How Taxonomic Relations Affect the Physicochemical Properties of Chitin

Total Page:16

File Type:pdf, Size:1020Kb

How Taxonomic Relations Affect the Physicochemical Properties of Chitin See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279519750 How Taxonomic Relations Affect the Physicochemical Properties of Chitin Article in Food Biophysics · July 2015 DOI: 10.1007/s11483-015-9404-5 CITATIONS READS 0 194 12 authors, including: Ingrida Šatkauskienė Algimantas Paulauskas Vytautas Magnus University Vytautas Magnus University 22 PUBLICATIONS 50 CITATIONS 68 PUBLICATIONS 520 CITATIONS SEE PROFILE SEE PROFILE Vaida Tubelyte Osman Seyyar Vytautas Magnus University Ömer Halisdemir University 18 PUBLICATIONS 39 CITATIONS 41 PUBLICATIONS 114 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Systematical Studies on the Family Elateridae (Coleoptera) in Central Anatolian and Middle Black Sea Regions View project DOĞU KARADENİZ BÖLGESİ ELATERIDAE (COLEOPTERA) FAMİLYASI VE ALEOCHARİNAE VE STENİNAE (COLEOPTERA: STAPHYLİNİDAE) ALTFAMİLYALARI ÜZERİNDE SİSTEMATİK ÇALIŞMALAR View project All content following this page was uploaded by Idris Sargın on 09 July 2015. The user has requested enhancement of the downloaded file. Food Biophysics DOI 10.1007/s11483-015-9404-5 ORIGINAL ARTICLE How Taxonomic Relations Affect the Physicochemical Properties of Chitin Murat Kaya1 & Vykintas Baublys2 & Idris Sargin3 & Ingrida Šatkauskienė2 & Algimantas Paulauskas2 & Bahar Akyuz1 & Esra Bulut1 & Vaida Tubelytė2 & Talat Baran4 & Osman Seyyar5 & Mahmut Kabalak6 & Huseyin Yurtmen5 Received: 23 February 2015 /Accepted: 1 June 2015 # Springer Science+Business Media New York 2015 Abstract Chitin specimens from 16 arthropod species (13 of be higher than the other orders in Insecta. This study revealed Insecta and 3 of Arachnida) were isolated for the first time that the chitin contents and CrI values can be related to taxo- using the same method. Fourier Transform Infrared Spectrom- nomical relationships. etry (FTIR), Thermogravimetric Analysis (TGA), X-ray dif- fraction (XRD), Scanning Electron Microscope (SEM) and Keywords Insecta . Arachnida . Chitin . Characterisation . elemental analysis have been applied to determine how phys- Crystallinity icochemical properties of chitin specimens are affected by taxonomic relationship. The characterisation studies revealed that physicochemical nature of the chitin specimens differed greatly and were found partially specific to taxa. Significant Introduction differences in the surface morphologies of chitin specimens were observed even in the same order. However, the chitin Chitin, a biopolymer with such excellent characteristics as contents were recorded to be specific to the order in the class nontoxicity, biocompatibility, biodegradability and antimicro- Insecta. The highest chitin content was observed in Coleoptera bial, antioxidant and antitumor activities, has wider applica- (18.2–25.2 %) followed by Hemiptera (10.6–14.5 %), Odon- tions in pharmacy, medicine, food processing, textile, agricul- ata (9.5–10.1 %), Hymenoptera (7.8–9.3 %), Diptera (8.1 %), ture and wastewater treatment, and extreme biomimetics Blattodea (4.7 %). In addition, the crystalline index (CrI) [1–4]. Physicochemical characteristics of chitin determine values of chitin specimens from Coleoptera were found to how it can be exploited effectively in these areas [5]. Chitin isolation literature has demonstrated that two main parameters govern the physicochemical properties of chitin; (i) the isola- * Murat Kaya tion method and (ii) the source of chitin, i.e., the organism [email protected] from which the chitin has been extracted [5, 6]. Many studies conducted on chitin isolation so far have focused on the meth- 1 Department of Biotechnology and Molecular Biology, Faculty of od rather than the source [7–10]. The effect of source on phys- Science and Letters, Aksaray University, 68100 Aksaray, Turkey icochemical characteristics of chitin remains to be clarified. 