various classical groups, using the software package MAPLE. © 1998 American Institute of Physics.
    [Show full text]
  • Download?Doi=10.1.1.171.122&Rep=Rep1&Type=Pdf, 2002
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ______________ Paul Vienhage Date The Quantum McKay Correspondence: Classifying "Finite Subgroups" of a Quantum Group with Graphs By Paul Vienhage Masters of Science Mathematics _________________________________________ John Duncan Advisor _________________________________________ Sharron Weiner Committee Member _________________________________________ David Zureick-Brown Committee Member Accepted: _________________________________________ Lisa A. Tedesco, Ph.D. Dean of the James T. Laney School of Graduate Studies ___________________ Date The Quantum McKay Correspondence: Classifying "Finite Subgroups" of a Quantum Group with Graphs By Paul Vienhage Advisor: John Duncan, Doctor of Philosophy An abstract of A thesis submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Masters of Science in Mathematics 2018 Abstract The Quantum McKay Correspondence: Classifying "Finite Subgroups" of a Quantum Group with Graphs By: Paul Vienhage The McKay Correspondence classifies finite subgroups of the rotation group of 3-space via graphs.
    [Show full text]
  • Linear Algebraic Groups
    Appendix A Linear Algebraic Groups A.1 Linear Algebraic Groups Let us fix an algebraically closed field K. We work in the category of affine varieties over K. The purpose of this section is to give a brief exposition on the basic facts of algebraic groups. Definition A.1.1 A linear algebraic group is an affine algebraic variety G together with a unit element e 2 G and morphisms m W G G ! G and i W G ! G satisfying the group axioms (a) m.; e/ D m.e;/D for all 2 G; (b) m.; i.// D m.i./; / D e for all 2 G; (c) m.; m.; // D m.m.; /; / (associativity) for all ; ; 2 G. Often we will just write and 1 instead of m.; / and i./, respectively. Example A.1.2 The group GLn, the set of invertible nn matrices over K, is a linear algebraic group. Any Zariski closed subgroup G GLn is a linear algebraic group. In fact, every linear algebraic group is isomorphic to a Zariski closed subgroup of GLn (see Borel [1, Proposition I.1.10]). This justifies calling it a linear algebraic group. G The axioms for a linear algebraic group can also be stated in terms of the coordinate ring. The maps m W G G ! G and i W G ! G correspond to ring homomorphisms m W KŒG ! KŒG ˝ KŒG and i W KŒG ! KŒG. The unit element e 2 G corresponds to a ring homomorphism W KŒG ! K defined by f 7! f .e/. The axioms for a linear algebraic group translate to (a) .id ˝/ ı m D .
    [Show full text]
  • Motivic Multiplicative Mckay Correspondence for Surfaces
    MOTIVIC MULTIPLICATIVE MCKAY CORRESPONDENCE FOR SURFACES LIE FU AND ZHIYU TIAN Abstract. We revisit the classical two-dimensional McKay correspondence in two respects: The first one, which is the main point of this work, is that we take into account of the multiplicative structure given by the orbifold product; second, instead of using cohomology, we deal with the Chow motives. More precisely, we prove that for any smooth proper two-dimensional orbifold with projective coarse moduli space, there is an isomorphism of algebra objects, in the category of complex Chow motives, between the motive of the minimal resolution and the orbifold motive. In particular, the complex Chow ring (resp. Grothendieck ring, cohomology ring, topological K-theory) of the minimal resolution is isomorphic to the complex orbifold Chow ring (resp. Grothendieck ring, cohomology ring, topological K-theory) of the orbifold surface. This confirms the two-dimensional Motivic Crepant Resolution Conjecture. 1. Introduction Finite subgroups of SL2(C) are classically studied by Klein [26] and Du Val [15]. A complete classification (up to conjugacy) is available : cyclic, binary dihedral, binary tetrahedral, binary octahedral and binary icosahedral. The last three types correspond to the groups of symmetries of Platonic solids1 as the names indicate. Let G SL (C) be such a (non-trivial) finite subgroup ⊂ 2 acting naturally on the vector space V := C2. The quotient X := V/G has a unique rational double point2. Let f : Y X be the minimal resolution of singularities: → V π f Y / X which is a crepant resolution, that is, KY = f ∗KX. The exceptional divisor, denoted by E, consists arXiv:1709.01714v3 [math.AG] 6 Apr 2018 of a union of ( 2)-curves3 meeting transversally.
    [Show full text]
  • Invariant Theory for Wreath Product Groups
    Journal of Pure and Applied Algebra 150 (2000) 61–84 www.elsevier.com/locate/jpaa Invariant theory for wreath product groups Ana Paula S. Dias a;1, Ian Stewartb;∗ a Departamento de Matematicaà Pura, Centro de Matematicaà Aplicada, Faculdade de Ciencias,ˆ Universidade do Porto, Praca Gomes Teixeira, 4 050 Porto, Portugal b Mathematics Institute, University of Warwick, Conventry CV4 7AL, UK Received 9 October 1998 Communicated by P.J. Freyd Abstract Invariant theory is an important issue in equivariant bifurcation theory. Dynamical systems with wreath product symmetry arise in many areas of applied science. In this paper we develop the invariant theory of wreath product L o G where L is a compact Lie group (in some cases, a ÿnite group) and G is a ÿnite permutation group. For compact L we ÿnd the quadratic and cubic equivariants of L o G in terms of those of L and G. These results are sucient for the classiÿcation of generic steady-state branches, whenever the appropriate representation of L o G is 3-determined. When L is compact we also prove that the Molien series of L and G determine the Molien series of L o G. Finally we obtain ‘homogeneous systems of parameters’ for rings of invariants and modules of equivariants of wreath products when L is ÿnite. c 2000 Elsevier Science B.V. All rights reserved. MSC: 13A50, 34A47, 58F14, 20C40, 20C35 1. Introduction Equivariant bifurcation theory studies the existence and stability of bifurcating branches of steady or periodic solutions of nonlinear dynamical systems with sym- metry group .
    [Show full text]
  • A Method for Construction of Lie Group Invariants Arxiv:1206.4395V1
    A method for construction of Lie group invariants Yu. Palii Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia and Institute of Applied Physics, Chisinau, Moldova, e-mail: [email protected] Abstract For an adjoint action of a Lie group G (or its subgroup) on Lie algebra Lie(G) we suggest a method for construction of invariants. The method is easy in implementation and may shed the light on algebraical independence of invariants. The main idea is to extent automorphisms of the Cartan subalgebra to automorphisms of the whole Lie algebra Lie(G). Corresponding matrices in a linear space V =∼ Lie(G) define a Reynolds operator \gathering" invariants of torus T ⊂ G into special polynomials. A condition for a linear combination of polynomials to be G-invariant is equivalent to the existence of a solution for a certain system of linear equations on the coefficients in the combination. As an example we consider the adjoint action of the Lie group arXiv:1206.4395v1 [math.RT] 20 Jun 2012 SL(3) (and its subgroup SL(2)) on the Lie algebra sl(3). 1 1 Introduction Algorithms in invariant theory [1, 2] become inefficient for Lie groups inter- esting for physics. To overcome this problem, we try to use the following well known fact. Every automorphism of a Lie algebra root system (in par- ticular, an element of the Weyl group W) defines an automorphism of the Cartan subalgebra h and, subsequently, can be extended to the automor- phism of the whole Lie algebra g [3]. For example, let us consider sl(2) algebra with the standard basis X; Y; H = [X; Y ] and define the adjoint action adAB := [A; B].
    [Show full text]