Hydrogen Production Using Nuclear Energy No

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Production Using Nuclear Energy No IAEA Nuclear Energy Series IAEA Nuclear No. NP-T-4.2No. Energy Hydrogen Production Using Nuclear IAEA Nuclear Energy Series No. NP-T-4.2 Basic Hydrogen Production Principles Using Nuclear Energy Objectives Guides Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–135110–4 ISSN 1995–7807 IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES Under the terms of Articles III.A and VIII.C of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Technical Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed, information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series. The IAEA Nuclear Energy Series publications are coded as follows: NG — general; NP — nuclear power; NF — nuclear fuel; NW — radioactive waste management and decommissioning. In addition, the publications are available in English on the IAEA’s Internet site: http://www.iaea.org/Publications/index.html For further information, please contact the IAEA at PO Box 100, Vienna International Centre, 1400 Vienna, Austria. All users of the IAEA Nuclear Energy Series publications are invited to inform the IAEA of experience in their use for the purpose of ensuring that they continue to meet user needs. Information may be provided via the IAEA Internet site, by post, at the address given above, or by email to [email protected]. HYDROGEN PRODUCTION USING NUCLEAR ENERGY The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PANAMA ALBANIA HAITI PAPUA NEW GUINEA ALGERIA HOLY SEE PARAGUAY ANGOLA HONDURAS PERU ARGENTINA HUNGARY PHILIPPINES ARMENIA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BAHRAIN IRAQ REPUBLIC OF MOLDOVA BANGLADESH IRELAND ROMANIA BELARUS ISRAEL RUSSIAN FEDERATION BELGIUM ITALY RWANDA BELIZE JAMAICA SAUDI ARABIA BENIN JAPAN SENEGAL BOLIVIA JORDAN SERBIA BOSNIA AND HERZEGOVINA KAZAKHSTAN SEYCHELLES BOTSWANA KENYA SIERRA LEONE BRAZIL KOREA, REPUBLIC OF BULGARIA KUWAIT SINGAPORE BURKINA FASO KYRGYZSTAN SLOVAKIA BURUNDI LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMBODIA REPUBLIC SOUTH AFRICA CAMEROON LATVIA SPAIN CANADA LEBANON SRI LANKA CENTRAL AFRICAN LESOTHO SUDAN REPUBLIC LIBERIA SWAZILAND CHAD LIBYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC CONGO MADAGASCAR TAJIKISTAN COSTA RICA MALAWI THAILAND CÔTE D’IVOIRE MALAYSIA THE FORMER YUGOSLAV CROATIA MALI REPUBLIC OF MACEDONIA CUBA MALTA TOGO CYPRUS MARSHALL ISLANDS TRINIDAD AND TOBAGO CZECH REPUBLIC MAURITANIA TUNISIA DEMOCRATIC REPUBLIC MAURITIUS TURKEY OF THE CONGO MEXICO UGANDA DENMARK MONACO DOMINICA MONGOLIA UKRAINE DOMINICAN REPUBLIC MONTENEGRO UNITED ARAB EMIRATES ECUADOR MOROCCO UNITED KINGDOM OF EGYPT MOZAMBIQUE GREAT BRITAIN AND EL SALVADOR MYANMAR NORTHERN IRELAND ERITREA NAMIBIA UNITED REPUBLIC ESTONIA NEPAL OF TANZANIA ETHIOPIA NETHERLANDS UNITED STATES OF AMERICA NEW ZEALAND FIJI URUGUAY FINLAND NICARAGUA UZBEKISTAN FRANCE NIGER GABON NIGERIA VENEZUELA GEORGIA NORWAY VIETNAM GERMANY OMAN YEMEN GHANA PAKISTAN ZAMBIA GREECE PALAU ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR ENERGY SERIES No. NP-T-4.2 HYDROGEN PRODUCTION USING NUCLEAR ENERGY INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2013 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2013 Printed by the IAEA in Austria March 2013 STI/PUB/1577 IAEA Library Cataloguing in Publication Data Hydrogen production using nuclear energy. — Vienna : International Atomic Energy Agency, 2013. p. ; 29 cm. — (IAEA nuclear energy series, ISSN 1995–7807 ; no. NP-T-4.2) STI/PUB/1577 ISBN 978–92–0–135110–4 Includes bibliographical references. 1. Nuclear energy — Industrial applications. 2. Hydrogen as fuel — Research. I. International Atomic Energy Agency. II. Series. IAEAL 13–00792 FOREWORD One of the IAEA’s statutory objectives is to “seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.” One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish “standards of safety for protection of health and minimization of danger to life and property”. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R&D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the world. In recent years, the scope of the IAEA’s programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems. This publication was compiled by K. Verfondern (Germany) based on evaluations of officially issued reports and published papers and presentations from major international conferences. The draft report was reviewed by the experts named at the end of the report. The IAEA officer responsible for this publication was I. Khamis of the Division of Nuclear Power. EDITORIAL NOTE This report
Recommended publications
  • KERNFORSCHUNGSANLA JULICH Gmbh
