Analysis of the Protein–Protein Interaction Network Identifying C

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Protein–Protein Interaction Network Identifying C CANCER GENOMICS & PROTEOMICS 18 : 261-272 (2021) doi:10.21873/cgp.20257 Analysis of the Protein–Protein Interaction Network Identifying c-Met as a Target of Gigantol in the Suppression of Lung Cancer Metastasis NITHIKOON AKSORN 1, NATTANAN LOSUWANNARAK 2, SUCHARAT TUNGSUKRUTHAI 3,4 , SITTIRUK ROYTRAKUL 5 and PITHI CHANVORACHOTE 3,4 1Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; 2Department of Pharmacology and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, Thailand; 3Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; 4Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; 5Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand Abstract. Background/Aim: c-Met (mesenchymal-epithelial adhesion enriched in 40 nodes with 25 edges, 39 proteins of transition factor) facilitates cancer progression and is cell migration enriched in 39 nodes with 76 edges in down- recognized as a promising drug target. The molecular target regulated proteins, 30 proteins of cell adhesion enriched in of gigantol from Dendrobium draconis in suppressing cancer 30 nodes with 21 edges, and 22 proteins of cell migration metastasis is largely unknown. Materials and Methods: enriched in 22 nodes with 22 edges in up-regulated protein. Proteins affected by gigantol treatment were subjected to c-Met was identified as a central protein of the PPI network proteomic and bioinformatic analysis. Protein–Protein in the largest degree. KEGG mapper further suggested that interaction (PPI) networks were constructed by the Search c-Met, PI3K, and AKT were the regulatory proteins affected Tool for the Retrieval of Interacting Genes (STRING). The by gigantol. To confirm, the effects of gigantol on c-Met, the Kyoto Encyclopedia of Genes and Genomes (KEGG) p-PI3K, PI3K, p-AKT, and AKT proteins were investigated database and hub gene were used to enrich the dominant by western blotting and the results showed a consistent effect pathways. Western blot analysis and immunofluorescence of gigantol in the suppression of the c-Met/PI3K/AKT signal. were used to validate the effect of gigantol on the target Next, immunofluorescence showed a dramatic decrease in protein and signaling. Results: Gigantol down-regulates 41 c-Met, PI3K and AKT activation in response to gigantol. adhesion proteins and 39-migratory proteins, while it up- Conclusion: c-Met is an important target of gigantol regulates 30 adhesion-related proteins and 22 proteins treatment in lung cancer cells. Gigantol suppresses controlling cell migration. The key components of our metastasis-related cell motility through decreasing c-Met constructed PPI network comprised 41 proteins of cell resulting in PI3K/AKT signaling disruption. Lung cancer is one of the leading causes of worldwide mortality and accounts for approximately 27% of all cancer- This article is freely accessible online. related deaths (1). Metastasis is responsible for the majority of lung cancer deaths and most lung cancer patients are found Correspondence to: Professor Dr. Pithi Chanvorachote, Department with metastasis at the time of first diagnosis. Cancer of Pharmacology and Physiology, Faculty of Pharmaceutical metastasis involves a multi-step process, including cell Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand. Tel: +66 22188344, e-mail: detachment, cell migration, cell invasion, survival in the [email protected]; [email protected] circulation, and establishment of new tumors (2). Cell adhesion plays a crucial role in cell to cell and cell to Key Words: Gigantol, c-Met, metastasis, lung cancer, PI3K, proteomics. extracellular matrix (ECM) interactions through a group of 261 CANCER GENOMICS & PROTEOMICS 18 : 261-272 (2021) cell adhesion molecules (CAMs), such as cadherins, integrins fetal bovine serum (FBS), 2 mM L-glutamine, and 100 units/ml or selectins and lymphocyte homing receptors (CD44). penicillin, and streptomycin. Therefore, reduction of these cell-cell adhesions and cell-ECM Chemicals and reagents. Gigantol was purchased from Sigma adhesions is an early step in cancer cell dissemination (3). In chemical, Inc. (Chemical Express, Bangkok, Thailand). RPMI-1640 addition, cell migration plays an important prerequisite medium, phosphate