Seasonal and Interannual Variability of Satellite-Derived Chlorophyll Pigment, Surface Height, and Temperature Off Baja California T

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal and Interannual Variability of Satellite-Derived Chlorophyll Pigment, Surface Height, and Temperature Off Baja California T JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, C03039, doi:10.1029/2003JC002105, 2004 Seasonal and interannual variability of satellite-derived chlorophyll pigment, surface height, and temperature off Baja California T. Leticia Espinosa-Carreon,1 Centro de Investigacio´n Cientı´fica y de Educacio´n Superior de Ensenada, Baja California, Mexico P. T. Strub College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA Emilio Beier,1 Francisco Ocampo-Torres, and Gilberto Gaxiola-Castro Centro de Investigacio´n Cientı´fica y de Educacio´n Superior de Ensenada, Baja California, Mexico Received 22 August 2003; revised 19 December 2003; accepted 23 January 2004; published 24 March 2004. [1] Mean fields, seasonal cycles, and interannual variability are examined for fields of satellite-derived chlorophyll pigment concentrations (CHL), sea surface height (SSH), and sea surface temperature (SST) during 1997–2002. The analyses help to identify three dynamic regions: an upwelling zone next to the coast, the Ensenada Front in the north, and regions of repeated meanders and/or eddy variability west and southwest of Point Eugenia. High values of CHL are found in the upwelling zone, diminishing offshore. The exception is the area north of 31°N (the Ensenada Front), where higher CHL are found about 150 km offshore. South of 31°N, the long-term mean dynamic topography decreases next to the coast, creating isopleths of height parallel to the coastline, consistent with southward geostrophic flow. North of 31°N the mean flow is toward the east, consistent with the presence of the Ensenada Front. The mean SST reveals a more north-south gradient, reflecting latitudinal differences in surface heating due to solar radiation. Harmonic analyses and EOFs reveal the seasonal and interannual patterns, including the region of repeated eddy activity to the west and southwest of Point Eugenia. A maximum CHL occurs in spring in most of the inshore regions, reflecting the growth of phytoplankton in response to the seasonal maximum in upwelling-favorable winds. SST and SSH anomalies are negative in the coastal upwelling zone in spring, also consistent with a response to the seasonal maximum in upwelling. When the seasonal cycle is removed, the strongest signal in the EOF time series is the response to the strong 1997– 1998 El Nin˜o, with a weaker signal representing La Nin˜a (1998–1999) conditions. El Nin˜o conditions consist of low chlorophyll, high SSH, and high SST, with opposite conditions during La Nin˜a. INDEX TERMS: 4223 Oceanography: General: Descriptive and regional oceanography; 4227 Oceanography: General: Diurnal, seasonal, and annual cycles; 4275 Oceanography: General: Remote sensing and electromagnetic processes (0689); KEYWORDS: chlorophyll, El Nin˜o, La Nin˜a, Baja California, California Current Citation: Espinosa-Carreon, T. L., P. T. Strub, E. Beier, F. Ocampo-Torres, and G. Gaxiola-Castro (2004), Seasonal and interannual variability of satellite-derived chlorophyll pigment, surface height, and temperature off Baja California, J. Geophys. Res., 109, C03039, doi:10.1029/2003JC002105. 1. Introduction delimited at its northern boundary by the eastward North Pacific Current, which divides the Subtropical Gyre from the [2] In this paper, we examine the links between physical Subarctic Alaska Gyre. At its southern extreme, the CCS forcing and the lower trophic levels off Baja California, in the flows into the westward North Equatorial Current [Pare´s- southern part of the California Current System (CCS). Sierra et al., 1997]. At the most basic level, the flow of the The mean flow in the CCS is equatorward next to the coast California Current is controlled by the equatorward current in the Northeast Pacific Ocean [Hickey, 1979, 1998]. It is needed to complete the Subtropical Gyre and by the predom- 1 inantly equatorward winds. This area is considered to be an Also at College of Oceanic and Atmospheric Sciences, Oregon State oceanographic transitional zone between midlatitude and University, Corvallis, Oregon, USA. tropical ocean conditions [Durazo and Baumgartner, 2002]. Copyright 2004 by the American Geophysical Union. [3] The CCS is often depicted as a prototype eastern 0148-0227/04/2003JC002105$09.00 boundary current (EBC), with a 2-D upwelling structure C03039 1of20 C03039 ESPINOSA-CARREON ET AL.: BAJA CALIFORNIA CHLOROPHYLL IN 1997–2002 C03039 consisting of offshore Ekman transport at the surface and fields of Levitus et al. [1998] (Figure 2b) and added to the subsurface onshore return flow. An equatorward jet forms spatial EOF patterns for altimeter SSH. There is some at the offshore edge of the upwelled water, which is cold, question about the spatial ‘‘resolution’’ of SSH fields salty, and rich in nutrients. These nutrients