Male Reproductive System

Total Page:16

File Type:pdf, Size:1020Kb

Male Reproductive System MALE REPRODUCTIVE SYSTEM DR.M.SARWAR ZIA Assistant professor anatomy RMU OVERVIEW Male reproductive system consists of Testes Genital ducts Accessary sex glands penis Functions of testes:- Production of spermatozoa Secretion of testosterone Actions of testosterone Actions of dihydrotestosterone Genital ducts & accessary sex glands Testes Testes derived from three sources Intermediate mesoderm Mesodermal epithelium Primordial germ cells Decent of testes At approximately 26 weeks testes descend Gubernaculum Cryptorchidism Orchioplexy Maintenance of temperature of testes in the scrotum . Countercurrent heat exchange mechanism . Sweating . Dartos muscle . Cremaster reflex Testes Tunica albuginea Tunica vasculosa Mediastinum testes Testicular lobules (250) Seminiferous tubules Interstitial loose connective tissue Interstitial cells (Leydig) Straight tubules Rete testes Seminiferous tubules Each Seminiferous tubule is . 50 cm long (30 to 80 cm) . 150 to 250µm in diameter Seminiferous epithelium Tunica propria (peritubular tissue) Spermatogenic cells Sertoli cells Sertoli cells . Structure . Sertoli cells junctional complexes Sertoli cell to Sertoli cell junctional complexes Sertoli cell to Spermatid junction Sertoli cell to basal lamina Sertoli cells functions Provide support ,protection and nutrition to developing spermatogenic cells Exocrine and endocrine secretion . Androgen binding protein(ABP) . Inhibin . Mullerian inhibiting substance (MIS) Phagocytosis Establish blood testis barrier which protects the haploid male germ cells from immune system of the body Blood – testes barrier Tunica propria • Also called peritubular tissue • Multilayered connective tissue which lacks fibroblast • Composed of 3 to 5 layers of myoid cells and collagen fibrils • Excessive thickening in early life is associated with infertility Interstitial cells (Leydig) Large and polygonal Eosinophilic Contains lipid droplets Lipofuscin pigments Have all features of steroid secreting cells Secrete the testosterone Spermatogenesis A process by which spermatogonia develop into mature sperms Begins shortly before puberty Continues throughout the life Phases of spermatogenesis Spermatogonial phase Spermatocyte phase (Meiosis) Spermatid phase (spermiogenesis) Spermiogenesis A process by which spermatids undergo extensive remodeling and transform into spermatozoa Spermiogenesis include . Formation of acrosome . Condensation and elongation of nucleus . Development of flagellum . Loss of much of the cytoplasm Phases of spermiogenesis . Golgi phase . Cap phase . Acrosome phase . Maturation phase Structure of mature sperm . Mature human sperm 60µm . parts • Head 5x3x1 µm • Tail Neck (connecting piece) Middle piece 7µm Principal piece 40µm End piece 5µm Structure of mature sperm Intratesticular ducts Straight tubules Rete testes Straight tubules . Initial part is lined by sertoli cells . Main segment is lined by simple cuboidal epithelium . Outer to basal lamina is loose CT Rete testis Lined by simple cuboidal epithelium Testis (low magnification) Testis (higher magnification) Extratesticular duct system Efferent ductules Epididymis Ducts deferens Ejaculatory duct urethra Efferent ductules . About 20 in number . Derived from mesonephric tubules . Connects the rete testis with duct of epididymis . Coni vasculosae (6 to 10) . Efferent ductules are coiled about 15 to 20 cm long Efferent ductules Lined by pseudostratified columnar epithelium Groups nonciliated cuboidal cells alternating with ciliated columnar cells Thin circular layer of smooth muscle