2 Department of Biology, Vytautas Magnus University, Likewise, the role of taxonomic relations in the characteristics 44404 Kaunas, Lithuania of chitin should be illustrated. 3 Department of Chemistry, Faculty of Science, Selcuk University, Some properties of chitin are significantly affected by the 42075 Konya, Turkey origin. To exemplify, Kaya et al. [11] demonstrated that chitin 4 Department of Chemistry, Faculty of Science and Letters, Aksaray specimens from two spider species belonging to the same fam- University, 68100 Aksaray, Turkey ily had different surface morphology and crystallinity. Another 5 Department of Biology, Science and Arts Faculty, Niğde University, study reported that chitin specimens isolated from two grass- 51200 Niğde, Turkey hopper species in the same genus exhibited different physico- 6 Department of Biology, Faculty of Science, Hacettepe University, chemical properties [12]. It is obvious that the source acts on the 06800 Beytepe, Ankara, Turkey physicochemical nature of the chitin. But, which Food Biophysics characteristics of chitin can vary to what extent depend- Materials and Method ing on the chitin source should be studied with more species. Sample Collections Many characterisation studies have been conducted on the chitin specimens of shrimp, crayfish, crab and krill belonging Table 1 lists the localities of the samples and the col- to the phylum of Arthropoda [13, 14]. Therefore, the qualities lection dates. The samples were allowed to air-dry at of chitin specimens from these organisms have been known room temperature. The dried whole bodies of the organ- well. On the other hand, little literature is available on the isms were rinsed with water to remove any particulate chitin from Insecta and Arachnida. Some researches isolated matter on them. Then, the samples were kept in an oven and characterized chitin specimens from different insect spe- at 50 °C for a week. Dried samples were crushed into cies [15–18]. These researchers compared insect chitin speci- powder in a mortar. To ensure size consistency, the mens with the commercial chitin or with chitin specimens powdered samples were sieved with a 100 μmsieve. from commonly known sources (shrimp and crab). But none of these studies evaluated the properties of isolated chitin in Chitin Isolation Procedure terms of taxonomical relations. The present study was conducted on 16 species (be- Powdered sample from each organism was treated with longingto8orders;13speciesfromInsectaand3spe- 2 M of HCl solution at 100 °C under reflux for 2 h to cies from Arachnida) to determine their chitin contents remove the minerals. Then, the sample was filtrated out and to analyse physical and chemical nature of the chi- with a filter paper (0.5 μm) and rinsed with distilled tin specimens of these species that have never been water to the neutrality. To carry out the deproteinization, studied before in terms of taxonomic relationship. the demineralised sample was transferred into 2 M of Table 1 Sampling localities and dates Samples Locations and coordinates Sampling date CLASS INSECTA Order: Blattodea Blattella germanica Cultured samples in the laboratory 27.10.2013 Order: Coleoptera Anoplotrupes stercorosus Reservation Plokštynė (Žemaitija National park), Lithuania 17.05.2014 Blaps tibialis Bakirdagi Village, Kayseri, Turkey 04.09.2013 Cetonia aurata Reservation Plokštynė (Žemaitija National park), Lithuania 17.05.2014 Geotrupes stercorarius Reservation Plokštynė (Žemaitija National park), Lithuania 17.05.2014 Order: Diptera