lead to an formed from combinations such as this. We take the scale increase in primary production, which provides the basis of resolution to be approximately 100–200 km, but in for a productive ecosystem. analyses such as these, using temporal means, harmonic [4] Unlike the simple 2-D patterns depicted in most analyses and EOFs, small-scale noise is reduced and only textbooks, however, synoptic circulation patterns observed the dominant larger-scale features are preserved. in the CCS and other EBCs are characterized by complex mesoscale eddies, fronts, and meanders, with horizontal 2.3. Sea Surface Temperature (SST) scales from tens to hundreds of kilometers [Pelae´z and [7] The several clearest images from each week were McGowan, 1986]. This structure develops seasonally used to form ‘‘warmest-pixel’’ fields of SST from the and varies on interannual and longer scales [Pelae´z NOAA-14 Advanced Very High Resolution Radiometer and McGowan, 1986; Strub et al., 1991]. In this paper, (AVHRR), between January 1997 and May 2002. Monthly we use satellite observations of chlorophyll pigment means were calculated from these weekly fields. Nominal concentration, sea surface height, and temperature to spatial resolution of the remapped SST data is 1.2 km. illustrate the space and time relationships between bio- Multichannel SST algorithms were similar to those used by logical and physical processes off Baja California. This the NOAA-NASA Pathfinder project. region has been previously described by Go´mez-Valde´s 2.4. Wind Stress and the Coastal Upwelling Index and Ve´lez-Mun˜oz [1982], Pare´s-Sierra et al. [1997] and Durazo and Baumgartner [2002]. The analysis in this [8] Temporal variability in the upwelling intensity over paper also builds on previous work using in situ and Baja California is quantified by the Coastal Upwelling satellite chlorophyll estimations from Bernal [1981], Index (CUI), produced by the NOAA/NMFS Pacific Fish- Pela´ez and Guan [1982], Pela´ez and McGowan [1986], eries Environmental Laboratory in Monterey, California Strub et al. [1990], Thomas and Strub [1990], Fargion et [Bakun, 1975; Schwing et al., 1996]. We use the CUI time al. [1993], Thomas et al. [1994], Hayward et al. [1999], series centered on 27°N and 116°W (Figure 1) as represen- Kahru and Mitchell [2000, 2001, 2002], Bograd et al. tative of the Baja California region. The period for the data [2000], and Durazo et al. [2001]. is from January 1997 to May 2002. To characterize the spatial patterns of seasonal wind stress, we use winds from the European Centre for Medium-Weather Forecasts 2. Data and Methods (ECMWF), from January 1986 to January 1998. 2.1. Chlorophyll 2.5. Seasonal Cycle [5] SeaWiFS (Sea Viewing Wide Field of View Sensor) [9] Seasonal cycles of chlorophyll, SSH, SST, wind ocean color data were provided by A. Thomas at the stress, and the CUI are calculated by fitting the time series University of Maine. After initial processing [Barnes et to a mean plus annual and semiannual harmonics, al., 1994], 8-day and monthly composites were remapped with 4-km resolution. The period chosen for study extends from September 1997 (the beginning of the available data) FðÞ¼x; t A0ðÞþx A1ðÞx cosðÞþwt À j1 A2ðÞx cosðÞ 2wt À j2 to May 2002; the region is 22°N–33°N and 112°W–120°W ð1Þ (Figure 1). where A0, A1, and A2 are the temporal mean, annual 2.2. Sea Surface Height (SSH) amplitude, and semiannual amplitude for each time series, 2p 6 [ ] SSH data were formed from a combination of TOPEX respectively; w = 365:25 is the annual radian frequency; and ERS-2 altimeters, using data from January 1997 to j1 and j2 are the phases of annual and semiannual November 2001 (when the TOPEX satellite was moved to a harmonic respectively; and t is the time (as year-day). new orbit), over the same region as used for SeaWiFS Mean fields were obtained for all data, except for SSH, chlorophyll pigment concentrations. These data were pro- where the long-term mean of the altimeter SSH must be cessed and made available by the NOAA-NASA Pathfinder removed to eliminate the marine geoid. The long-term mean Project [Strub and James, 2002], using standard atmospheric of dynamic height is derived from the Levitus et al. [1998] corrections. In order to combine the data from the two climatology with reference of 500 dbar (Figure 2b). altimeters, the spatial mean over the domain of interest for [10] In the analysis below, we refer to ‘‘seasonal anoma- each altimeter is first removed for each month. This lies’’ as the sum of the second and third terms of the right- removes offsets between the two altimeters caused by hand of equation (1). ‘‘Nonseasonal anomalies’’ are the time residual orbit errors, and it also removes the dominant series after removing the temporal mean, annual and semi- seasonal cycle, which is the rise and fall of SSH caused by annual cycles as in equation (1). Empirical Orthogonal the seasonal heating cycle. What remains is the temporal Functions (EOFs) are presented for both seasonal and and spatial variability in SSH gradients, which is the nonseasonal anomalies.