out side basal lamina Interspersed among the smooth muscle are elastic fibers Epididymis Crescent shaped organ Measures 7.5 cm long Location Measurements 4-6m Parts of epididymis . Head . Body . Tail Functions of Epididymis . Storage of spermatozoa . Transportation of spermatozoa towards the ducts deferens . Reabsorption of most of the fluid that leaves the testis . Spermatozoa acquire the motility in the epididymis . Phagocytosis of degenerated sperms and extra cytoplasm . Spermatozoa become more cylindrical in duct of epididymis Epididymis Lining of Duct of epididymis Principal cells Basal cells Outer to epithelium are circularly arranged smooth muscles in head and body In the tail three layers of smooth muscles Outer the smooth muscles is loose connective tissue Epididymis Ductus(Vas) deferens Longest part genital duct system Course Ampulla of vas deferens Ejaculatory duct Structure Lumen narrow longitudinally folded Pseudostratified columnar epithelium Sparse Stereocilia Lamina propria rich in elastic fibers Three muscle layers(1 to 1.5 mm) Adventitia Loose CT In ampulla mucosa shows extensive folding Muscle layer become thin Ejaculatory duct no smooth muscle (Jonquiere's) Ampulla of ductus deferens Ejaculatory ducts Accessary sex glands • Paired Seminal vesicle • Prostate gland • Paired Bulbourethral glands Seminal vesicles Paired elongated highly folded tubular exocrine glands Measurement 15 cm long Location Seminal vesicles Structure:- Mucosa . Pseudostratified columnar epithelium . Lamina propria Smooth muscles . Inner circular . Outer longitudinal Adventitia is formed by fibroelastic connective tissue Seminal vesicles Seminal vesicles Prostate Largest accessary sex gland Location Measurements 2cmx3cmx4cm Weight 20 grams Consists of 30 to 50 branched tubuloalveolar glands Arrangement . Mucosal glands 5% . Submucosal glands 25% . Main glands (Peripheral) 70% Prostate Openings of prostate glands Prostate Zones of prostate=- Transition zone Central zone Peripheral zone Clinical correlation Benign prostatic hypertrophy (BPH) . Transition zone of prostate is involved . Is present in 50 % males above the age of 50 years . Is present in 95 % males above the age of 70 years . Leads to compression of urethra causing difficulty in micturition Prostatic cancer . Peripheral zone of prostate is involved . One of most common form of cancer in man . Prostatic specific antigen (PSA) . Prostatic acid phosphatase (PAP) . Normal level of PSA 4ng/ml . If level is 4 to 10 ng/ml the risk of cancer is 25% . If level is above 10 ng/ml the risk of cancer is is greater than 67% Microscopic structure of Prostate gland Compound tubuloalveolar gland lined by simple columnar or pseudostratified columnar epithelium Capsule Septa Indistinct lobes Fibromuscular stroma Corpora amylacia (prostatic concretions) Corpora amylacea (prostatic concretions) . Small spherical concretions . 0.2 to 2 mm in diameter . Contains mainly deposited glycoproteins and sulfated Glycosaminoglycans particularly keratin sulfate . Number and size increase with age . No physiological and clinical significance Bulbourethral (Cowper’s) glands Paired glands 3 to 5 mm in diameter Located in urogenital diaphragm Ducts open in the initial part of penile urethra Compound tubuloalveolar gland Secretions are mucus in nature Capsule lobules Secretory acini are lined by simple columnar epithelium Septa rich in smooth muscles References • Histology A Text And Atlas Michael H Ross 5th Edition. • Basic Histology Text and Atlas by Luiz Carlos Junqueira 12th Edition • Medical histology by Liaq Hussain Siddiqui 5th Edition • Google Search results for images. .