Calliphora vicina Aksaray University Campus, Turkey 16.10.2013 Order: Hemiptera Coreus marginatus Reservation Plokštynė (Žemaitija National park), Lithuania 17.05.2014 Lygaeus equestris Aksaray University Campus, Turkey 21.10.2013 Pyrrhocoris apterus Aksaray University Campus, Turkey 21.10.2013 Order: Hymenoptera Bombus lapidarius Village Puvočiai (Dzūkija national park), Lithuania 19.05.2012 Formica clara Aksaray University Campus, Turkey 14.09.2013 Order Odonata Cordulia aenea Village Puvočiai (Dzūkija national park, Lithuania) 15.05.2012 Libellula quadrimaculata Village Puvočiai (Dzūkija national park), Lithuania 17.05.2012 CLASS ARACHNIDA Order: Araneae Argiope bruennichi Skriaudziu geomorphological park, Lithuania 20.07.2010 Chaetopelma olivaceum Ilemin Village, Erdemli, Mersin, Turkey 20.06.2014 Order: Ixodida Ixodes ricinus Nemunas delta regional park, Lithuania 13.06.2014 Food Biophysics NaOH solution and heated under refluxed at 140 °C for DA values were also obtained from the absorbance read- 20 h. The samples were filtrated and washed with dis- ings in the FT-IR spectra; DA values of the samples were tilled water to neutral pH. In the last step, to remove calculated using the following equation: the any pigments or fat content of the sample, the fil- ðÞ trate was placed into a solution of chloroform-metha- Degree of Acetylation DA hi.. nol–water (1:2:4, v:v) and refluxed for 2 h at room : A A Â 100 1:33 ð1Þ temperature. Finally, the material filtrated, washed with 1658 3450 distilled water and dried at 40 °C for 3 days. Upon drying, the samples were weighted to determine the chi- tin content. Results and Discussion Physicochemical Analysis Chitin Content of Sixteen Species at Dry Basis The physicochemical characterisation of the chitin speci- mens from 16 species were carried out as described in The chitin content of the organisms varied in a range of 4.7– earlier papers employing the analysis tools; FTIR, TGA, 25.2 % (Table 2). The highest chitin content in the class Insecta XRD, SEM and elemental analysis [11, 19]. The crystal- were recorded
Recommended publications
  • Spiders in Africa - Hisham K
    ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K. El-Hennawy SPIDERS IN AFRICA Hisham K. El-Hennawy Arachnid Collection of Egypt, Cairo, Egypt Keywords: Spiders, Africa, habitats, behavior, predation, mating habits, spiders enemies, venomous spiders, biological control, language, folklore, spider studies. Contents 1. Introduction 1.1. Africa, the continent of the largest web spinning spider known 1.2. Africa, the continent of the largest orb-web ever known 2. Spiders in African languages and folklore 2.1. The names for “spider” in Africa 2.2. Spiders in African folklore 2.3. Scientific names of spider taxa derived from African languages 3. How many spider species are recorded from Africa? 3.1. Spider families represented in Africa by 75-100% of world species 3.2. Spider families represented in Africa by more than 400 species 4. Where do spiders live in Africa? 4.1. Agricultural lands 4.2. Deserts 4.3. Mountainous areas 4.4. Wetlands 4.5. Water spiders 4.6. Spider dispersal 4.7. Living with others – Commensalism 5. The behavior of spiders 5.1. Spiders are predatory animals 5.2. Mating habits of spiders 6. Enemies of spiders 6.1. The first case of the species Pseudopompilus humboldti: 6.2. The second case of the species Paracyphononyx ruficrus: 7. Development of spider studies in Africa 8. Venomous spiders of Africa 9. BeneficialUNESCO role of spiders in Africa – EOLSS 10. Conclusion AcknowledgmentsSAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary There are 7935 species, 1116 genera, and 79 families of spiders recorded from Africa. This means that more than 72% of the known spider families of the world are represented in the continent, while only 19% of the described spider species are ©Encyclopedia of Life Support Systems (EOLSS) ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Arachnides 88
    ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky,
    [Show full text]
  • A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology
    A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology Jason E. Bond1*, Brent E. Hendrixson2, Chris A. Hamilton1, Marshal Hedin3 1 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America, 2 Department of Biology, Millsaps College, Jackson, Mississippi, United States of America, 3 Department of Biology, San Diego State University, San Diego, California, United States of America Abstract Background: The infraorder Mygalomorphae (i.e., trapdoor spiders, tarantulas, funnel web spiders, etc.) is one of three main lineages of spiders. Comprising 15 families, 325 genera, and over 2,600 species, the group is a diverse assemblage that has retained a number of features considered primitive for spiders. Despite an evolutionary history dating back to the lower Triassic, the group has received comparatively little attention with respect to its phylogeny and higher classification. The few phylogenies published all share the common thread that a stable classification scheme for the group remains unresolved. Methods and Findings: We report here a reevaluation of mygalomorph phylogeny using the rRNA genes 18S and 28S, the nuclear protein-coding gene EF-1c, and a morphological character matrix. Taxon sampling includes members of all 15 families representing 58 genera. The following results are supported in our phylogenetic analyses of the data: (1) the Atypoidea (i.e., antrodiaetids, atypids, and mecicobothriids) is a monophyletic group sister to all other mygalomorphs; and (2) the families Mecicobothriidae, Hexathelidae, Cyrtaucheniidae, Nemesiidae, Ctenizidae, and Dipluridae are not monophyletic. The Microstigmatidae is likely to be subsumed into Nemesiidae.
    [Show full text]
  • Annotated Checklist of the Spiders of Turkey
    _____________Mun. Ent. Zool. Vol. 12, No. 2, June 2017__________ 433 ANNOTATED CHECKLIST OF THE SPIDERS OF TURKEY Hakan Demir* and Osman Seyyar* * Niğde University, Faculty of Science and Arts, Department of Biology, TR–51100 Niğde, TURKEY. E-mails: [email protected]; [email protected] [Demir, H. & Seyyar, O. 2017. Annotated checklist of the spiders of Turkey. Munis Entomology & Zoology, 12 (2): 433-469] ABSTRACT: The list provides an annotated checklist of all the spiders from Turkey. A total of 1117 spider species and two subspecies belonging to 52 families have been reported. The list is dominated by members of the families Gnaphosidae (145 species), Salticidae (143 species) and Linyphiidae (128 species) respectively. KEY WORDS: Araneae, Checklist, Turkey, Fauna To date, Turkish researches have been published three checklist of spiders in the country. The first checklist was compiled by Karol (1967) and contains 302 spider species. The second checklist was prepared by Bayram (2002). He revised Karol’s (1967) checklist and reported 520 species from Turkey. Latest checklist of Turkish spiders was published by Topçu et al. (2005) and contains 613 spider records. A lot of work have been done in the last decade about Turkish spiders. So, the checklist of Turkish spiders need to be updated. We updated all checklist and prepare a new checklist using all published the available literatures. This list contains 1117 species of spider species and subspecies belonging to 52 families from Turkey (Table 1). This checklist is compile from literature dealing with the Turkish spider fauna. The aim of this study is to determine an update list of spider in Turkey.
