Invariant Theory for Wreath Product Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Invariant Theory of Matrices
UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society The Invariant Theory of Matrices 10.1090/ulect/069 UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jordan S. Ellenberg Robert Guralnick William P. Minicozzi II (Chair) Tatiana Toro 2010 Mathematics Subject Classification. Primary 15A72, 14L99, 20G20, 20G05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-69 Library of Congress Cataloging-in-Publication Data Names: De Concini, Corrado, author. | Procesi, Claudio, author. Title: The invariant theory of matrices / Corrado De Concini, Claudio Procesi. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Univer- sity lecture series ; volume 69 | Includes bibliographical references and index. Identifiers: LCCN 2017041943 | ISBN 9781470441876 (alk. paper) Subjects: LCSH: Matrices. | Invariants. | AMS: Linear and multilinear algebra; matrix theory – Basic linear algebra – Vector and tensor algebra, theory of invariants. msc | Algebraic geometry – Algebraic groups – None of the above, but in this section. msc | Group theory and generalizations – Linear algebraic groups and related topics – Linear algebraic groups over the reals, the complexes, the quaternions. msc | Group theory and generalizations – Linear algebraic groups and related topics – Representation theory. msc Classification: LCC QA188 .D425 2017 | DDC 512.9/434–dc23 LC record available at https://lccn. loc.gov/2017041943 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. -
Algebraic Geometry, Moduli Spaces, and Invariant Theory
Algebraic Geometry, Moduli Spaces, and Invariant Theory Han-Bom Moon Department of Mathematics Fordham University May, 2016 Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Part I Algebraic Geometry Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry From wikipedia: Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry in highschool The zero set of a two-variable polynomial provides a plane curve. Example: 2 2 2 f(x; y) = x + y 1 Z(f) := (x; y) R f(x; y) = 0 − , f 2 j g a unit circle ··· Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry in college calculus The zero set of a three-variable polynomial give a surface. Examples: 2 2 2 3 f(x; y; z) = x + y z 1 Z(f) := (x; y; z) R f(x; y; z) = 0 − − , f 2 j g 2 2 2 3 g(x; y; z) = x + y z Z(g) := (x; y; z) R g(x; y; z) = 0 − , f 2 j g Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry in college calculus The common zero set of two three-variable polynomials gives a space curve. Example: f(x; y; z) = x2 + y2 + z2 1; g(x; y; z) = x + y + z − Z(f; g) := (x; y; z) R3 f(x; y; z) = g(x; y; z) = 0 , f 2 j g Definition An algebraic variety is a common zero set of some polynomials. -
Reflection Invariant and Symmetry Detection
1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes. -
A New Invariant Under Congruence of Nonsingular Matrices
A new invariant under congruence of nonsingular matrices Kiyoshi Shirayanagi and Yuji Kobayashi Abstract For a nonsingular matrix A, we propose the form Tr(tAA−1), the trace of the product of its transpose and inverse, as a new invariant under congruence of nonsingular matrices. 1 Introduction Let K be a field. We denote the set of all n n matrices over K by M(n,K), and the set of all n n nonsingular matrices× over K by GL(n,K). For A, B M(n,K), A is similar× to B if there exists P GL(n,K) such that P −1AP = B∈, and A is congruent to B if there exists P ∈ GL(n,K) such that tP AP = B, where tP is the transpose of P . A map f∈ : M(n,K) K is an invariant under similarity of matrices if for any A M(n,K), f(P→−1AP ) = f(A) holds for all P GL(n,K). Also, a map g : M∈ (n,K) K is an invariant under congruence∈ of matrices if for any A M(n,K), g(→tP AP ) = g(A) holds for all P GL(n,K), and h : GL(n,K) ∈ K is an invariant under congruence of nonsingular∈ matrices if for any A →GL(n,K), h(tP AP ) = h(A) holds for all P GL(n,K). ∈ ∈As is well known, there are many invariants under similarity of matrices, such as trace, determinant and other coefficients of the minimal polynomial. In arXiv:1904.04397v1 [math.RA] 8 Apr 2019 case the characteristic is zero, rank is also an example. -
Arxiv:1810.05857V3 [Math.AG] 11 Jun 2020