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Male Reproductive System
    MALE REPRODUCTIVE SYSTEM DR RAJARSHI ASH M.B.B.S.(CAL); D.O.(EYE) ; M.D.-PGT(2ND YEAR) DEPARTMENT OF PHYSIOLOGY CALCUTTA NATIONAL MEDICAL COLLEGE PARTS OF MALE REPRODUCTIVE SYSTEM A. Gonads – Two ovoid testes present in scrotal sac, out side the abdominal cavity B. Accessory sex organs - epididymis, vas deferens, seminal vesicles, ejaculatory ducts, prostate gland and bulbo-urethral glands C. External genitalia – penis and scrotum ANATOMY OF MALE INTERNAL GENITALIA AND ACCESSORY SEX ORGANS SEMINIFEROUS TUBULE Two principal cell types in seminiferous tubule Sertoli cell Germ cell INTERACTION BETWEEN SERTOLI CELLS AND SPERM BLOOD- TESTIS BARRIER • Blood – testis barrier protects germ cells in seminiferous tubules from harmful elements in blood. • The blood- testis barrier prevents entry of antigenic substances from the developing germ cells into circulation. • High local concentration of androgen, inositol, glutamic acid, aspartic acid can be maintained in the lumen of seminiferous tubule without difficulty. • Blood- testis barrier maintains higher osmolality of luminal content of seminiferous tubules. FUNCTIONS OF SERTOLI CELLS 1.Germ cell development 2.Phagocytosis 3.Nourishment and growth of spermatids 4.Formation of tubular fluid 5.Support spermiation 6.FSH and testosterone sensitivity 7.Endocrine functions of sertoli cells i)Inhibin ii)Activin iii)Follistatin iv)MIS v)Estrogen 8.Sertoli cell secretes ‘Androgen binding protein’(ABP) and H-Y antigen. 9.Sertoli cell contributes formation of blood testis barrier. LEYDIG CELL • Leydig cells are present near the capillaries in the interstitial space between seminiferous tubules. • They are rich in mitochondria & endoplasmic reticulum. • Leydig cells secrete testosterone,DHEA & Androstenedione. • The activity of leydig cell is different in different phases of life.
    [Show full text]
  • Morphology of the Male Reproductive Tract in the Water Scavenger Beetle Tropisternus Collaris Fabricius, 1775 (Coleoptera: Hydrophilidae)
    Revista Brasileira de Entomologia 65(2):e20210012, 2021 Morphology of the male reproductive tract in the water scavenger beetle Tropisternus collaris Fabricius, 1775 (Coleoptera: Hydrophilidae) Vinícius Albano Araújo1* , Igor Luiz Araújo Munhoz2, José Eduardo Serrão3 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brasil. 2Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Biologia Geral, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Members of the Hydrophilidae, one of the largest families of aquatic insects, are potential models for the Received 07 February 2021 biomonitoring of freshwater habitats and global climate change. In this study, we describe the morphology of Accepted 19 April 2021 the male reproductive tract in the water scavenger beetle Tropisternus collaris. The reproductive tract in sexually Available online 12 May 2021 mature males comprised a pair of testes, each with at least 30 follicles, vasa efferentia, vasa deferentia, seminal Associate Editor: Marcela Monné vesicles, two pairs of accessory glands (a bean-shaped pair and a tubular pair with a forked end), and an ejaculatory duct. Characters such as the number of testicular follicles and accessory glands, as well as their shape, origin, and type of secretion, differ between Coleoptera taxa and have potential to help elucidate reproductive strategies and Keywords: the evolutionary history of the group. Accessory glands Hydrophilid Polyphaga Reproductive system Introduction Coleoptera is the most diverse group of insects in the current fauna, The evolutionary history of Coleoptera diversity (Lawrence et al., with about 400,000 described species and still thousands of new species 1995; Lawrence, 2016) has been grounded in phylogenies with waiting to be discovered (Slipinski et al., 2011; Kundrata et al., 2019).