Recommended publications
  • Baja California's Sonoran Desert
    Baja California’s Sonoran Desert By Debra Valov What is a Desert? It would be difficult to find any one description that scarce and sporadic, with an would fit all of the twenty or so deserts found on our annual average of 12-30 cm (4.7- planet because each one is a unique landscape. 12 inches). There are two rainy seasons, December- While an expanse of scorching hot sand dunes with March and July-September, with the northern the occasional palm oasis is the image that often peninsula dominated by winter rains and the south comes to mind for the word desert, in fact, only by summer rains. Some areas experience both about 10% of the world’s deserts are covered by seasons, while in other areas, such as parts of the sand dunes. The other 90% comprise a wide variety Gulf coast region, rain may fail for years on end. of landscapes, among these cactus covered plains, Permanent above-ground water reserves are scarce foggy coastal slopes, barren salt flats, and high- throughout most of the peninsula but ephemeral, altitude, snow-covered plateaus. However, one seasonal pools and rivers do appear after winter characteristic that all deserts share is aridity—any storms in the north or summer storms (hurricanes place that receives less than 10 inches (25 and thunderstorms—chubascos) in the south. There centimeters) of rain per year is generally considered are also a number of permanent oases, most often to be a desert and the world’s driest deserts average formed where aquifers (subterranean water) rise to less than 10 mm (3/8 in.) annually.
    [Show full text]
  • Maintaining a Landscape Linkage for Peninsular Bighorn Sheep
    Maintaining a Landscape Linkage for Peninsular Bighorn Sheep Prepared by and Prepared for The Nature Conservancy April 2010 Maintaining a Landscape Linkage for Peninsular Bighorn Sheep Table of Contents Page Executive Summary iii 1. Introduction 1 1.1 Background 1 1.2 Study Area 2 1.3 Parque-to-Palomar—a Project of Las Californias Binational Conservation Initiative 4 2. Findings 5 2.1 Reported Occurrences 5 2.2 Habitat Model 6 2.3 Questionnaires and Interviews 7 2.4 Field Reconnaissance 10 3. Threats and Conservation Challenges 12 3.1 Domestic Livestock 12 3.2 Unregulated Hunting 12 3.4 Emerging Threats 13 4. Conclusions and Recommendations 15 4.1 Conclusions from This Study 15 4.2 Recommendations for Future Studies 16 4.3 Goals and Strategies for Linkage Conservation 17 5. Literature Cited 18 Appendices A. Questionnaire about Bighorn Sheep in the Sierra Juárez B. Preliminary Field Reconnaissance, July 2009 List of Figures 1. Parque-to-Palomar Binational Linkage. 3 2. A preliminary habitat model for bighorn sheep in northern Baja California. 8 3. Locations of reported bighorn sheep observations in the border region and the Sierra Juárez. 9 4. Potential access points for future field surveys. 11 CBI & Terra Peninsular ii April 2010 Maintaining a Landscape Linkage for Peninsular Bighorn Sheep Executive Summary The Peninsular Ranges extend 1,500 km (900 mi) from Southern California to the southern tip of the Baja California peninsula, forming a granitic spine near the western edge of the North American continent. They comprise an intact and rugged wilderness area connecting two countries and some of the richest montane and desert ecosystems in the world that support wide- ranging, iconic species, including mountain lion, California condor, and bighorn sheep.