HYPERDETERMINANTS FROM THE E8 DISCRIMINANT FRED´ ERIC´ HOLWECK AND LUKE OEDING Abstract. We find expressions of the polynomials defining the dual varieties of Grass- mannians Gr(3, 9) and Gr(4, 8) both in terms of the fundamental invariants and in terms of a generic semi-simple element. We restrict the polynomial defining the dual of the ad- joint orbit of E8 and obtain the polynomials of interest as factors. To find an expression of the Gr(4, 8) discriminant in terms of fundamental invariants, which has 15, 942 terms, we perform interpolation with mod-p reductions and rational reconstruction. From these expressions for the discriminants of Gr(3, 9) and Gr(4, 8) we also obtain expressions for well-known hyperdeterminants of formats 3 × 3 × 3 and 2 × 2 × 2 × 2. 1. Introduction Cayley’s 2 × 2 × 2 hyperdeterminant is the well-known polynomial 2 2 2 2 2 2 2 2 ∆222 = x000x111 + x001x110 + x010x101 + x100x011 + 4(x000x011x101x110 + x001x010x100x111) − 2(x000x001x110x111 + x000x010x101x111 + x000x100x011x111+ x001x010x101x110 + x001x100x011x110 + x010x100x011x101). ×3 It generates the ring of invariants for the group SL(2) ⋉S3 acting on the tensor space C2×2×2. It is well-studied in Algebraic Geometry. Its vanishing defines the projective dual of the Segre embedding of three copies of the projective line (a toric variety) [13], and also coincides with the tangential variety of the same Segre product [24, 28, 33]. On real tensors it separates real ranks 2 and 3 [9]. It is the unique relation among the principal minors of a general 3 × 3 symmetric matrix [18]. -
Moduli Spaces and Invariant Theory
MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6. -
15. Eigenvalues, Eigenvectors Invariant Directions
15. Eigenvalues, Eigenvectors Matrix of a Linear Transformation Consider a linear transformation L : ! ! ! ! 1 a 0 b 2 ! 2. Suppose we know that L = and L = . Then R R 0 c 1 d ! x because of linearity, we can determine what L does to any vector : y ! ! ! ! ! ! ! ! x 1 0 1 0 a b ax + by L = L(x +y ) = xL +yL = x +y = : y 0 1 0 1 c d cx + dy ! x Now notice that for any vector , we have y ! ! ! ! a b x ax + by x = = L : c d y cx + dy y ! a b Then the matrix acts by matrix multiplication in the same way c d ! ! 1 0 that L does. Call this matrix the matrix of L in the \basis" f ; g. 0 1 2 2 Since every linear function from R ! R can be given a matrix in this way, we see that every such linear function has a matrix in the basis ! ! 1 0 f ; g. We will revisit this idea, and develop the notion of a ba- 0 1 sis further, and learn about how to make a matrix for an arbitrary linear n m transformation R ! R in an arbitrary basis. Invariant Directions ! ! ! 1 −4 0 Consider the linear transformation L such that L = and L = 0 −10 1 ! ! 3 −4 3 , so that the matrix of L is . Recall that a vector is a direc- 7 −10 7 ! ! 1 0 tion and a magnitude; L applied to or changes both the direction 0 1 and the magnitude of the vectors given to it. -
Symmetry Reductions and Invariant Solutions of Four Nonlinear Differential Equations
mathematics Article l-Symmetry and m-Symmetry Reductions and Invariant Solutions of Four Nonlinear Differential Equations Yu-Shan Bai 1,2,*, Jian-Ting Pei 1 and Wen-Xiu Ma 2,3,4,5,* 1 Department of Mathematics, Inner Mongolia University of Technology, Hohhot 010051, China; [email protected] 2 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA 3 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China 4 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia 5 School of Mathematics, South China University of Technology, Guangzhou 510640, China * Correspondence: [email protected] (Y.-S.B.); [email protected] (W.-X.M.) Received: 9 June 2020; Accepted: 9 July 2020; Published: 12 July 2020 Abstract: On one hand, we construct l-symmetries and their corresponding integrating factors and invariant solutions for two kinds of ordinary differential equations. On the other hand, we present m-symmetries for a (2+1)-dimensional diffusion equation and derive group-reductions of a first-order partial differential equation. A few specific group invariant solutions of those two partial differential equations are constructed. Keywords: l-symmetries; m-symmetries; integrating factors; invariant solutions 1. Introduction Lie symmetry method is a powerful technique which can be used to solve nonlinear differential equations algorithmically, and there are many such examples in mathematics, physics and engineering [1,2]. If an nth-order ordinary differential equation (ODE) that admits an n-dimensional solvable Lie algebra of symmetries, then a solution of the ODE, involving n arbitrary constants, can be constructed successfully by quadrature. -
Invariant Measures and Arithmetic Unique Ergodicity
Annals of Mathematics, 163 (2006), 165–219 Invariant measures and arithmetic quantum unique ergodicity By Elon Lindenstrauss* Appendix with D. Rudolph Abstract We classify measures on the locally homogeneous space Γ\ SL(2, R) × L which are invariant and have positive entropy under the diagonal subgroup of SL(2, R) and recurrent under L. This classification can be used to show arithmetic quantum unique ergodicity for compact arithmetic surfaces, and a similar but slightly weaker result for the finite volume case. Other applications are also presented. In the appendix, joint with D. Rudolph, we present a maximal ergodic theorem, related to a theorem of Hurewicz, which is used in theproofofthe main result. 1. Introduction We recall that the group L is S-algebraic if it is a finite product of algebraic groups over R, C,orQp, where S stands for the set of fields that appear in this product. An S-algebraic homogeneous space is the quotient of an S-algebraic group by a compact subgroup. Let L be an S-algebraic group, K a compact subgroup of L, G = SL(2, R) × L and Γ a discrete subgroup of G (for example, Γ can be a lattice of G), and consider the quotient X =Γ\G/K. The diagonal subgroup et 0 A = : t ∈ R ⊂ SL(2, R) 0 e−t acts on X by right translation. In this paper we wish to study probablilty measures µ on X invariant under this action. Without further restrictions, one does not expect any meaningful classi- fication of such measures. For example, one may take L = SL(2, Qp), K = *The author acknowledges support of NSF grant DMS-0196124. -