buffer saline, glutamine, penicillin, and process in a loose ECM attachment and loss of polarity, which streptomycin were purchased from Gibco Company (Grand Island, facilitates cancer cell invasion and metastasis (4). Regarding NY, USA). Fetal bovine serum (FBS), and agarose were obtained the upstream signaling of migratory control, c-Met, also from Bio-Rad Laboratories (Hercules, CA, USA). Primary antibodies known as MET (mesenchymal-epithelial transition factor), a against c-Met, p-AKT, AKT, p-PI3K, PI3K, and β- actin and specific receptor tyrosine kinase encoded by the MET gene, has been horseradish peroxidase (HRP)-link secondary antibody were obtained from Cell Signaling Technology, Inc. (Danver, MA, USA). shown to facilitate several metastatic behaviors. The binding of hepatocyte growth factor (HGF) to c-Met triggers the Proteomics sample preparation. The H460 cells treated with 20 receptor activation and transmits the HGF/c-Met axis through μM of gigantol for 24 h were dissolved with 0.5% SDS and the interaction and activation of other tyrosine kinases, protein concentration was measured by the Lowry’s method. An resulting in the induction of PI3K/AKT, Ras/MAPK, equal amount of pooled protein from control or gigantol-treated JAK/STAT, SRC, and Wnt/ β- catenin (5-8). The activation of cells (50 μg each) were subjected to in-solution digestion. Samples signals downstream of c-Met drive several cellular processes were completely dissolved in 10 mM ammonium bicarbonate (NH 4HCO 3) containing 10 mM dithiothreitol (DTT) for 1 hour at that stimulate cell proliferation, migration, invasion, and 60˚C and alkylated with 15 mM iodoacetamide (IAA) in 10 mM angiogenesis. In lung cancer, overexpression of the c-Met NH 4HCO 3 for 45 min in the dark, and then and digested with 1 ng protein has been reported and found to be linked with a high protein per 20 ng sequencing grade trypsin (Promega, Walldorf, metastasis potential, increased tumor growth, and drug Germany) at 37˚C overnight. The trypsiniszed peptides were resistance (9, 10). Recently, c-Met has been considered an protonated with 0.1% formic acid before injection into LC- important target for therapeutic approaches (11). MS/MS. Gigantol, a bibenzyl compound from Dendrobium LC/MS-MS analysis. LC/MS-MS for protein quantitation and draconis , has attracted increasing attention in recent years as identification from the digested samples was conducted using the it exhibits several potential effects on cancer cells. One study Ultimate 3000 Nano/Capillary LC System (Thermo Scientific, reported that gigantol inhibits lung cancer proliferation Gloucester, UK) coupled to a Hybrid quadrupole Q-Tof impact II™ through induction of GSK3 β- mediated MYC ubiquitin- (Bruker Daltonics, Coventry, UK) equipped with a Nano-captive proteasome degradation (12). In addition, gigantol was spray ion source with a nanocolumn (PepMap100, C18, 300 μm shown to inhibit the expression of Slug, the regulator of i.d.×5 mm). Solvent A contained 0.1% formic acid and solvent B epithelial–to–mesenchymal transition (EMT), and diminished contained 80% ACN in water containing 0.1% formic acid were used to elute peptides. Peptide separation was achieved with a linear cancer stem cell properties through ATP-dependent tyrosine gradient from 5% to 55% of solvent B at a constant flow rate of kinase (AKT) inhibition (13, 14). However, the complete 0.30 μL/min for 30 minutes including a regeneration and an profile of how gigantol can control cell migration and equilibration step at 90% and 10% eluent B, respectively. Next, the adhesion is currently unknown. Consequently, the present LC-MS/MS raw data were converted into a software file format study aimed to unravel the cellular pathways affected by mzXML (Compass 1.9 software, Bruker Daltonics). The MS and gigantol treatment in lung cancer cells, focusing on cell MS/MS spectra which over the range 150-2200 m/z were generated migration and cell adhesion, as these behaviors are related for further protein identification against database search. to the metastasis potential of cancer. We performed Proteomics data and bioinformatics analysis. The MS/MS spectra proteomic analysis on gigantol-treated lung cancer cells and were searched using MaxQuant 1.6.6.0 to identify proteins and used bioinformatics to examine the affected pathways. These peptides. MS/MS spectra were searched by the Andromeda search findings might be useful for the development of this engine against the Uniprot Homo sapiens database as following compound for lung cancer treatment as well as might benefit parameters: maximum of two miss cleavages, mass tolerance of 20 the further prediction of its potential pharmacological ppm for main search, enzyme (trypsin), variable modifications activities based on its cellular mechanism of action. (carbamidomethylation of cysteine as fixed modification, oxidation of methionine and acetylation of the protein N-terminus). For protein identification,