    [Show full text]
  • The First Record of Family Selenopidae (Arachnida: Araneae)
    K. B. KUNT, S. TEZCAN, E. A. YAĞMUR Turk J Zool 2011; 35(4): 607-610 © TÜBİTAK Short Communication doi:10.3906/zoo-0906-49 Th e fi rst record of family Selenopidae (Arachnida: Araneae) from Turkey Kadir Buğaç KUNT1,*, Serdar TEZCAN2, Ersen Aydın YAĞMUR3 1Turkish Arachnological Society, Eserköy Sitesi, 9/A Blok, No. 7, TR-06530, Ümitköy, Ankara - TURKEY 2Ege University, Faculty of Agriculture, Department of Plant Protection, TR-35100, Bornova, İzmir - TURKEY 3Ege University, Faculty of Science, Department of Biology, Section of Zoology, TR-35100 İzmir - TURKEY Received: 29.06.2009 Abstract: Th e family Selenopidae and selenopid spider Selenops radiatus Latreille, 1819 are recorded in Turkey for the fi rst time. Key words: Selenopidae, Selenops radiatus, new record, Turkey Selenopidae (Araneae; Selenopidae) familyasının Türkiye’den ilk kaydı Özet: Selenopidae familyası ve selenopid örümcek Selenops radiatus Latreille, 1819 Türkiye’den ilk kez kaydedilmektedirler. Anahtar sözcükler: Selenopidae, Selenops radiatus, yeni kayıt, Türkiye Th e spider family Selenopidae was described by from northern Argentina and Paraguay in South Eugène Simon in 1897 and consists of ecribellate, America, northward through tropical and subtropical entelegyne, laterigrade spiders with a fl attened America to North America and from Africa to some body, 8 eyes in 2 rows, and tarsi with 2 claws and Mediterranean countries and Australia. Only one claw tuft s. Th e family Selenopidae is represented species, Selenops radiatus Latreille, 1819, occurs in by 5 genera and 194 species in the world (Platnick, the Mediterranean region (Muma, 1953; Helsdingen, 2009). Th e genus Selenops includes 116 species and 2007; Platnick, 2009).
    [Show full text]
  • Patterns of Distribution and Diversity in European Mygalomorph Spiders
    Patterns of distribution and diversity in European mygalomorph spiders Autor(en): Decae, Arthur E. Objekttyp: Article Zeitschrift: Contributions to Natural History : Scientific Papers from the Natural History Museum Bern Band (Jahr): - (2008) PDF erstellt am: 24.09.2021 Persistenter Link: http://doi.org/10.5169/seals-787057 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch European Arachnology 2008 (W. Nentwig, M. Entling & C. Kropf eds.), pp. 41-50. © Natural History Museum, Bern, 2010. ISSN 1660-9972 (Proceedings of the 24th European Congress ofArachnology, Bern, 25-29 August 2008). Patterns of distribution and diversity in European mygalomorph spiders ARTHUR E.
    [Show full text]
  • Additional Notes on the Spider Fauna of Turkey (Araneae)
    Turk J Zool 2012; 36(5): 637-651 © TÜBİTAK Research Article doi:10.3906/zoo-1008-8 Additional notes on the spider fauna of Turkey (Araneae) Kadir Buğaç KUNT1,*, Rahşen Saltanat KAYA2, Recep Sulhi ÖZKÜTÜK3, Tarık DANIŞMAN4, Ersen Aydın YAĞMUR5, Mert ELVERİCİ6 1Turkish Arachnological Society, Eserköy Sitesi, 9/A Blok, No 7, TR-06530 Ümitköy, Ankara - TURKEY 2Department of Biology, Faculty of Arts and Sciences, Uludağ University, TR-16059 Nilüfer, Bursa - TURKEY 3Department of Biology, Science Faculty, Anadolu University, TR-26470 Eskişehir - TURKEY 4Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, TR-71450 Yahşihan, Kırıkkale - TURKEY 5M Department of Biology, Science Faculty, Ege University, TR-35100 İzmir - TURKEY 6Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, TR-06531, Ankara - TURKEY Received: 09.08.2010 ● Accepted: 10.07.2012 Abstract: Th is paper presents the results of recent fi eld surveys and provides new data on the spider fauna of Turkey. Th e following 9 taxa are new records for Turkey: Larinia chloris (Audouin, 1826); Macrothele sp.; Arctosa tbilisiensis Mcheidze, 1946; Pisaura consocia (O. P.-Cambridge, 1872); Prodidomus redikorzevi Spassky, 1940; Macaroeris fl avicomis (Simon, 1884); Scytodes velutina Heineken & Lowe, 1832; Achaeridion conigerum (Simon, 1914); and Phoroncidia paradoxa (Lucas, 1846). New locality data are provided for the following previously but rarely recorded species: Spermophora senoculata (Dugès, 1836); Ariadna insidiatrix Audouin, 1826; and Segestria senoculata (Linnaeus, 1758). Taxonomic, zoogeographical, and ecological data are given for each species. Key words: Araneae, new record, spider, Turkey Introduction faunistic and ecological studies were conducted by Th e world spider fauna comprises more than 42,055 both Turkish and foreign researchers in diff erent described species, of which about 120 spider species localities in Turkey.
