Muraenes 1983 Fao Species Identification Sheets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zoology Marine Ornamental Fish Biodiversity of West Bengal ABSTRACT
Research Paper Volume : 4 | Issue : 8 | Aug 2015 • ISSN No 2277 - 8179 Zoology Marine Ornamental Fish Biodiversity of KEYWORDS : Marine fish, ornamental, West Bengal diversity, West Bengal. Principal Scientist and Scientist-in-Charge, ICAR-Central Institute of Fisheries Education, Dr. B. K. Mahapatra Salt Lake City, Kolkata-700091, India Director and Vice-Chancellor, ICAR-Central Institute of Fisheries Education, Versova, Dr. W. S. Lakra Mumbai- 400 061, India ABSTRACT The State of West Bengal, India endowed with 158 km coast line for marine water resources with inshore, up-shore areas and continental shelf of Bay of Bengal form an important fishery resource and also possesses a rich wealth of indigenous marine ornamental fishes.The present study recorded a total of 113 marine ornamental fish species, belonging to 75 genera under 45 families and 10 orders.Order Perciformes is represented by a maximum of 26 families having 79 species under 49 genera followed by Tetraodontiformes (5 family; 9 genus and 10 species), Scorpaeniformes (2 family; 3 genus and 6 species), Anguilliformes (2 family; 3 genus and 4 species), Syngnathiformes (2 family; 3 genus and 3 species), Pleuronectiformes (2 family; 2 genus and 4 species), Siluriformes (2 family; 2 genus and 3 species), Beloniformes (2 family; 2 genus and 2 species), Lophiformes (1 family; 1 genus and 1 species), Beryciformes(1 family; 1 genus and 1 species). Introduction Table 1: List of Marine ornamental fishes of West Bengal Ornamental fishery, which started centuries back as a hobby, ORDER 1: PERCIFORMES has now started taking the shape of a multi-billion dollar in- dustry. -
FAO SPECIES IDENTIFICATION SHEETS MURAENESOCIDAE Pike
click for previous page MURSOC 1974 FAO SPECIES IDENTIFICATION SHEETS FISHING AREAS 57,71 (E Ind. ocean) (W Cent. Pacific) MURAENESOCIDAE Pike-congers Eel-like fishes, cylindrical in front, compressed towards tail. Large mouth with upper jaw extending well behind eye. Fangs (large canine teeth) on vomer (a median tooth-bearing bone on roof of mouth) and at front of lower jaw; tongue not free from floor of mouth. Gill openings large, separate and placed low on body. Pectoral fins present; dorsal and anal fins long, continuous with caudal fin; pelvic fins absent. Anus well behind pectoral fin and somewhat before midpoint of body. No scales. Colour: grey, yellow or white, sometimes almost black on back. SIMILAR FAMILIES OCCURRING IN THE AREA: Muraenidae: lack pectoral fins. in Muraenesocidae). Dysommidae: anus below the pectoral fin (well behind All other eel families: lack large canine teeth on vomer. - 2 - FAO Sheets MURAENESOCIDAE Fishing Areas 57,71 Key to Genera I a. Distinct bulge at bases of canine teeth on middle part of vomer .................................. Muraenesox 1 b. Canine teeth on vomer conical, or if flattened, then not bulging at bases ........................ Congresox List of Species occurring in the Area (Code numbers are given for those species for which Identification Sheets are included) Congresox talabon MURSOC Consox 1 Muraenesox bagio MURSOC Mursox 1 Congresox talabonoides MURSOC Consox 2 Muraenesox cinereus MURSOC Mursox 2 I KURSOC Consox 1 1974 FAO SPECIES IDENTIFICATION SHEETS FAMILY: MURAENESOCIDAE FISHING AREAS 57,71 (E Ind. Ocean) (W Cent. Pacific) Congresox talabon (Cuvier, 1829) SYNONYMS STILL IN USE: Muraenesox talabon (Cuvier, 1829) VERNACULAR NAMES: FAO: En - Yellow pike-conger Fr - Sp - NATIONAL: DISTINCTIVE CHARACTERS: Eel-shaped fish without scales. -
Genetic Identification of Marine Eels Through DNA Barcoding From