Recommended publications
  • Human RET Kinase Protein (His Tag)
    Human RET Kinase Protein (His Tag) Catalog Number: 11997-H08H1 General Information SDS-PAGE: Gene Name Synonym: CDHF12; CDHR16; HSCR1; MEN2A; MEN2B; MTC1; PTC; RET-ELE1; RET51 Protein Construction: A DNA sequence encoding the extracellular domain of human RET (P07949-1) (Met 1-Arg 635) was fused with a polyhistidine tag at the N- terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 92 % as determined by SDS-PAGE Protein Description Endotoxin: RET proto-oncogene, also known as RET, is a cell-surface molecule that < 1.0 EU per μg of the protein as determined by the LAL method transduce signals for cell growth and differentiation. It contains 1 cadherin domain and 1 protein kinase domain. RET proto-oncogene belongs to the Stability: protein kinase superfamily, tyr protein kinase family. RET proto-oncogene is involved in numerous cellular mechanisms including cell proliferation, ℃ Samples are stable for up to twelve months from date of receipt at -70 neuronal navigation, cell migration, and cell differentiation upon binding with glial cell derived neurotrophic factor family ligands. It phosphorylates Leu 29 Predicted N terminal: PTK2/FAK1 and regulates both cell death/survival balance and positional Molecular Mass: information. RET is required for the molecular mechanisms orchestration during intestine organogenesis; involved in the development of enteric The recombinant human RET consists of 618 amino acids and has a nervous system and renal organogenesis during embryonic life; promotes calculated molecular mass of 69.1 kDa. The apparent molecular mass of the formation of Peyer's patch-like structures; modulates cell adhesion via the protein is approximately 110-120 kDa in SDS-PAGE under reducing its cleavage; involved in the development of the neural crest.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • PTK2B (Human) Recombinant Protein
    PTK2B (Human) Recombinant PKB, PTK, PYK2, RAFTK Protein Gene Summary: This gene encodes a cytoplasmic protein tyrosine kinase which is involved in Catalog Number: P5800 calcium-induced regulation of ion channels and Regulation Status: For research use only (RUO) activation of the map kinase signaling pathway. The encoded protein may represent an important signaling Product Description: Human PTK2B (NP_775267.1, 1 intermediate between neuropeptide-activated receptors a.a. - 967 a.a.) full-length recombinant protein with GST or neurotransmitters that increase calcium flux and the tag expressed in Baculovirus infected Sf21 cells. downstream signals that regulate neuronal activity. The encoded protein undergoes rapid tyrosine Host: Insect phosphorylation and activation in response to increases in the intracellular calcium concentration, nicotinic Theoretical MW (kDa): 138 acetylcholine receptor activation, membrane depolarization, or protein kinase C activation. This Applications: Func, SDS-PAGE protein has been shown to bind CRK-associated (See our web site product page for detailed applications substrate, nephrocystin, GTPase regulator associated information) with FAK, and the SH2 domain of GRB2. The encoded protein is a member of the FAK subfamily of protein Protocols: See our web site at tyrosine kinases but lacks significant sequence similarity http://www.abnova.com/support/protocols.asp or product to kinases from other subfamilies. Four transcript page for detailed protocols variants encoding two different isoforms have been Form: Liquid found for this gene. [provided by RefSeq] Preparation Method: Baculovirus infected insect cell (Sf21) expression system Purification: Glutathione sepharose chromatography Purity: 74 % by SDS-PAGE/CBB staining Activity: The activity was measured by off-chip mobility shift assay.