    KERNFORSCHUNGSANLA JULICH GmbH Proceedings of the Workshop on Structural Design Criteria for HTR Jiilich, 31. January - 1. February 1989 Editors: G. Breitbach F. Schubert H. Nickel Jiil-Conf-71 April 1989 ISSN 0344-5798 Als Manuskript gedruckt Berichte der Kernforschungsanlage Jülich - Jül-Conf-71 Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH Postfach 1913 • D-5170 Jülich (Bundesrepublik Deutschland) Telefon: 02461/610 • Telex: 833556-0 kf d Proceedings of the Workshop on Structural Design Criteria for HTR Jiilich, 31. January - 1. February 1989 Editors: G. Breitbach F. Schubert H. Nickel Workshop on Structural Design Criteria for HTR Introductural remarks Most of the presentations given in this workshop are based on the German research and development project "HTR Design Criteria" carried out under the sponsorship of the Federal Ministry of Research and Technology. The main emphasis of this work was to acquire the fundamental principles and basic data for the establishment of German KTA-rules (KTA: Nuclear Safety Standards Commission) for the design of HTR-structural components. The project began in 1984 and the research work divided among several working groups and task forces, with participation from several institutions and companies. The role of coordination has been carried out by the Institute for Reactor Materials, Nuclear Research Centre Julien, headed by Prof. Dr. H. Nickel. The work has been organized into four working groups: a) Technical safety boundary conditions; b) Metallic structural components; c) Prestressed concrete pressure vessel; d) Graphitic structural components. The required work in each group was divided between a number of task forces. The membership of each group and task force is given in the appendix.
    [Show full text]
  • Nuclear and Energy Independence
    Meetings ANS WINTER MEETING Nuclear and energy independence HILE ORGANIZATIONS HAVE canceled or altered conferences in W the wake of the events of Sep- Major themes of the plenary: tember 11, the American Nuclear Society at- tracted more than 1100 attendants to its Win- N ter Meeting in November in Reno, Nev. “In H2 power can be an application light of recent events, that is a remarkable ac- complishment,” ANS President Gail Marcus of nuclear commented during the opening plenary. The large gathering was due perhaps to the upbeat mood of the industry in general, thanks N 50 years since first electricity with EBR-I in part to the Bush administration’s support of the continued use and further deployment of N nuclear power, and because any hope for re- A proposal for a continental supergrid ducing greenhouse gas emissions likely would include nuclear power in a national energy policy. oring the EBR-I and the nuclear pioneers who was associate project director of the EBR-I During the plenary Marcus paraphrased developed it. The proclamation recognized the and project manager for another reactor, the Charles Dickens by saying, “It is the best of environmental benefits of nuclear power and EBR-II. He later became director of the Re- times, it is the worst of times,” in reference feted those who worked to provide the world actor Engineering Division at Argonne Na- to the terrorist attacks on the United States with “clean, sustainable energy for the bene- tional Laboratory before moving on to Illinois and the opportunity for nuclear power to fit of humankind for centuries by making use Power Company.
    [Show full text]
  • Ternary Fission and Quasi-Fission of Superheavy Nuclei and Giant Nuclear Systems
    June 17, 2010 18:24 Proceedings Trim Size: 9in x 6in zagrebaev_¯ssion_2010b TERNARY FISSION AND QUASI-FISSION OF SUPERHEAVY NUCLEI AND GIANT NUCLEAR SYSTEMS V.I. ZAGREBAEV, A.V. KARPOV Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia WALTER GREINER Frankfurt Institute for Advanced Studies, J.W. Goethe-UniversitÄat,Germany We found that a true ternary ¯ssion with formation of a heavy third fragment (a new kind of radioactivity) is quite possible for superheavy nuclei due to the strong shell e®ects leading to a three-body clusterization with the two doubly magic tin- like cores. The three-body quasi-¯ssion process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by detection of two coincident lead-like fragments in low-energy U+U collisions. 1. Introduction Today the term \ternary ¯ssion" is commonly used to denote the process of formation of light charged particle accompanied ¯ssion 1. This is a rare process (less than 1%) relative to binary ¯ssion, see Fig. 1. As can be seen the probability of such a process decreases sharply with increasing mass number of the accompanied third particle. These light particles are emitted almost perpendicularly with respect to the ¯ssion axis (equatorial emission) 1. It is interpreted as an indication that the light ternary particles are emitted from the neck region and are accelerated by the Coulomb ¯elds of both heavy fragments. In contrast to such a process, the term \true ternary ¯ssion" is used for a simultaneous decay of a heavy nucleus into three fragments of not very di®erent mass 1.
