Building Structures in Cooperation with Architects
Total Page:16
File Type:pdf, Size:1020Kb
MASTER OF SCIENCE THESIS STOCKHOLM, SWEDEN 2016 building structures in cooperation with architects Usage and evaluation of structural plug-ins in 3D visualisation software DANIEL WALLIN MARTIN WASBERG KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT Parametric design of building structures in cooperation with architects - Usage and evaluation of structural plug-ins in 3D visualisation software Daniel Wallin and Martin Wasberg TRITA-BKN. Master Thesis 494, Concrete Structures, June 2016 ISSN 1103-4297, ISRN KTH/BKN/EX–494–SE c Martin Wasberg and Daniel Wallin 2016 Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering Division of Concrete Structures Stockholm, Sweden, 2016 Abstract Architectural and structural design process are closely connected but traditionally done in two separate steps in the design process. This requires effective coordination between the two disciplines and without the right tools problems often arise. The thesis was done by support from structural engineers at Tyréns and in collaboration with a student from the department of architecture. The aim of the thesis was to investigate if the use of parametric design tools from both architects and structural engineers could be a way of making the design process more effective. This thesis also include test the structural plug-ins of the parametric design tools and compare them with the outputs from traditional structural software and hand calculations. The comparison was made for different cases followed by a collaboration project. The cases was targeting different structural features which in turn gave the knowledge needed to develop the collaboration project. The case studies consists of five cases where the first two gives an introduction to parametric modelling. The third case is a steel beam with fully restrained supports loaded by two point loads. It will compare the displacement calculations between the different software. The next case is a concrete slab with different supports along edges loaded by a uniformly load. The analysis includes calculation and evaluation of section forces. The final case is a concrete dome. It is built up by arches and five supports. The analysis of this case includes calculation and evaluation of the displacement. The collaboration project is a concrete structure built up by a curved surface lifted by curved columns. The architect worked with the structure in parallel to this this thesis and targeted the development process whilst the authors targeted the structural parts and at the same time gave structural insight to the architect. The results show a difference between the parametric structural tools and the traditional FE software regarding deformation and moments. The hand calculations in the collaboration project show that the amount of reinforcement will not work with the given inputs and assumptions due to practical reasons regarding spacing. The possibility to export models from the parametric environment to traditional engineering soft- ware’s enables a faster analysis, since the modelling capabilities is limited and time-consuming in these. The structural capabilities of the parametric tools are good enough for deciding initial geometry and properties but these will probably change when subjected to an more extensive analysis. iii Sammanfattning De Arkitektoniska och strukturella designprocesserna är nära sammankopplade men traditionellt gjort i två separata steg i byggprocessen. Detta kräver en effektiv samordning mellan de två disciplinerna och utan de rätta verktygen uppstår ofta problem. Uppsatsen genomfördes med stöd från konstruktörer på Tyréns och i samarbete med en student från institutionen för arkitektur. Syftet med uppsatsen var att undersöka om användningen av parametriska designverktyg från både arkitekter och konstruktörer kan vara ett sätt att göra de- signprocessen mer effektiv. Denna uppsats testade också de strukturella plug-in till de parametriska designverktygen och jämförde resultatet med traditionella finita element- och handberäkningar. Jämförelsen gjordes för olika fall följt av ett samarbetsprojekt. Fallen riktade in sig på olika strukturella egenskaper som gav den kunskap som behövdes för att utveckla samarbetsprojektet. Fallstudierna består av fem fall där de två första ger en introduktion till parametrisk modellering. Det tredje fallet är en fast inspänd stålbalk belastad med två punktlaster. Fallet kommer att jämföra deformationsberäkningen mellan de olika programvarorna. Det fjärde fallet är en betong- platta med olika stödvillkor längs kanterna belastad av en jämt utbredd last. Analysen inkluderar beräkning och utvärdering av snittkrafter. Det sista fallet är en betongkupol. Den är uppbyggd av valv