    [Show full text]
  • Supplementary Table S1. Control Capsules (CC) and Study Capsules (CR) Composition
    Supplementary Table S1. Control Capsules (CC) and Study Capsules (CR) composition CC Capsules Composition mg Bioactive compound Sunflower oil 1.100 Gelatin 318,019 Glycerin 118,750 Clorophill E-140 1,923 CAPSULE TOTAL WEIGHT 1.538,692 CR Capsules Composition mg Bioactive compound Shark liver oil 20% 750 150 mg alkylglycerols alkylglycerols (Gustav Heess) Rosemary Antioxidant 11,25 mg Diterpene Phenols extract, 25 % Diterpene 45 Phenols, Type Nº 027.020 (Rosmarinus officinalis L.) Glyceril-monoestearate 30 Sunflower oil 263 Soy lecithin VEROLEC 56 12 Gelatin 318,019 Glycerin 118,750 Clorophill E-140 1,923 CAPSULE TOTAL WEIGHT 1.538,692 Supplementary Table S2. Table of the selected genes and pathways analyzed in the study Pathway Gen Gene name Inflammation, IL1B Interleukin 1, Beta Immunomodulation TNF (TNFA) Tumor Necrosis Factor MAPK1 Mitogen-Activated Protein Kinase 1 PTK2B Protein Tyrosine Kinase 2 Beta STAT3 Signal Transducer Activator Of Transcription 3 JAK1 Janus Kinase 1 JAK3 Janus Kinase 3 NFKB Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 1 NLRP3 NLR Family, Pyrin Domain Containing 3 CCL2 (MCP-1) Chemokine (C-C Motif) Ligand 2 CXCR1 Chemokine (C-X-C Motif) Receptor 1 CSF2 Colony Stimulating Factor 2 (Granulocyte-Macrophage) CCL5(RANTES) Chemokine (C-C Motif) Ligand 5 CCR5 Chemokine (C-C Motif) Receptor 5 (Gene/Pseudogene) PLCG1 Phospholipase C, Gamma 1 PRKCD Protein Kinase C, Delta ADIPOQ Adiponectin, C1Q And Collagen Domain Containing BMP2 Bone Morphogenetic Protein 2 LIF Leukemia Inhibitory Factor TGFB2
    [Show full text]
  • Genetic and Neurodevelopmental Spectrum Of
    Cognitive and behavioural genetics J Med Genet: first published as 10.1136/jmedgenet-2015-103451 on 17 March 2016. Downloaded from ORIGINAL ARTICLE Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy Cyril Mignot,1,2,3 Celina von Stülpnagel,4,5 Caroline Nava,1,6 Dorothée Ville,7 Damien Sanlaville,8,9,10 Gaetan Lesca,8,9,10 Agnès Rastetter,6 Benoit Gachet,6 Yannick Marie,6 G Christoph Korenke,11 Ingo Borggraefe,12 Dorota Hoffmann-Zacharska,13 Elżbieta Szczepanik,14 Mariola Rudzka-Dybała,14 Uluç Yiş,15 Hande Çağlayan,16 Arnaud Isapof,17 Isabelle Marey,1 Eleni Panagiotakaki,18 Christian Korff,19 Eva Rossier,20 Angelika Riess,21 Stefanie Beck-Woedl,21 Anita Rauch,22 Christiane Zweier,23 Juliane Hoyer,23 André Reis,23 Mikhail Mironov,24 Maria Bobylova,24 Konstantin Mukhin,24 Laura Hernandez-Hernandez,25 Bridget Maher,25 Sanjay Sisodiya,25 Marius Kuhn,26 Dieter Glaeser,26 Sarah Weckhuysen,6,27 Candace T Myers,28 Heather C Mefford,28 Konstanze Hörtnagel,29 Saskia Biskup,29 EuroEPINOMICS-RES MAE working group, Johannes R Lemke,30 Delphine Héron,1,2,3,4 Gerhard Kluger,4,5 Christel Depienne1,6 ▸ Additional material is ABSTRACT INTRODUCTION published online only. To view Objective We aimed to delineate the neurodevelopmental The human SYNGAP1 gene on chromosome please visit the journal online (http://dx.doi.org/10.1136/ spectrum associated with SYNGAP1 mutations and to 6p21.3 encodes the synaptic RAS-GTPase-activating jmedgenet-2015-103451). investigate genotype–phenotype correlations. protein 1, a protein of the post-synaptic density Methods We sequenced the exome or screened the exons (PSD) of glutamatergic neurons.12SYNGAP1 inter- For numbered affiliations see end of article.