    [Show full text]
  • HTGR Dust Safety Issues and Needs for Research and Development
    INL/EXT-11-21097 HTGR Dust Safety Issues and Needs for Research and Development P. W. Humrickhouse June 2011 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-11-21097 HTGR Dust Safety Issues and Needs for Research and Development P. W. Humrickhouse June 2011 Idaho National Laboratory Next Generation Nuclear Plant Project Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ABSTRACT This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety.
    [Show full text]
  • Reactor Technology Safety and Siting
    XA0101477-5/I5* IAEA-TC-389.26 LIMITED DISTRIBUTION REACTOR TECHNOLOGY SAFETY AND SITING REPORT OF A TECHNICAL COMMITTEE MEETING ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND HELD IN DIMITROVGRAD, USSR, 21-23 JUNE 1989 Reproduced by the IAEA Vienna, Austria, 1990 NOTE The material in this document has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the govern- ments) of the designating Member State(s). In particular, neither the IAEA nor any other organization or body sponsoring this meeting can be held responsible for any material reproduced in this document. FOREWORD On the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The meetings complemented each other. Due to the large worldwide interest, the conference attracted approximately 60 participants from 18 countries and 130 Soviet delegates. About 50 foreign participants and 100 Soviet delegates stayed over for the Technical Committee Meeting. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGR's to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: - The diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • WASH-1097.Pdf
    WASH 1097 UC-80 THE USE OF THORIUM IN NUCLEAR POWER REACTORS JUNE 1969 PREPARED BY Brookhaven National Laboratory AND THE Division of Reactor Development and Technology WITH THE ASSISTANCE OF ARGONNE NATIONAL LABORATORY BABCOCK & WILCOX GULF GENERAL ATOMIC OAK RIDGE NATIONAL LABORATORY PACIFIC NORTHWEST LABORATORY For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 FOREWORD This report on "The Use of Thorium in Nuclear Power Reactors" was prepared under the direction of the Division of Reactor Development and Technology, U.S.A.E.C., as part of an overall assessment of the Civilian Nuclear Power Program initiated in response to a request in 1966 by the Joint Committee on Atomic Energy. It represents the results of the inquiry by the Thorium Systems Task Force whose membership included representatives of Babcock & Wilcox Company, Gulf General Atomic Company, the Argonne National Laboratory, the Brookhaven National Laboratory, the Oak Ridge National Laboratory, the Pacific Northwest Laboratory, and the U.S. Atomic Energy Commission. Publication of this report, which provides information basic to the AEC reactor development program, completes one phase of the evaluation effort outlined in the 1967 Supplement to the 1962 Report to the President on Civilian Nuclear Power, issued in February 1967. The 1967 Supplement outlined changes since 1962 in the technical, economic and resource picture and provided background for further study. Specifically, this report represents the consensus of the task force on the potential use of the thorium cycle and the specific thorium fueled reactor designs which have been proposed.
    [Show full text]
  • Eighth World Conference on Nondestructive Testing Huitieme Conference Moiudiale Sur Les Essais Non Destructifs
    ./ 1ÍOIS_ UJ._ EIGHTH WORLD CONFERENCE ON NONDESTRUCTIVE TESTING HUITIEME CONFERENCE MOIUDIALE SUR LES ESSAIS NON DESTRUCTIFS A NONDESTRUCTIVE EXAMINATION PROGRAM FOR UNCLAD CARBON-COMPOSITE REACTOR FUEL ELEMENTS UN PROGRAMME D'KSSAIS NON DESTRUCTIFS POUR LES ELEMENTS COMBUSTIBLES DE REACTEUR NON GAINÊS EN COMPOSITE DU CARBONE FULLBRIGHT H. J. LOS ALAMOS, NEW MEXICO LOS ALAMOS SCIENTIFIC LABORATORY U. S. A. SUMMARY- ^ non<lestructive testing program for the examination of (U,Zr)C—C reactor fuel elements is described. RESUME :O n décrit un programme d'essais non destructifs pour examiner les elements combustibles de réacteur en (U.Zr)C-C. I. INTRODUCTION The Los Alamos Scientific Laboratory has been active for the past twenty years in the development and testing of graphitic-based high temperature reactor fuel elements. The initial involvement was in the field of nuclear propulsion systems. Project Rover began as a program to develop a nuclear-powered, hydrogen-propelled rocket engine. The target exhaust temperature of the propellant was about 2775 K. The fuel element for such an engine would have to maintain its integrity and strength at higher temperatures and would have to resist currosion by the hot hydrogen gas, which is very reactive. These constraints limited the choice of materials to a very few. Carbon melts above about 3800 K, has excellent high-tenperature strength, and is not a strong neutron absorber. It is very reactive to high temperature hydrogen. The basic fuel element foi the Rover Program became uranium-loaded graphite. The enriched uranium fuel was incorporated into the graphite matrix as uranium oxide, later as py- rolytic-carbon coated uranium dicarbide inicrospheres, and, aosf recently, as a solid solution of uranium carbide and zirconium carbide.