    [Show full text]
  • Patterns of Distribution and Diversity in European Mygalomorph Spiders
    European Arachnology 2008 (W. Nentwig, M. Entling & C. Kropf eds.), pp. 41–50. © Natural History Museum, Bern, 2010. ISSN 1660-9972 (Proceedings of the 24th European Congress of Arachnology, Bern, 25–29 August 2008). Patterns of distribution and diversity in European mygalomorph spiders ARTHUR E. DECAE Terrestrial Ecology Unit, Department of Biology, University of Ghent, Ledeganckstraat 35, B–9000 Gent, Belgium. Natuurhistorisch Museum Rotterdam, Postbus 23452, 3001 KL Rotterdam, The Netherlands. Abstract A coherent picture of the distribution and diversity of the European mygalomorph spider fauna is presented for the first time. The picture is based on geographical and taxonom- ical information, mainly obtained in recent collection work. The patterns reveal that (1) the current distribution of the Atypidae is the result of a Holocene dispersal event; that (2) Nemesiidae and Cyrtaucheniidae are building-up their diversity in situ as an effect of repeated fragmentation and isolation of local populations during successive Pleistocene glaciations; that (3) Ctenizidae, with three locally restricted and geographically isolated genera, are most probably remnants of a former geography of the Mediterranean region; that (4) the Theraphosidae seem to show both evidence of dispersal in Chaetopelma and of speciation in situ in Ischnocolus; that (5) the Hexathelidae are either very old remnants or recent man aided introductions into the European mygalomorph fauna. INTRODUCTION sity assessments and conservation studies. Thanks to collection efforts of mainly young The here presented view on the European arachnologists from southern Europe, a mygalomorph fauna was developed from the coherent picture of the European mygalo- results of these studies. To make the emerg- morph fauna is now emerging.
    [Show full text]
  • The Fixator—A Simple Method for Mounting of Arthropod Specimens and Photography of Complex Structures in Liquid
    Zootaxa 4657 (2): 385–391 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4657.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:A0DE0959-A937-49FC-BB08-4747F368840F The Fixator—A simple method for mounting of arthropod specimens and photography of complex structures in liquid DOMINIC WANKE1,2, SONIA BIGALK2, LARS KROGMANN1,2, INGO WENDT2 & HOSSEIN RAJAEI2 1 University of Hohenheim, Schloss Hohenheim 1, D-70599 Stuttgart, Germany; 2 Department of Entomology, State Museum of Natural History Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany e-mail address: [email protected] Abstract Mounting and preparing arthropods in liquids for photography and further investigations is a challenging task and may lead to unsatisfactory results and, in the worst case, to damage to specimens. A new method is presented here, which allows the fixation of specimens of different sizes under various degrees of pressure. The method is illustrated by three case studies from different groups of insects and arachnids. Keywords: fixation, genitalia dissection, maceration, specimen handling Introduction A major aspect of taxonomy is the description and interpretation of external and internal morphological characters (Dayrat 2005, Mutanen & Pretorius 2007, Padial et al. 2010). Many arthropod dissections are therefore carried out in liquid environments (e.g. ethanol, glycerol) to avoid dehydration and collapsing of structures (Robinson 1976, Ungureanu 1972, Krogmann & Vilhelmsen 2006). During and after dissection, photography of macro- and microstructures in ethanol or glycerol can be chal- lenging, as in most cases photos from specific angles or in natural positions are mandatory for useful comparisons (Wanke & Rajaei 2018).