    [Show full text]
  • Expression Profiling of KLF4
    Expression Profiling of KLF4 AJCR0000006 Supplemental Data Figure S1. Snapshot of enriched gene sets identified by GSEA in Klf4-null MEFs. Figure S2. Snapshot of enriched gene sets identified by GSEA in wild type MEFs. 98 Am J Cancer Res 2011;1(1):85-97 Table S1: Functional Annotation Clustering of Genes Up-Regulated in Klf4 -Null MEFs ILLUMINA_ID Gene Symbol Gene Name (Description) P -value Fold-Change Cell Cycle 8.00E-03 ILMN_1217331 Mcm6 MINICHROMOSOME MAINTENANCE DEFICIENT 6 40.36 ILMN_2723931 E2f6 E2F TRANSCRIPTION FACTOR 6 26.8 ILMN_2724570 Mapk12 MITOGEN-ACTIVATED PROTEIN KINASE 12 22.19 ILMN_1218470 Cdk2 CYCLIN-DEPENDENT KINASE 2 9.32 ILMN_1234909 Tipin TIMELESS INTERACTING PROTEIN 5.3 ILMN_1212692 Mapk13 SAPK/ERK/KINASE 4 4.96 ILMN_2666690 Cul7 CULLIN 7 2.23 ILMN_2681776 Mapk6 MITOGEN ACTIVATED PROTEIN KINASE 4 2.11 ILMN_2652909 Ddit3 DNA-DAMAGE INDUCIBLE TRANSCRIPT 3 2.07 ILMN_2742152 Gadd45a GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 ALPHA 1.92 ILMN_1212787 Pttg1 PITUITARY TUMOR-TRANSFORMING 1 1.8 ILMN_1216721 Cdk5 CYCLIN-DEPENDENT KINASE 5 1.78 ILMN_1227009 Gas2l1 GROWTH ARREST-SPECIFIC 2 LIKE 1 1.74 ILMN_2663009 Rassf5 RAS ASSOCIATION (RALGDS/AF-6) DOMAIN FAMILY 5 1.64 ILMN_1220454 Anapc13 ANAPHASE PROMOTING COMPLEX SUBUNIT 13 1.61 ILMN_1216213 Incenp INNER CENTROMERE PROTEIN 1.56 ILMN_1256301 Rcc2 REGULATOR OF CHROMOSOME CONDENSATION 2 1.53 Extracellular Matrix 5.80E-06 ILMN_2735184 Col18a1 PROCOLLAGEN, TYPE XVIII, ALPHA 1 51.5 ILMN_1223997 Crtap CARTILAGE ASSOCIATED PROTEIN 32.74 ILMN_2753809 Mmp3 MATRIX METALLOPEPTIDASE
    [Show full text]
  • Supplementary Materials
    Supplementary Suppl. Figure 1: MAPK signalling pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 2: Cell cycle pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC- 5. Suppl. Figure 3: Cancer pathways of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 4: Phosphorylation level of A: ARAF, B: EPHA1, C: EPHA2, D: EPHA7 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 5: Phosphorylation Level of A: KIT, B: PTPN11, C: PIK3R1, D: PTPN6 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 6: Phosphorylation Level of A: KDR, B: EFS, C: AKT1, D: PTK2B/FAK2 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 7: Scoreplots and volcanoplots of PTK upstream kinase analysis: A: Scoreplot of PTK- Upstream kinase analysis for NCI-H2052 cells. B: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2052 cells. C: Scoreplot of PTK-Upstream kinase analysis for NCI-H2452 cells. D: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2452 cells. E: Scoreplot of PTK-Upstream kinase analysis for MSTO-211H cells. F: Volcanoplot of PTK-Upstream kinase analysis for MSTO- 211H cells. G: Scoreplot of PTK-Upstream kinase analysis for MRC-5cells. H: Volcanoplot of PTK- Upstream kinase analysis for MRC-5 cells. Suppl. Figure 8: Scoreplots and volcanoplots of STK upstream kinase analysis: A: Scoreplot of STK- Upstream kinase analysis for NCI-H2052 cells.