och fem stöd. Analysen av detta fall inkluderar beräkning och utvärdering av nedböjningen. Samarbetsprojektet är en betongkonstruktion uppbyggd av en krökt yta som bärs upp av välvda pelare. Arkitekten arbeta parallellt med strukturen tillsammans med författarna av denna uppsats och riktade in sig på utvecklingsprocessen. Författarna fokuserade på de strukturella delarna och gav samtidigt strukturell insikt till arkitekten. Resultaten visar en skillnad mellan de parametriska strukturella verktygen och det traditionella FE programmet vad gäller deformation och moment. Handberäkningarna för armeringsmängden visar av praktiska skäl, gällande avstånd, att detta inte fungerar. Möjligheten att exportera modeller från den parametriska miljön till traditionella ingenjörsprogram möjliggör en snabbare analys då modelleringskapaciteten är begränsad och tidskrävande för dessa. Den strukturella kapaciteten hos de parametriska verktygen är tillräckligt bra för att bestämmma initial geometri och egenskaper, men dessa kommer sannolikt att ändras när det utsätts för en mer omfattande analys. v Preface This master thesis has been carried out at Tyréns AB and the Division of Concrete Structures, Department of Civil and Architectural Engineering at the Royal Institute of Technology (KTH) in Stockholm. We express our deepest gratitude to our supervisor, Adjunct Prof. Mikael Hallgren for the opportunity to work with this thesis as well as his advice and guidance. We also thank our examiner Professor Anders Ansell for all he has learned us about con- crete structures during our years at the Royal institute of Technology. Furthermore, we thank Tyréns AB for their warm welcome and for an inspiring work environment. Last but not least, we thank Ulf Edgren at the Department of Architecture for the collaboration and sharing his knowledge of architecture and parametric design. Stockholm, June 2016 Daniel Wallin and Martin Wasberg vii Symbols Latin upper case letters As.min Minimum cross sectional area of reinforcement B Strain-displacement matrix Ce Exposure factor Ct Thermal coefficient D Global displacement vector Dbar Diameter of rebar E Modulus of elasticity ; Material properties matrix Ecm Secant modulus of elasticity of concrete Es Modulus of elasticity of reinforcement steel F In plane force FC Compressive force Fs Tensile force Gk Area weight of permanent load I Moment of inertia K Global stiffness matrix Lbeam Length of beam Lspan Length of span M Bending moment MEd Design value of the applied internal bending moment N Matrix containing shape functions ix NEd Design value of the applied axial force (tension or compression) P Point load R Global load vector Smax.slabs Maximum spacing of bars Sr.max Maximum crack spacing V Shear force VEd Design value of the applied shear force VRd.c Shear force resistance Latin lower case letters b Width cnom Concrete cover d Effective depth of cross-section dbars Distance between bars e Eccentricity fcd Design value of concrete compressive strength fck Characteristic compressive strength of concrete fcm Mean value of compressive strength of concrete fctm Mean value of axial tensile strength of concrete fyd Design yield strength of steel fyk Characteristic yield strength of steel g Gravitational constant h Height k Coefficient ; Factor ; Local stiffness matrix nbars Number of bars per meter qd Design area load sk Characteristic snow load x sn Design snow load t Thickness wk Crack width y Height of the effective compressive zone x Height of the compressive zone Greek lower case letters α Ratio of modulus of elasticity γ General partial coefficient γd Safety factor γg Partial factor for permanent load γc Partial factor for concrete γS Partial factor for reinforcing steel γq Partial factor for variable load δ Deformation " Strain "c Compressive strain in the concrete "u Ultimate compressive strain in the concrete "s Strain in the reinforcing steel η Effective strength parameter θ Angle λ Effective height parameter µi Form factor ξ Reduction factor ρconc Density of concrete ρp.eff Reinforcement ration σ Stress xi σc Compressive stress σs Tensile stress σcp Compressive strength from axial load τ Shear stress Load factor xii Contents Abstract iii Sammanfattningv Preface vii Symbols ix 1 Introduction1 1.1 Background................................2 1.2 Aim....................................4 1.3 Approach.................................4 1.4 Limitations and assumptions.......................6 1.5 Used software...............................7 2 Theory9 2.1 Finite element method..........................9 2.2 Principal stress-lines........................... 12 3 Description of used software 15 3.1 Rhinoceros 5.0............................... 15 3.2 Grasshopper................................ 15 3.3 Karamba.................................