    [Show full text]
  • Coleoptera: Curculionidae: Scolytinae)
    biology Article The Sperm Structure and Spermatogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae) Jing Gao 1, Guanqun Gao 2, Jiaxing Wang 1 and Hui Chen 1,3,* 1 College of Forestry, Northwest A&F University, Yangling 712100, China; [email protected] (J.G.); [email protected] (J.W.) 2 Information Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; [email protected] 3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China * Correspondence: [email protected]; Tel.: +86-29-8708-2083 Simple Summary: In the mating, reproduction, and phylogenetic reconstruction of various in- sect taxa, the morphological characteristics of the male reproductive system, spermatogenesis, and sperm ultrastructure are important. We investigated these morphological characteristics of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. pyramidalis (Bunge) using light microscopy, scanning electron microscopy, and transmission electron microscopy. We also compared these morphological characteristics with that found in other Curculionidae. Abstract: The male reproductive system, sperm structure, and spermatogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. Citation: Gao, J.; Gao, G.; Wang, J.; pyramidalis (Bunge), were investigated using light microscopy, scanning electron microscopy, and Chen, H. The Sperm Structure and transmission electron microscopy. The male reproductive system of T. klimeschi is composed of testes, Spermatogenesis of Trypophloeus seminal vesicles, tubular accessory glands, multilobulated accessory glands, vasa deferentia, and a klimeschi (Coleoptera: Curculionidae: Scolytinae).
    [Show full text]
  • Determination of the Elongate Spermatid\P=N-\Sertolicell Ratio in Various Mammals
    Determination of the elongate spermatid\p=n-\Sertolicell ratio in various mammals L. D. Russell and R. N. Peterson Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, U.S.A. Summary. Criteria were devised for determining the elongate spermatid\p=n-\Sertolicell ratio in various mammalian species at the electron microscope level. When data from particular species were pooled, the values were: rabbit, 12\m=.\17:1,hamster, 10\m=.\75:1; gerbil, 10\m=.\64:1;rat, 10\m=.\32:1; guinea-pig, 10\m=.\10:1;vole, 9\m=.\75:1;and monkey, 5\m=.\94:1. The elongate spermatid\p=n-\Sertolicell ratio is a measure of the workload of the Sertoli cell and is a prime factor determining their efficiency. The higher the ratio, the higher the sperm output is likely to be per given weight of seminiferous tubule parenchyma for a particular species. Introduction The number of spermatozoa provided in the ejaculate is determined by a number of factors but the major influence is the number of spermatozoa produced in the testis. In mammals that breed continuously testicular sperm production appears to be related to the size of the testis, especially the seminiferous tubule compartment. Here the kinetics of spermatogenesis dictate how many germ cells (spermatogonia) become committed to the spermatogenic process and also the time it takes these germ cells to go through various cell divisions and transformations to become a spermatozoon. The index of sperm production, or the daily sperm production, is expressed as the number of spermatozoa produced per day by the two testes of an individual, whereas the index of efficiency of sperm production is the number of spermatozoa produced per unit weight or volume of testicular tissue (Amann, 1970).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • I.7 Problem: Emergencies in Andrology
    Chapter I.7 I.7 Problem: Emergencies in Andrology I.7.1 Testicular Torsion C.F. Heyns, A.J. Visser Key Messages ulative detorsion of the testis (Nash 1893). Curling ■ Torsion of the testis is a common emergency. (1857) cited a case report by Rosenmerkel from Munich, ■ The diagnosis is clinical and the management who untwisted an undescended testis and fixed it in the is emergency surgical reduction and bilateral scrotum with a stitch through the dartos tunics (Noske fixation. et al. 1998). Defontaine described the first case of opera- ■ A high index of suspicion is imperative in tive reduction of an intrascrotal torsion in 1893 (Sparks equivocal cases, and errors in management 1971). Taylor first described extravaginal torsion in should be on the aggressive rather than the 1897 (Taylor 1897). conservative side. By 1901, Scudder was able to assemble only 32 cases ■ Ipsilateral and contralateral orchiopexy should from the world literature (Williamson 1976). Before be performed with nonabsorbable sutures to 1919, only 124 cases had been reported, but between prevent recurrent torsion. 1923 and 1930 there were 250 reported cases, probably ■ The testicular salvage rates correlate with the due to wider recognition of the condition (O’Conor duration and the degree of torsion. 1933). ■ Subfertility after torsion is well recognized but We reviewed 276 articles, performed meta-analyses probably not of clinical importance. on the published data and reported our findings in two ■ Testicular torsion remains a surgical emer- recent reviews, which can be consulted for the most im- gency until 48 h of persistent symptoms have portant articles (Visser and Heyns 2003, 2004).
