New Data on Young and Old Black Holes and Other Unexpected Creatures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide Du Ciel Profond
Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 . -
12 Strong Gravitational Lenses
12 Strong Gravitational Lenses Phil Marshall, MaruˇsaBradaˇc,George Chartas, Gregory Dobler, Ard´ısEl´ıasd´ottir,´ Emilio Falco, Chris Fassnacht, James Jee, Charles Keeton, Masamune Oguri, Anthony Tyson LSST will contain more strong gravitational lensing events than any other survey preceding it, and will monitor them all at a cadence of a few days to a few weeks. Concurrent space-based optical or perhaps ground-based surveys may provide higher resolution imaging: the biggest advances in strong lensing science made with LSST will be in those areas that benefit most from the large volume and the high accuracy, multi-filter time series. In this chapter we propose an array of science projects that fit this bill. We first provide a brief introduction to the basic physics of gravitational lensing, focusing on the formation of multiple images: the strong lensing regime. Further description of lensing phenomena will be provided as they arise throughout the chapter. We then make some predictions for the properties of samples of lenses of various kinds we can expect to discover with LSST: their numbers and distributions in redshift, image separation, and so on. This is important, since the principal step forward provided by LSST will be one of lens sample size, and the extent to which new lensing science projects will be enabled depends very much on the samples generated. From § 12.3 onwards we introduce the proposed LSST science projects. This is by no means an exhaustive list, but should serve as a good starting point for investigators looking to exploit the strong lensing phenomenon with LSST. -
Magellanic Type Galaxies Throughout the Universe Eric M
The Magellanic System: Stars, Gas, and Galaxies Proceedings IAU Symposium No. 256, 2008 c 2009 International Astronomical Union Jacco Th. van Loon & Joana M. Oliveira, eds. doi:10.1017/S1743921308028871 Magellanic type galaxies throughout the Universe Eric M. Wilcots Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 USA email: [email protected] Abstract. The Magellanic Clouds are often characterized as “irregular” galaxies, a term that implies an overall lack of organized structure. While this may be a fitting description of the Small Cloud, the Large Magellanic Cloud, contrary to popular opinion, should not be considered an irregular galaxy. It is characterized by a distinctive morphology of having an offset stellar bar and single spiral arm. Such morphology is relatively common in galaxies of similar mass throughout the local Universe, although explaining the origin of these features has proven challenging. Through a number of recent studies we are beginning to get a better grasp on what it means to be a Magellanic spiral. One key result of these works is that we now recognize that the most unique aspect of the Magellanic Clouds is not their structure, but, rather, their proximity to a larger spiral such as the Milky Way. Keywords. galaxies: dwarf, galaxies: evolution, galaxies: interactions, Magellanic Clouds, galax- ies: structure 1. Introduction While the Small Magellanic Cloud can properly be thought of as an irregular galaxy, the Large Magellanic Cloud shares a number of key morphological properties with a population of galaxies classified as Barred Magellanic Spirals (SBm). These properties include a stellar bar, the center of which may or may not be coincident with the dynamical center of the galaxy, a single, looping spiral arm, and often a large star-forming complex at one end of the bar. -
Arxiv:Astro-Ph/0407438V1 20 Jul 2004
The Nature of Nearby Counterparts to Intermediate Redshift Luminous Compact Blue Galaxies I. Optical/H I Properties and Dynamical Masses C. A. Garland1 Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822 [email protected] D. J. Pisano2 CSIRO Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710, Australia [email protected] J. P. Williams Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822 [email protected] R. Guzm´an Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611-2055 [email protected] arXiv:astro-ph/0407438v1 20 Jul 2004 and F. J. Castander Institut d’Estudis Espacials De Catalunya/CSIC, Gran Capit`a2-4, E-08034 Barcelona, Spain [email protected] ABSTRACT 1Present address: Natural Sciences Department, Castleton State College, Castleton, VT 05735 2Bolton Fellow & NSF MPS Distinguished International Postdoctoral Research Fellow –2– We present single-dish H I spectra obtained with the Green Bank Telescope, along with optical photometric properties from the Sloan Digital Sky Survey, of 20 nearby (D . 70 Mpc) Luminous Compact Blue Galaxies (LCBGs). These ∼L⋆, blue, high surface brightness, starbursting galaxies were selected with the same criteria used to define LCBGs at higher redshifts. We find these galaxies 8 9 −1 are gas-rich, with MHI ranging from 5×10 to 8×10 M⊙, and MHI LB ranging −1 from 0.2 to 2 M⊙ L⊙ , consistent with a variety of morphological types of galax- ies. We find the dynamical masses (measured within R25) span a wide range, 9 11 from 3×10 to 1×10 M⊙. -