    [Show full text]
  • Annals of Medical and Clinical Oncology Chen C, Et Al
    Annals of Medical and Clinical Oncology Chen C, et al. Ann med clin Oncol 3: 125. Short Commentary DOI: 10.29011/AMCO-125.000125 Commentary Referring to Pericyte FAK Negatively Regulates Gas6/ Axl Signalling To Suppress Tumour Angiogenesis and Tumour Growth Chen Chen, Hongyan Wang, Binfeng Wu and Jinghua Chen* Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China *Corresponding author: Jinghua Chen, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China Citation: Chen C, Wang H, Wu B, Chen J (2020) Commentary Referring to Pericyte FAK Negatively Regulates Gas6/Axl Signalling To Suppress Tumour Angiogenesis and Tumour Growth. Ann med clin Oncol 3: 125. DOI: 10.29011/AMCO-125.000125 Received Date: 07 December, 2020; Accepted Date: 20 December, 2020; Published Date: 28 December, 2020 The published research article utilized multiple mouse Interestingly, knockout of FAK was specific to pericytes other models including melanoma, lung carcinoma and pancreatic B-cell than endothelial cells, mice models demonstrated that loss of insulinoma. Two hallmarks of cancer [1] such as angiogenesis and FAK from pericytes significantly promoted ɑ-SMA expression tumour growth had been evaluated. Two major molecules FAK (common metastatic biomarker) and NG-2 (typical angiogenesis (focal adhesion kinase 1) and Axl undertook the innovative roles related biomarker) in three cancer cells model. It suggested that of this elegant paper. They both belong to protein Tyrosine Kinase FAK may function as the tumour suppressive gene. However, (TK) family [2].
    [Show full text]
  • Cysteine-Rich 61 (Cyr61): a Biomarker Reflecting Disease Activity In
    Fan et al. Arthritis Research & Therapy (2019) 21:123 https://doi.org/10.1186/s13075-019-1906-y RESEARCHARTICLE Open Access Cysteine-rich 61 (Cyr61): a biomarker reflecting disease activity in rheumatoid arthritis Yong Fan†, Xinlei Yang†, Juan Zhao, Xiaoying Sun, Wenhui Xie, Yanrong Huang, Guangtao Li, Yanjie Hao and Zhuoli Zhang* Abstract Background: Numerous preclinical studies have revealed a critical role of cysteine-rich 61 (Cyr61) in the pathogenesis of rheumatoid arthritis (RA). But there is little literature discussing the clinical value of circulation Cyr61 in RA patients. The aim of our study is to investigate the serum Cyr61 level and its association with disease activity in RA patients. Methods: A training cohort was derived from consecutive RA patients who visited our clinic from Jun 2014 to Nov 2018. Serum samples were obtained at the enrollment time. To further confirm discovery, an independent validation cohort was set up based on a registered clinical trial. Paired serum samples of active RA patients were respectively collected at baseline and 12 weeks after uniformed treatment. Serum Cyr61 concentration was detected by enzyme-linked immunosorbent assay. The comparison of Cyr61 between RA patients and controls, the correlation between Cyr61 levels with disease activity, and the change of Cyr61 after treatment were analyzed by appropriate statistical analyses. Results: A total of 177 definite RA patients and 50 age- and gender-matched healthy controls were enrolled in the training cohort. Significantly elevated serum Cyr61 concentration was found in RA patients, demonstrating excellent diagnostic ability to discriminate RA from healthy controls (area under the curve (AUC) = 0.98, P < 0.001).