    [Show full text]
  • Simplified and Objective Assessment of Spermatogenesis in Spinal Cord Injured Men by Flow Cytometry Analysis
    Paraplegia 31 (1993) 785-792 © 1993 International Medical Society of Paraplegia Simplified and objective assessment of spermatogenesis in spinal cord injured men by flow cytometry analysis I H Hirsch MD,! D Kulp-Hugues MD,! J Sedor MS,! P McCue MD, 2 M B Chancellor MD,! WEStaas MD,3 Deparments of 1 Urology, 2 Pathology, 3 Physical Medicine and Rehabilitation, Regional Spinal Cord Injury Center of the Delaware Valley, Jefferson Medical College, Philadelphia, PA, USA. Deterioration of the germinal epithelium of the testis is a known sequela of spinal cord injury (SCI) that may influence the outcome of male reproductive rehabilitation efforts. Quantitative testicular biopsy, currently regarded as the standard of assessing the integrity of spermatogenesis, has not gained wide­ spread clinical use because of its invasive nature and relative technical complex­ ity. Alternatively, aspiration DNA flow cytometry analysis of the testis has offered a potential method of spermatogenic assessment that meets both the requirements of simplicity and objectivity. The objective of this study is to determine the capability of flow cytometry to assess spermatogenesis following SCI. Eleven SCI men underwent incisional testicular biopsy with the specimen simultaneously submitted for quantitative evaluation of the germinal epithelium by both quantitative histometry and DNA flow cytometry. The haploid percen­ tage of cells showed highly significant levels of correlation with key micrometric parameters of the quantitative testicular biopsy: spermatid/tubule (p < 0.002) and the spermatid/Sertoli cell ratio (p < 0.0005). Since tissue procurement is accomplished less invasively for flow cytometry analysis, we recommend this method as the modality of assuring integrity of the germinal epithelium in candidates for reproductive rehabilitation.
    [Show full text]
  • Anion Exchanger 2 Is Essential for Spermiogenesis in Mice
    Anion exchanger 2 is essential for spermiogenesis in mice Juan F. Medina*†, Sergio Recalde*, Jesu´ s Prieto*, Jon Lecanda*, Elena Sa´ ez*, Colin D. Funk‡, Paola Vecino§, Marian A. van Roon¶, Roelof Ottenhoffʈ, Piter J. Bosmaʈ, Conny T. Bakkerʈ, and Ronald P. J. Oude Elferinkʈ *Laboratory of Molecular Genetics, Division of Hepatology and Gene Therapy, University Hospital͞School of Medicine, Fundacio´n para la Investigacio´n Medica Aplicada, University of Navarra, E-31008 Pamplona, Spain; ‡Center for Experimental Therapeutics, University of Pennsylvania, Biomedical Research Building II͞III, Philadelphia, PA 19104; §Department of Cell Biology, University of the Basque Country, E-48940 Leioa, Spain; and ¶Facility for Genetically Modified Mice and ʈLaboratory for Experimental Hepatology, AMC Liver Center, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands Edited by Michael J. Welsh, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, and approved October 21, 2003 (received for review September 19, 2003) Na؉-independent anion exchangers (AE) mediate electroneutral exchangers (AE), which mediates electroneutral and reversible ؊ ؊ Ϫ Ϫ exchange of Cl for HCO3 ions across cell membranes, being exchange of Cl and HCO3 across cell membranes (12). In involved in intracellular pH and cell volume regulation and in cooperation with other ion carriers, AE proteins are involved in transepithelial hydroionic fluxes. Bicarbonate activation of adeny- intracellular pH and cell volume regulation and in transepithelial lyl cyclase is known to be necessary for sperm motility and sperm hydroionic fluxes and acid͞base transport. Among the four AE capacitation, and a few studies have suggested a possible role of genes identified in mammals thus far (Ae1, Ae2, Ae3, and Ae4) AE carriers in reproduction.