Ultra-Luminous X-Ray Sources in Nearby Galaxies from ROSAT HRI Observations I. Data Analysis
Submitted to ApJ Supplement Ultra-luminous X-ray Sources in nearby galaxies from ROSAT HRI observations I. data analysis Ji-Feng Liu and Joel N. Bregman Astronomy Department, University of Michigan, MI 48109 ABSTRACT X-ray observations have revealed in other galaxies a class of extra-nuclear X-ray point sources with X-ray luminosities of 1039–1041 erg/sec, exceeding the Eddington luminosity for stellar mass X-ray binaries. These ultra-luminous X- ray sources (ULXs) may be powered by intermediate mass black hole of a few thousand M⊙ or stellar mass black holes with special radiation processes. In this ′ paper, we present a survey of ULXs in 313 nearby galaxies with D25>1 within 40 Mpc with 467 ROSAT HRI archival observations. The HRI observations are reduced with uniform procedures, refined by simulations that help define the point source detection algorithm employed in this survey. A sample of 562 38 43 extragalactic X-ray point sources with LX = 10 –10 erg/sec is extracted from 173 survey galaxies, including 106 ULX candidates within the D25 isophotes of 63 galaxies and 110 ULX candidates between 1–2 D25 of 64 galaxies, from × which a clean sample of 109 ULXs is constructed to minimize the contamination from foreground or background objects. The strong connection between ULXs and star formation is confirmed based on the striking preference of ULXs to arXiv:astro-ph/0501309v1 14 Jan 2005 occur in late-type galaxies, especially in star forming regions such as spiral arms. ULXs are variable on time scales over days to years, and exhibit a variety of long term variability patterns. -
Interstellarum 40 Erreicht Die Heftzahl Der Neuen Folge Nun Gleich- Stand Mit Den Ausgaben Der Früheren Deep-Sky-Zeitschrift
fokussiert Liebe Leserinnen, liebe Leser, 20 Hefte Zeitschrift für praktische Astronomie Als interstellarum sich mit der Ausgabe 20 vom »Magazin für Deep-Sky- Beobachter« zur »Zeitschrift für praktische Astronomie« wandelte, gab es nicht nur positive Kommentare, wie die Leserbriefe in Heft 21 zeigten. Mit interstellarum 40 erreicht die Heftzahl der neuen Folge nun Gleich- stand mit den Ausgaben der früheren Deep-Sky-Zeitschrift. Im Rückblick zeigt sich, wie richtig der damals auch in der Redaktion viel diskutierte Schritt war: interstellarum konnte seine Aufl age seit 2001 vervierfachen. Für Heft 40 wurde diese noch einmal erhöht – diese Ausgabe geht mit knapp 9000 Heften in den Handel. Dort ist interstellarum inzwischen in Deutschland, Österreich, der Schweiz und Italien am Kiosk erhältlich. Astrofotografen für interstellarum Einen besonderen Anteil am Erfolg von interstellarum haben die zahl- reichen Astrofotografen, die die Illustration jeder Ausgabe mit großarti- gen Fotos ermöglichen. Um ihr Engagement zu honorieren, heben wir ab sofort die Namen derjenigen Astrofotografen im Impressum (Seite 78) hervor, die interstellarum regelmäßig ihre Aufnahmen einsenden. Die Redaktion möchte damit auch andere führende Astrofotografen einla- den, ihre Bildergebnisse der Zeitschrift zur Verfügung zu stellen. Weitere Informationen zu unserem Angebot für Astrofotografen können Sie im Internet unter www.interstellarum.de nachlesen. Stefan Seip Südhimmel-Sehnsucht Das Kreuz des Südens, Omega Centauri, die Magellanschen Wolken – wer träumt nicht von einer Exkursion zu den spektakulären Zielen des südlichen Sternhimmels, die bei uns immer unsichtbar bleiben? In einem zweiteiligen Artikel huldigen wir dem Südhimmel und seinen schönsten Deep-Sky-Objekten mit Astrofotos und Zeichnungen gleichermaßen. Las- sen Sie sich vom Südhimmel-Virus anstecken und mitnehmen auf eine Reise zu Katzenpfoten, Kohlensack und Käfernebel (Seite 50). -
Sirius Astronomer) Or Editor Don Saito, [email protected]
April 2015 Free to members, subscriptions $12 for 12 issues Volume 42, Number 4 NASA’s Dawn spacecraft arrived at dwarf planet Ceres on March 6, revealing the surface of the larg- est unexplored body in the inner Solar System for the first time. These images were taken from 40,000 kilometers (25,000 miles) from Ceres on February 25th. Over the course of the next year we will learn much more about this fascinating and important member of our solar system! (Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA) OCA CLUB MEETING STAR PARTIES COMING UP The free and open club meeng will The Black Star Canyon site will open on The next session of the Beginners be held April 10 at 7:30 PM in the Ir‐ April 11. The Anza site will be open on April Class will be held at the Heritage Mu‐ vine Lecture Hall of the Hashinger Sci‐ 18 Members are encouraged to check the seum of Orange County at 3101 West ence Center at Chapman University in website calendar for the latest updates on Harvard Street in Santa Ana on April Orange. This month’s speaker is Dr. star pares and other events. 3. The following class will be held Brendan Bowler of Caltech, who will May 1. discuss Imaging Extrasolar Planets. Please check the website calendar for the outreach events this month! Volunteers are GOTO SIG: TBA NEXT MEETINGS: May 8, June 12 always welcome! Astro‐Imagers SIG: Apr. 14, May 12 Remote Telescopes: TBA You are also reminded to check the web Astrophysics SIG: Apr. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