Genomics Data 11 (2017) 81–84 Contents lists available at ScienceDirect Genomics Data journal homepage: www.elsevier.com/locate/gdata Genetic identification of marine eels through DNA barcoding from Parangipettai coastal waters Samuel Peninal, Janakiraman Subramanian, Alaganatham Elavarasi, Murugaiyan Kalaiselvam ⁎ Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamil Nadu, India article info abstract Article history: Anguilliformes, also known as “true eels”, are an ecologically diverse group of predominantly marine origin Received 24 September 2016 whose members were easily recognized by their extremely elongated bodies with reduced cross-sectional Received in revised form 4 December 2016 areas and universal lack of pelvic fins. The Marine Eels were collected from landing centres of Parangipettai coast- Accepted 7 December 2016 al waters and identified based on their morphometric and meristic characters. The newly recorded species were Available online 09 December 2016 used for the barcoding analysis. Information on molecular taxonomy of marine eels was very meagre and hence, Keywords: the present study was aimed to study the barcoding of marine eels which were present along the southeast coast fi Barcoding of India. The cube of lateral muscle was exercised for DNA isolation followed by its ampli cation. Cluster IX 2.06 COXI was used to align the nucleotide sequences (Thomson, 1997). The evolutionary history was inferred using the Marine eels Neighbor-Joining method (Saitou and Nei, 1987). The evolutionary distances were computed using the Maxi- Nucleotide analysis mum Composite Likelihood method (Tamura et al., 2004). The barcodes sequences were submitted in NCBI (Na- Anguillidae tional centre for Biotechnological Information). -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S. -
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E. -
An Assessment of the Status of Biodiversity in the Maduganga Mangrove Estuary
Occasional Papers of IUCN Sri Lanka No. 1, November 2002 An Asses sment o f the Status o f Biodiversi ty in the Maduga nga Mangrove Estua r y C. N. B. Bambaradeniya, S. P. Ekanayake, L. D. C. B. Kekulandala, R. H. S. S. Fernando, V. A. P. Samarawickrama and T. G. M. Priyadharshana IUCN - The World Conser vation Union, Sri Lanka Countr y Office This publication ha s been prepared by IUCN - Sri Lanka wit h fina ncial assist ance from the Royal Netherlands Government i Published by : IUCN - Sri Lanka Copyright : 2001, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non- commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation : Bambaradeniya, C. N. B., S. P. Ekanayake, L. D. C. B. Kekulandala, R. H. S. S. Fernando, V. A. P. Samarawickrama, & T. G. M. Priyadharshana. 2002. An Assessment of the Status of Biodiversity in the Maduganga Mangrove Estuary. Occ. Pap. IUCN, Sri Lanka., 1:iv + 49 pp. ISBN : 955-8177-15-6 955-8177-12-1 Text : C. N. B. Bambaradeniya and S. P. Ekanayake, IUCN Sri Lanka Cover photograph by : A Kraal - traditional fish trap in Maduganga (Photograph by Channa Bambaradeniya) Produced by : IUCN Sri Lanka. Printed by : Karunaratne & Sons Ltd. 67, UDA Industrial Estate, Katuwana Road, Homagama, Sri Lanka. Available from : IUCN - Sri Lanka No. 53, Horton Place, Colombo 7, Sri Lanka. -
Nom Français
CODE Nom Français Nom scientifique Nom Anglais Famille Ordre KCP Abadèche du Cap Genypterus capensis Kingklip Ophidiidae OPHIDIIFORMES CUB Abadèche noir Genypterus maculatus Black cusk-eel Ophidiidae OPHIDIIFORMES CUS Abadèche rosé Genypterus blacodes Pink cusk-eel Ophidiidae OPHIDIIFORMES CUC Abadèche rouge Genypterus chilensis Red cusk-eel Ophidiidae OPHIDIIFORMES OFZ Abadèche sans jambes Lamprogrammus exutus Legless cuskeel Ophidiidae OPHIDIIFORMES CEX Abadèches nca Genypterus spp Cusk-eels nei Ophidiidae OPHIDIIFORMES OPH Abadèches, brotules nca Ophidiidae Cusk-eels, brotulas nei Ophidiidae OPHIDIIFORMES ALR Ablette Alburnus alburnus Bleak Cyprinidae CYPRINIFORMES ZML Acanthure à pierreries Zebrasoma gemmatum Spotted tang Acanthuridae ACANTHUROIDEI ZLV Acanthure à queue jaune Zebrasoma xanthurum Yellowtail tang Acanthuridae ACANTHUROIDEI MPS