    [Show full text]
  • Annual Report Academic Year 2017/ 2018
    Annual Report Academic year 2017/ 2018 The George S. Wise Sackler Faculty of Medicine The Lester and Sally Entin Faculty of Life Sciences • Department of Anatomy Faculty of Humanities • School of Zoology and Anthropology • The Sonia and Marco Nadler • School of Plant Sciences • The Maurice and Gabriela Institute of Archaeology and Food Security Goldschleger School of • Department of Archaeology Dental Medicine and Ancient Near Eastern Cultures Cover design: Blue Collar Compilation, text & graphics editing and layout: M. Mostovski © 2019 The Steinhardt Museum of Natural History, Tel Aviv University (text & cover) © 2019 Authors (photographs) Website: https://smnh.tau.ac.il For copies please contact: Revital Ben-David-Zaslow +972 (0)3 640 9042 [email protected] ISBN 978-965-572-848-4 UDC (047)069:5(569.4) DOI: 10.5281/zenodo.2589132 March 2019 TABLE OF CONTENTS Foreword 5 Honorary President 7 Scientific and Public Council 7 Board of Directors 7 International Scientific Advisory Board 7 Sponsors’ Steering Committee 7 Museum Staff 7 Progress in the Steinhardt Museum of Natural History: 15 Collections news 17 Dan David Center for Human Evolution and Bio-history Research 49 Molecular Systematics Laboratory and Tissue Collection 52 The Museum Database 52 The Israel Taxonomy Initiative 54 Education and Science Communication Department 55 The Israel National Center for Aquatic Ecology 59 The Entomology Laboratory for Applied Ecology 60 HaMaarag — Israel’s National Nature Assessment Program 62 The Open Landscape Institute 63 Publications 67 Graduate students 82 Visiting scientists at the Steinhardt Museum of Natural History 88 Support for academic and other courses 91 Support for various individuals and organizations 93 ANNUAL REPORT 2017/2018 | FOREWORD FOREWORD The museum is now completing its first full year of operations.
    [Show full text]
  • The History of Cytogenetic Investigations of Spiders in Turkey
    International Journal of Zoology and Animal Biology ISSN: 2639-216X MEDWIN PUBLISHERS Committed to Create Value for Researchers The History of Cytogenetic Investigations of Spiders in Turkey Kumbicak Z* Review Article Volume 3 Issue 4 Department of Molecular Biology and Genetics, Nevşehir Hacı Bektaş Veli University, Turkey *Corresponding author: Received Date: Published Date: June 12, 2020 Zubeyde Kumbicak, Department of Molecular Biology and Genetics, July 06, 2020 Faculty of Art and Science, Nevsehir Hacı Bektas Veli University, 50300, Nevşehir, Turkey, DOI: 10.23880/izab-16000232 E-mail: [email protected] Abstract Spiders are an ancient group of animals that probably originated in the Devonian period about 400 million years ago. Over time, they have adapted to major changes in climate and fauna and have become widespread on all continents, living in almost any terrestrial habitat. It is known that approximately 50000 spider species belonging to 120 families worldwide, today. and this number increases almost every day due to new records are being given from many countries. Despite the high diversity of species, the number of cytogenetic studies on spiders is very scarce. Upto now, 868 species belonging to the 74 families were investigated by cytogenetically. Although more than a thousand species of spiders in Turkey, the Cytogenetic studies are insufficient. Thus, spiders are the most richest group of arachnids among arthropods. In this study cytogenetic studies on Keywords:spiders in Turkey were reviewed. Convergent Evolution; Rheumatoid Arthritis; Typhoid; HIV Abbreviations: IntroductionSCS: Sex Chromosome System. pedipalpus, which has a bulging structure in male spiders, is an important structure in the transfer of sperm to the female.
    [Show full text]