A Blind HI Survey in the Canes Venatici Region
Mon. Not. R. Astron. Soc. 400, 743–765 (2009) doi:10.1111/j.1365-2966.2009.14662.x A blind H I survey in the Canes Venatici region K. Kovac,ˇ 1,2 T. A. Oosterloo1,3 and J. M. van der Hulst1 1Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, the Netherlands 2Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland 3Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands Accepted 2009 February 18. Received 2009 February 2; in original form 2008 June 23 ABSTRACT We have carried out a blind H I survey using the Westerbork Synthesis Radio Telescope to make 6 8 an inventory of objects with small H I masses (between 10 and 10 M) and to constrain the low-mass end of the H I mass function. The survey has been conducted in a part of the volume containing the nearby Canes Venatici groups of galaxies. The surveyed region covers an area on the sky of about 86 deg2 and a range in velocity from about −450 to about 1330 km s−1. We find 70 sources in the survey by applying an automated searching algorithm. Two of the detections have not been catalogued previously, but they can be assigned an optical counterpart, based on visual inspection of the second-generation Digital Sky Survey images. Only one of the H I detections is without an optical counterpart. This object is detected in the vicinity of NGC 4822, and it has been already detected in previous H I studies. 19 of the objects have been detected for the first time in the 21-cm emission line in this survey. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Magellanic Type Galaxies Throughout the Universe Eric M
The Magellanic System: Stars, Gas, and Galaxies Proceedings IAU Symposium No. 256, 2008 c 2009 International Astronomical Union Jacco Th. van Loon & Joana M. Oliveira, eds. doi:10.1017/S1743921308028871 Magellanic type galaxies throughout the Universe Eric M. Wilcots Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 USA email: [email protected] Abstract. The Magellanic Clouds are often characterized as “irregular” galaxies, a term that implies an overall lack of organized structure. While this may be a fitting description of the Small Cloud, the Large Magellanic Cloud, contrary to popular opinion, should not be considered an irregular galaxy. It is characterized by a distinctive morphology of having an offset stellar bar and single spiral arm. Such morphology is relatively common in galaxies of similar mass throughout the local Universe, although explaining the origin of these features has proven challenging. Through a number of recent studies we are beginning to get a better grasp on what it means to be a Magellanic spiral. One key result of these works is that we now recognize that the most unique aspect of the Magellanic Clouds is not their structure, but, rather, their proximity to a larger spiral such as the Milky Way. Keywords. galaxies: dwarf, galaxies: evolution, galaxies: interactions, Magellanic Clouds, galax- ies: structure 1. Introduction While the Small Magellanic Cloud can properly be thought of as an irregular galaxy, the Large Magellanic Cloud shares a number of key morphological properties with a population of galaxies classified as Barred Magellanic Spirals (SBm). These properties include a stellar bar, the center of which may or may not be coincident with the dynamical center of the galaxy, a single, looping spiral arm, and often a large star-forming complex at one end of the bar. -
NRAO Newsletter
NRAONRAO NewsletterNewsletter The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. July 2002 www.nrao.edu/news/newsletters Number 92 DIRECTOR’S OFFICE California at Berkeley as a Miller Fellow. Two years later, he returned to Caltech where he held various research and teaching positions until 1986. Fred K.Y. Lo to Become NRAO In 1986, Lo accepted the position of Professor of Director Astronomy at the University of Illinois at Urbana- Champaign, and served as the chairman of that university's Associated Universities, astronomy department from 1995 to 1997. Lo accepted his Inc. (AUI), the not-for-profit current position at the Academia Sinica in 1997. He also corporation that operates accepted the post of Professor of Physics at the National the National Radio Astronomy Taiwan University in 1998. Observatory (NRAO) under Lo is an accomplished radio astronomer with very wide a cooperative agreement research interests. His studies range from star formation in with the National Science different environments such as dwarf galaxies, starbursts in Foundation, announces the nearby and very distant galaxies, to the determination of the appointment of Fred K.Y. Lo structure of Sagittarius A - the compact radio source at the as the director of the NRAO, center of the Milky Way Galaxy. He has been intimately effective September 1, 2002. involved in the construction and scientific use of all the mil- Lo is currently a Distinguished Research Fellow and the limeter-wave and sub-millimeter-wave interferometer arrays Director of the Institute of Astronomy and Astrophysics of in the United States, and he made the first millimeter-wave the Academia Sinica, located in Taipei.