Achigan à grande bouche Micropterus salmoides Largemouth black bass Centrarchidae PERCOIDEI LQT Acmée râpe Lottia limatula File limpet Lottiidae GASTROPODA ISA Acoupa aile-courte Isopisthus parvipinnis Bigtooth corvina Sciaenidae PERCOIDEI WEW Acoupa blanc Atractoscion nobilis White weakfish Sciaenidae PERCOIDEI YNV Acoupa cambucu Cynoscion virescens Green weakfish Sciaenidae PERCOIDEI WKK Acoupa chasseur Macrodon ancylodon King weakfish Sciaenidae PERCOIDEI WEP Acoupa du Pérou Cynoscion analis Peruvian weakfish Sciaenidae PERCOIDEI YNJ Acoupa mongolare Cynoscion jamaicensis Jamaica weakfish Sciaenidae PERCOIDEI SWF Acoupa pintade Cynoscion nebulosus Spotted weakfish Sciaenidae PERCOIDEI WKS Acoupa -
DERICHTHYIDAE Longneck Eels by D.G
click for previous page Anguilliformes: Muraenesocidae 1671 DERICHTHYIDAE Longneck eels by D.G. Smith iagnostic characters: Body moderately elongate (size to about 60 cm, usually smaller), tail not Dfilamentous, ending in a small caudal fin. Head variable in form, snout either short or markedly elongate; eye well developed; upper jaw extends beyond lower, cleft of mouth ends under or slightly behind eye; lips without upturned or downturned flanges; teeth small, conical, multiserial. Gill opening small, slit-like, located just in front of and below pectoral fin. Dorsal and anal fins confluent with caudal fin; dorsal fin begins on anterior third of body, slightly behind tip of appressed pectoral fins; anal fin begins immediately behind anus, at or slightly behind midbody; dorsal and anal fins both become distinctly reduced near end of tail; pectoral fins present. Scales absent. Lateral line complete, pore system on head well developed. Colour: brown, with paler fins; 1 species with a dark midventral streak; no spots, lines, or other distinct markings. Derichthys (after Goode and Bean, 1896) Nessorhamphus (after Robins, 1989) Habitat, biology, and fisheries: The Derichthyidae includes 2 genera and 3 species of small, seldom-seen, midwater eels. Derichthys has a short snout, a constricted neck, and a series of short, longitudinal dermal ridges on the head (presumably sensory in nature). Nessorhamphus has a long, somewhat flattened snout, with the posterior nostril located far forward; it lacks the dermal ridges, and its neck is not constricted. Derichthyids are without the strong morphological specializations of the other midwater eels (Nemichthyidae, Serrivomeridae, and Saccopharyngiformes). They spend their entire lives in the open ocean; adults live at depths of several hundred meters. -
EASTERN INDIAN OCEAN Fishing Area 57 and WESTERN CENTRAL PACIFIC Fishing Area 71
FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN INDIAN OCEAN Fishing Area 57 and WESTERN CENTRAL PACIFIC Fishing Area 71 Volume 1 Bony Fishes Technical Terms Species Identification Sheets A à Cl Volume 2 Bony Fishes Species Identification Sheets Co à L Volume 3 Bony Fishes Species Identification Sheets M à Sci Volume 4 Bony Fishes Species Identification Sheets Sco à T Index to Scientific and FAO English Names FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1974 FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN INDIAN OCEAN Fishing Area 57 a nd WESTERN CENTRAL PACIFIC Fishing Area 71 VOLUME IV FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1974 FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN INDIAN OCEAN (Fishing Area 57) and WESTERN CENTRAL PACIFIC (Fishing Area 71) Compiled by the Fishery Resources and Environment Division, FAO Based on material prepared at the FAO/DANIDA Seminar on Fish Taxonomy in South East Asia held at the Phuket Marine Biological Center, Phuket, Thailand, 6 November to 8 December 1972 This publication has been printed on behalf of the UNDP/FAO South China Sea Fisheries Development and Coordinating Programme for the use of its participating countries VOLUME IV - Bony Fishes: Families from S (in part) to Z FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1974 Bibliographic Reference : Fischer, W. & P.J.P. Whitehead (Eds.) (1974) Rome, FAO, pag. var. FAO species identification sheets for fishery purposes. Eastern Indian Ocean (fishing area 57) and Western Central Pacific (fishing area 71). Volume 4 ISW, ISEW. Teleostei. Identification sheets - taxonomy, geographic distribution, fisheries, vernacular names. -