    [Show full text]
  • Biophysical Sustainability of Food Systems in a Global and Interconnected World
    Biophysical Sustainability of Food Systems in a Global and Interconnected World Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Dor Fridman Submitted to the Senate of Ben-Gurion University of the Negev 53/32/2/ Beer-Sheva Biophysical Sustainability of Food Systems in a Global and Interconnected World Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Dor Fridman Submitted to the Senate of Ben-Gurion University of the Negev Approved by the advisor Approved by the Dean of the Kreitman School of Advanced Graduate Studies 32/2/ 53/32/2/ Beer-Sheva This work was carried out under the supervision of Prof. Meidad Kissinger In the Department for Geography and Environmental Development Faculty of Social Sciences Research-Student’s Affidavit when Submitting the Doctoral Thesis for Judgment I Dor Fridman, whose signature appears below, hereby declare that (Please mark the appropriate statements): V I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. V The scientific materials included in this Thesis are products of my own research, culled from the period during which I was a research student. ___ This Thesis incorporates research materials produced in cooperation with others, excluding the technical help commonly received during experimental work. Therefore, I am attaching another affidavit stating the contributions made by myself and the other participants in this research, which has been approved by them and submitted with their approval. Date: 18/2/20 Student’s name: Dor Fridman Signature: Table of contents Table of contents v Acknowledgements vii List of figures viii List of tables ix List of equations x Abstract xi 1.
    [Show full text]
  • Redalyc.Detección De Las Preferencias De Hábitat Del Borrego Cimarrón (Ovis Canadensis Cremnobates) En Baja California, Media
    Therya E-ISSN: 2007-3364 [email protected] Asociación Mexicana de Mastozoología México Escobar-Flores, Jonathan G.; Álvarez-Cárdenas, Sergio; Valdez, Raúl; Torres Rodríguez, Jorge; Díaz-Castro, Sara; Castellanos-Vera, Aradit; Martínez Gallardo, Roberto Detección de las preferencias de hábitat del borrego cimarrón (Ovis canadensis cremnobates) en Baja California, mediante técnicas de teledetección satelital Therya, vol. 6, núm. 3, 2015, pp. 519-534 Asociación Mexicana de Mastozoología Baja California Sur, México Disponible en: http://www.redalyc.org/articulo.oa?id=402341557003 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto THERYA, 2015, Vol. 6 (3): 519-534 DOI: 10.12933/therya-15-284, ISSN 2007-3364 Detecting habitat preferences of bighorn sheep (Ovis canadensis cremnobates) in Baja California using remote sensing techniques Detección de las preferencias de hábitat del borrego cimarrón (Ovis canadensis cremnobates) en Baja California, mediante técnicas de teledetección satelital Jonathan G. Escobar-Flores¹, Sergio Álvarez-Cárdenas¹*, Raúl Valdez², Jorge Torres Rodríguez³, Sara Díaz-Castro¹, Aradit Castellanos-Vera¹ y Roberto Martínez Gallardo4† ¹ Centro de Investigaciones Biológicas del Noroeste, S. C. Instituto Politécnico Nacional 195, La Paz 23090, Baja California Sur, México. E-mail: [email protected] (JGEF), [email protected] (SA-C), [email protected] (SD-C), [email protected] (AC-V). ² Department of Fish, Wildlife and Conservation Ecology, New Mexico State University. Las Cruces, New México 88001, EE.UU. E-mail: [email protected] (RV).
    [Show full text]
  • Detection of Pinus Monophylla Forest in the Baja California Desert by Remote Sensing
    A peer-reviewed version of this preprint was published in PeerJ on 4 April 2018. View the peer-reviewed version (peerj.com/articles/4603), which is the preferred citable publication unless you specifically need to cite this preprint. Escobar-Flores JG, Lopez-Sanchez CA, Sandoval S, Marquez-Linares MA, Wehenkel C. 2018. Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing. PeerJ 6:e4603 https://doi.org/10.7717/peerj.4603 Detection of Pinus monophylla forest in the Baja California desert by remote sensing Jonathan G Escobar-Flores 1 , Carlos A Lopez-Sanchez 2 , Sarahi Sandoval 3 , Marco A Marquez-Linares 1 , Christian Wehenkel Corresp. 4 1 Centro Interdisciplinario De Investigación para el Desarrollo Integral Regional, Unidad Durango., Instituto Politécnico Nacional, Durango, Durango, México 2 Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico 3 CONACYT - Instituto Politécnico Nacional. CIIDIR. Unidad Durango, CONACYT - Instituto Politécnico Nacional. CIIDIR. Unidad Durango, Durango, Durango, México 4 Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico Corresponding Author: Christian Wehenkel Email address: [email protected] The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave Desert in southern Nevada and southeastern California (US) and also of northern Baja California (Mexico). This subspecies is distributed as a relict in the geographically isolated arid Sierra La Asamblea, between 1,010 and 1,631 m, with mean annual precipitation levels of between 184 and 288 mm.