    [Show full text]
  • Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
    PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations.
    [Show full text]
  • An Introduction to Nuclear Power – Science, Technology and UK
    sustainable development commission The role of nuclear power in a low carbon economy Paper 1: An introduction to nuclear power – science, technology and UK policy context An evidence-based report by the Sustainable Development Commission March 2006 Table of contents 1 INTRODUCTION ................................................................................................................................. 3 2 ELECTRICITY GENERATION ................................................................................................................. 4 2.1 Nuclear electricity generation ................................................................................................. 4 2.2 Fission – how does it work?..................................................................................................... 4 2.3 Moderator ................................................................................................................................. 5 2.4 Coolant...................................................................................................................................... 5 2.5 Radioactivity ............................................................................................................................. 6 3 THE FUEL CYCLE: FRONT END ............................................................................................................ 7 3.1 Mining and milling ................................................................................................................... 7 3.2 Conversion and
    [Show full text]
  • Inis: Terminology Charts
    IAEA-INIS-13A(Rev.0) XA0400071 INIS: TERMINOLOGY CHARTS agree INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUGUST 1970 INISs TERMINOLOGY CHARTS TABLE OF CONTENTS FOREWORD ... ......... *.* 1 PREFACE 2 INTRODUCTION ... .... *a ... oo 3 LIST OF SUBJECT FIELDS REPRESENTED BY THE CHARTS ........ 5 GENERAL DESCRIPTOR INDEX ................ 9*999.9o.ooo .... 7 FOREWORD This document is one in a series of publications known as the INIS Reference Series. It is to be used in conjunction with the indexing manual 1) and the thesaurus 2) for the preparation of INIS input by national and regional centrea. The thesaurus and terminology charts in their first edition (Rev.0) were produced as the result of an agreement between the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom). Except for minor changesq the terminology and the interrela- tionships btween rms are those of the December 1969 edition of the Euratom Thesaurus 3) In all matters of subject indexing and ontrol, the IAEA followed the recommendations of Euratom for these charts. Credit and responsibility for the present version of these charts must go to Euratom. Suggestions for improvement from all interested parties. particularly those that are contributing to or utilizing the INIS magnetic-tape services are welcomed. These should be addressed to: The Thesaurus Speoialist/INIS Section Division of Scientific and Tohnioal Information International Atomic Energy Agency P.O. Box 590 A-1011 Vienna, Austria International Atomic Energy Agency Division of Sientific and Technical Information INIS Section June 1970 1) IAEA-INIS-12 (INIS: Manual for Indexing) 2) IAEA-INIS-13 (INIS: Thesaurus) 3) EURATOM Thesaurusq, Euratom Nuclear Documentation System.
    [Show full text]
  • Properties of Selected Radioisotopes
    CASE FILE COPY NASA SP-7031 Properties of Selected Radioisotopes A Bibliography PART I: UNCLASSIFIED LITERATURE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-7031 PROPERTIES OF SELECTED RADIOISOTOPES A Bibliography Part I: Unclassified Literature A selection of annotated references to technical papers, journal articles, and books This bibliography was compiled and edited by DALE HARRIS and JOSEPH EPSTEIN Goddard Space Flight Center Greenbelt, Maryland Scientific and Technical Information Division / OFFICE OF TECHNOLOGY UTILIZATION 1968 USP. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. PREFACE The increasing interest in the application of substantial quantities of radioisotopes for propulsion, energy conversion, and various other thermal concepts emphasizes a need for the most recent and most accurate information available describing the nuclear, chemical, and physical properties of these isotopes. A substantial amount of progress has been achieved in recent years in refining old and developing new techniques of measurement of the properties quoted, and isotope processing. This has resulted in a broad technological base from which both the material and information about the material is available. Un- fortunately, it has also resulted in a multiplicity of sources so that information and data are either untimely or present properties without adequately identifying the measurement techniques or describing the quality of material used. The purpose of this document is to make available, in a single reference, an annotated bibliography and sets of properties for nine of the more attractive isotopes available for use in power production. Part I contains all the unclassified information that was available in the literature surveyed. Part II is the classified counterpart to Part I.
    [Show full text]