Barn, Sankh (Sin); Saang, Etc.(Bal)
click for previous page - 16 - BONY FISHES MURAENESOCIDAE Loc. names : Barn, Sankh (Sin); Saang, etc.(Bal) FAO names : En - Pike congers Fr - Morénésoces Sp - Morenocios Size : Max.: to 250 cm Fishing gear : Caught with longlines , draftiest and trawls Habitat and biology . Found on the continental shelf and slope. Species inhabiting shallow waters are known to be nocturnal and to feed on bottom-living fishes and crustaceans Interest to fisheries : Muraenesox species constitute the bulk of eels caught in Pakistan, but catch statistics reported by the Handbook of Fisheries Statistics of Pakistan (1973-83) include Conger species as well. Annual catch figures range from 350 t (1980) to 3 921 t (1982). They are good food fishes and sold mostly fresh, dry- salted or used as bait for shark fishing Congresox talabonoides (Bleeker, 1853) Synonyms : Muraenesox talabonoides (Bleeker, 1853) Loc. names : Barn, Sand (Sin); Saang, Tayabi saang, Barn (Bal) Pike eel (En) FAO names : En - Indian pike conger Fr - Morénésoce indien Sp -Morenocio indio Size : Max.: 250 cm; common to 180 cm Fishing gear : Caught mainly by lobeline , driftnets and trawls at night Habitat and biology : Lives on soft bottoms in coastal waters to about 100 m depth; also in estuaries. Feeds mainly on bottom-dwelling fishes and on crustaceans Muraenesox cinereus (Forsskål, 1775) Synonyms Muraenesox arabicus (Schneider, 1801) Loc. names : Bam, Sankh (Sin); Barn, Saang, Tayabi saang (Bal) Silver conger eel (En) FAO names : En - Daggertooth pike conger Fr - Morenesoce dague Sp - Morenocio dentón Size : Max.: 200 cm; common to 150 cm Fishing gear : Caught with longlines and handlines, driftnets, bottom set gillnets and trawls. -
Deep-Ocean Origin of the Freshwater Eels
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Biol. Lett. (2010) 6, 363–366 2003) occupy more basal positions in the published doi:10.1098/rsbl.2009.0989 phylogenies, Tsukamoto et al. (2002) hypothesized Published online 6 January 2010 two phases in the evolution of catadromous migrations Evolutionary biology of freshwater eels: (i) their migratory behaviour originated in tropical ocean areas and (ii) that tropical species subsequently expanded their ‘migration loops’ Deep-ocean origin of the (representative migratory pathway of a species), and began to use fresh waters at higher latitudes for their freshwater eels growth (figure 1a). This resulted in the diversification of freshwater eels to include temperate species that Jun G. Inoue1,*,†, Masaki Miya2,*, Michael make long migrations back to their tropical spawning J. Miller1, Tetsuya Sado2, Reinhold Hanel3, areas. This argument is consistent with the Gross Kiyotaka Hatooka4, Jun Aoyama1, Yuki Minegishi1, 1 1 et al. (1988) prediction that catadromy has evolved in Mutsumi Nishida and Katsumi Tsukamoto low-latitude tropical areas where productivity in fresh- 1Ocean Research Institute, The University of Tokyo, water exceeds that in the ocean. In contrast to eels, the Tokyo 164-8639, Japan 2Natural History Museum and Institute, Chiba, Chiba 266-8682, Japan freshwater origin of anadromous salmon has been 3Johann Heinrich von Thu¨nen-Institut 22767, Hamburg, Germany demonstrated (Ishiguro et al. 2003), which indicates 4Osaka Museum of Natural History, Osaka 546-0034, Japan that they expanded their life histories to include the *Authors for correspondence ( [email protected], [email protected]) use of the ocean for growth while still returning to †Present address: University College London, London WC1E 6BT, UK.