A Criterion for the Existence of Common Invariant Subspaces Of
Linear Algebra and its Applications 322 (2001) 51–59 www.elsevier.com/locate/laa A criterion for the existence of common invariant subspaces of matricesୋ Michael Tsatsomeros∗ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 Received 4 May 1999; accepted 22 June 2000 Submitted by R.A. Brualdi Abstract It is shown that square matrices A and B have a common invariant subspace W of di- mension k > 1 if and only if for some scalar s, A + sI and B + sI are invertible and their kth compounds have a common eigenvector, which is a Grassmann representative for W.The applicability of this criterion and its ability to yield a basis for the common invariant subspace are investigated. © 2001 Elsevier Science Inc. All rights reserved. AMS classification: 15A75; 47A15 Keywords: Invariant subspace; Compound matrix; Decomposable vector; Grassmann space 1. Introduction The lattice of invariant subspaces of a matrix is a well-studied concept with sev- eral applications. In particular, there is substantial information known about matrices having the same invariant subspaces, or having chains of common invariant subspac- es (see [7]). The question of existence of a non-trivial invariant subspace common to two or more matrices is also of interest. It arises, among other places, in the study of irreducibility of decomposable positive linear maps on operator algebras [3]. It also comes up in what might be called Burnside’s theorem, namely that if two square ୋ Research partially supported by NSERC research grant. ∗ Tel.: +306-585-4771; fax: +306-585-4020. E-mail address: [email protected] (M. -
Search Problems in Algebraic Complexity, GCT, and Hardness Of
Search Problems in Algebraic Complexity, GCT, and Hardness of Generators for Invariant Rings Ankit Garg Microsoft Research, Bangalore, India [email protected] Christian Ikenmeyer University of Liverpool, UK [email protected] Visu Makam Institute for Advanced Study, Princeton, NJ, USA [email protected] Rafael Oliveira University of Waterloo, Canada [email protected] Michael Walter Korteweg-de Vries Institute for Mathematics, Institute for Theoretical Physics, Institute for Logic, Language & Computation, University of Amsterdam, The Netherlands [email protected] Avi Wigderson Institute for Advanced Study, Princeton, NJ, US [email protected] Abstract We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SLn(C)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computing succinct encodings for generators for invariant rings. 2012 ACM Subject Classification Theory of computation → Algebraic complexity theory Keywords and phrases generators for invariant rings, succinct encodings Digital Object Identifier 10.4230/LIPIcs.CCC.2020.12 Related Version https://arxiv.org/abs/1910.01251v1 Funding Christian Ikenmeyer: DFG grant IK 116/2-1. Visu Makam: NSF grant No. DMS -1638352 and NSF grant No. CCF-1412958. -
Invariant Determinants and Differential Forms IITG PHYSICS SEMINAR
Invariant Determinants and Differential Forms IITG PHYSICS SEMINAR Srikanth K.V. Department of Mathematics, IIT Guwahati Invariant Determinants and Differential Forms – p. 1 Overview of the talk 1. Laplace’s formula and Leibnitz’s formula 2. Properties of determinants 3. Determinant of a linear operator 4. A dilemmatic example 5. Volume in Euclidean spaces 6. Abstract volume functions in vector spaces 7. Geometric definition of determinant function 8. Advantages of geometric definition 9. Differential forms Invariant Determinants and Differential Forms – p. 2 Laplace's and Leibnitz's formula Let A be an n × n matrix over a field F . Then n det A = a C X ij ij i=1 n = (−1)i+ja M X ij ij i=1 where Cij is cofactor of aij and Mij is the (ij)-th minor of A. Invariant Determinants and Differential Forms – p. 3 Laplace's and Leibnitz's formula Let A be an n × n matrix over a field F . Then n det A = sign(σ) a X Y iσ(i) σ∈Sn i=1 This formula probably has its roots in Cramer’s Rule type solutions to a linear system Ax = b. Remark: This formula makes sense even if F is a commutative ring. Invariant Determinants and Differential Forms – p. 4 Properties of determinants 1. det(AB) = det A det B 2. If any row/column of A is a linear combination of the remaining rows/columns of A then det A = 0. 3. If B is a matrix obtained by interchanging any two rows or columns of matrix A then det A = − det B 4.