    [Show full text]
  • Seminiferous Tubules to Epididymis in the Mouse: a Histological and Quantitative Study
    TRANSPORT OF SPERMATOZOA FROM SEMINIFEROUS TUBULES TO EPIDIDYMIS IN THE MOUSE: A HISTOLOGICAL AND QUANTITATIVE STUDY BRUCE M. BARACK Department of Anatomy, Washington University School of Medicine, St. Louis, Missouri, U.S.A. (Received 1st May 1967) Summary. The histology and structure of the seminiferous tubules, the tubuli recti, the rete testis and the ductuli efferentes of the adult albino mouse were studied in conjunction with the effect of unilateral ligation of the ductuli efferentes on the testis of the operated side under various experimental conditions. Results indicate that the amount of fluid produced within the testis is sufficient to flush the tubular system at least once a day and therefore eight times/spermatogenic cycle and that this fluid passage is the major factor in the transport of spermatozoa from the seminiferous tubules to the ductuli efferentes. The possibility of an interaction between the Sertoli cell and associated spermatids in early spermiogenesis resulting in secretion of fluid by the Sertoli cell is discussed. INTRODUCTION The mechanism of transport of immotile spermatozoa from the seminiferous tubules to the epididymis is still in question. The consequences of unilateral ligation of the ductuli efferentes or the head of the epididymis on the testis of the operated side have been described by Van Wagenen (1924, 1925), White (1933), Harrison (1953) and Harrison & Macmillan (1954) in the rat; Ladman & Young (1958) in the guinea-pig; Baillie (1962) in the mouse and Gaddum & Glover (1965) in the rabbit. These investigators found that following ligation there occurs a generalized dilatation of the seminiferous tubules accompanied by a varying degree of shedding and/or degeneration of the seminiferous epithelium.
    [Show full text]
  • PROTEINS of the SEMINIFEROUS TUBULE FLUID in MAN\P=M-\EVIDENCEFOR a BLOOD\P=M-\TESTISBARRIER
    PROTEINS OF THE SEMINIFEROUS TUBULE FLUID IN MAN\p=m-\EVIDENCEFOR A BLOOD\p=m-\TESTISBARRIER AARNE I. KOSKIMIES, MARTTI KORMANO and OLOF ALFTHAN Department of Anatomy, University of Helsinki, and Department of Urology of the Second Surgical Clinic, University Central Hospital, Helsinki, Finland (Received 16th December 1971) Summary. Seminiferous tubule fluid was collected by micropuncture from ten human testes immediately after orchidectomy and subjected to high resolution step gradient acrylamide gel electrophoresis. The pro- tein patterns of the fluid were compared with those of serum and intratesticular lymph. The seminiferous tubule fluid always contained a number of proteins not seen in serum or in testicular lymph and a few proteins which were electrophoretically identical with those in serum. The bulk of these relatively weak serum bands consisted of albumin. Disturbance of spermatogenesis did not influence either the appearance of specific proteins or the degree of serum contamination. The present results are interpreted to mean that in man, as in ani- mals, there is an effective blood\p=m-\testisbarrier. The specific proteins of the seminiferous tubules may be elaborated by Sertoli cells. INTRODUCTION The seminiferous tubules secrete a fluid which carries the spermatozoa out of the testis and into the epididymis. The existence of such a fluid has been recognized for some time (von Mihalkovics, 1873; Stieda, 1877), and its circulation was studied microscopically either in normal testes (Rolshoven, 1936) or after ligation of the efferent ducts in experimental animals (Young, 1933). However, it has only recently been shown that the composition of the fluid is unique. This is due both to the existence of a barrier mechanism which prevents the entry of various substances into the seminiferous tubule and to secretory phenomena within the seminiferous epithelium (Setchell, 1971).
    [Show full text]