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Blood Vitronectin Is a Major Activator of LIF and IL-6 in the Brain Through Integrin–FAK and Upar Signaling Matthew P
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs202580. doi:10.1242/jcs.202580 RESEARCH ARTICLE Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin–FAK and uPAR signaling Matthew P. Keasey1, Cuihong Jia1, Lylyan F. Pimentel1,2, Richard R. Sante1, Chiharu Lovins1 and Theo Hagg1,* ABSTRACT Microglia and astrocytes express the VTN receptors αvβ3 and α β We defined how blood-derived vitronectin (VTN) rapidly and potently v 5 integrin (Herrera-Molina et al., 2012; Kang et al., 2008; activates leukemia inhibitory factor (LIF) and pro-inflammatory Milner, 2009; Welser-Alves et al., 2011). Microglia and astrocytes, interleukin 6 (IL-6) in vitro and after vascular injury in the brain. as well as endothelial cells, are major producers of pro- α in vitro Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or inflammatory cytokines, such as IL-6 and TNF , and collagen-I) substantially increased LIF and IL-6 within 4 h in after traumatic or ischemic injury to the brain (Banner et al., 1997; C6-astroglioma cells, while VTN−/− mouse plasma was less effective Erta et al., 2012; Lau and Yu, 2001) or upon self-induction by IL-6 than that from wild-type mice. LIF and IL-6 were induced by (Van Wagoner and Benveniste, 1999). IL-6 is a major regulator of a intracerebral injection of recombinant human (rh)VTN in mice, but variety of inflammatory disorders and a target for therapies (Hunter induction seen upon intracerebral hemorrhage was less in VTN−/− and Jones, 2015).
    [Show full text]
  • Salt-Inducible Kinases Dictate Parathyroid Hormone Receptor Action in Bone Development and Remodeling
    Salt-inducible kinases dictate parathyroid hormone receptor action in bone development and remodeling Shigeki Nishimori, … , Henry M. Kronenberg, Marc N. Wein J Clin Invest. 2019. https://doi.org/10.1172/JCI130126. Research In-Press Preview Bone Biology Endocrinology The parathyroid hormone receptor (PTH1R) mediates the biologic actions of parathyroid hormone (PTH) and parathyroid hormone related protein (PTHrP). Here, we showed that salt inducible kinases (SIKs) are key kinases that control the skeletal actions downstream of PTH1R and that this GPCR, when activated, inhibited cellular SIK activity. Sik gene deletion led to phenotypic changes that were remarkably similar to models of increased PTH1R signaling. In growth plate chondrocytes, PTHrP inhibited SIK3 and ablation of this kinase in proliferating chondrocytes rescued perinatal lethality of PTHrP-null mice. Combined deletion of Sik2/Sik3 in osteoblasts and osteocytes led to a dramatic increase in bone mass that closely resembled the skeletal and molecular phenotypes observed when these bone cells express a constitutively active PTH1R that causes Jansen’s metaphyseal chondrodysplasia. Finally, genetic evidence demonstrated that class IIa HDACs were key PTH1R-regulated SIK substrates in both chondrocytes and osteocytes. Taken together, our findings established that SIK inhibition is central to PTH1R action in bone development and remodeling. Furthermore, this work highlighted the key role of cAMP-regulated salt inducible kinases downstream of GPCR action. Find the latest version: https://jci.me/130126/pdf 1 Salt-inducible kinases dictate parathyroid hormone receptor action in bone development 2 and remodeling 3 4 Shigeki Nishimori1,2, Maureen J. O’Meara1, Christian Castro1, Hiroshi Noda1,3, Murat Cetinbas4, 5 Janaina da Silva Martins1, Ugur Ayturk5, Daniel J.
    [Show full text]