    [Show full text]
  • Our Natural Heritage, Bioregional Pride San Diego County and Baja California
    Our Natural Heritage, Bioregional Pride San Diego County and Baja California Teacher Guide Second Edition The design and production of this curriculum was funded by U.S. Fish & Wildlife Service, Division of International Conservation Wildlife without Borders /Mexico San Diego National Wildlife Refuge Complex COPYRIGHT ©2009 San Diego Natural History Museum Published by Proyecto Bio-regional de Educación Ambiental (PROBEA), a program of the San Diego Natural History Museum P.O. Box 121390, San Diego, CA 92112-1390 USA Printed in the U.S.A. Website: www.sdnhm.org/education/binational ii Our Natural Heritage, Bioregional Pride San Diego County and Baja California Designed and written by: Araceli Fernández Karen Levyszpiro Judy Ramírez Field Guide illustrations: Jim Melli Juan Jesús Lucero Martínez Callie Mack Edited by: Doretta Winkelman Delle Willett Claudia Schroeder Karen Levyszpiro Judy Ramírez Global Changes and Wildfires section: Anne Fege Activity 2: What is an Ecosystem? Pat Flanagan Designed and written by: Judy Ramírez Ecosystem Map (EcoMap), graphic and illustration support: Callie Mack Descriptions of Protected Areas: Protected Areas personnel of San Diego County Ecological Regions Map: Glenn Griffith Ecosystems Map: Charlotte E. González Abraham Translation: Karen Levyszpiro Formatting and graphics design: Isabelle Heyward Christopher Blaylock Project coordination: Doretta Winkelman iii Acknowledgements Our deep gratitude goes to the following organizations who granted us permission to use or adapt their materi- als. General Guidelines for Field-Trip-Based Environmental Education from the Catalog of Sites of Regional Impor- tance is included with permission from the Environmental Education Council of the Californias (EECC). Grass Roots Educators contributed the Plant, Bird and Cactus Observation Sheets, the EcoMap Graphic Or- ganizer for Activity 2, and other illustrations included in this curriculum.
    [Show full text]
  • Predicting [I]Pinus Monophylla[I] Forest Cover in the Baja California Desert
    A peer-reviewed version of this preprint was published in PeerJ on 4 April 2018. View the peer-reviewed version (peerj.com/articles/4603), which is the preferred citable publication unless you specifically need to cite this preprint. Escobar-Flores JG, Lopez-Sanchez CA, Sandoval S, Marquez-Linares MA, Wehenkel C. 2018. Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing. PeerJ 6:e4603 https://doi.org/10.7717/peerj.4603 1 Predicting Pinus monophylla forest cover in the Baja 2 California Desert by remote sensing 3 Jonathan G. Escobar-Flores 1, Carlos A. López-Sánchez 2, Sarahi Sandoval 3, Marco A. Márquez-Linares 4 1, Christian Wehenkel 2 5 1 Instituto Politécnico Nacional. Centro Interdisciplinario De Investigación para el Desarrollo Integral 6 Regional, Unidad Durango., Durango, México 7 2 Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, 8 México 9 3 CONACYT - Instituto Politécnico Nacional. CIIDIR. Unidad Durango. Durango, México 10 11 Corresponding author: 12 Christian Wehenkel 2 13 Km 5.5 Carretera Mazatlán, Durango, 34120 Durango, México 14 Email address: [email protected] 15 16 17 ABSTRACT 18 Background. The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a 19 subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones 20 of the Mojave Desert (southern Nevada and southeastern California, US) and also of northern 21 Baja California (Mexico). This tree is distributed as a relict subspecies, at elevations of between 22 1,010 and 1,631 m in the geographically isolated arid Sierra La Asamblea (Baja California, 23 Mexico), an area characterized by mean annual precipitation levels of between 184 and 288 mm.
    [Show full text]
  • Of Sea Level Rise Mediated by Climate Change 7 8 9 10 Shaily Menon ● Jorge Soberón ● Xingong Li ● A
    The original publication is available at www.springerlink.com Biodiversity and Conservation Menon et al. 1 Volume 19, Number 6, 1599-1609, DOI: 10.1007/s10531-010-9790-4 1 2 3 4 5 Preliminary global assessment of biodiversity consequences 6 of sea level rise mediated by climate change 7 8 9 10 Shaily Menon ● Jorge Soberón ● Xingong Li ● A. Townsend Peterson 11 12 13 14 15 16 17 S. Menon 18 Department of Biology, Grand Valley State University, Allendale, Michigan 49401-9403 USA, 19 [email protected] 20 21 J. Soberón 22 Natural History Museum and Biodiversity Research Center, The University of Kansas, 23 Lawrence, Kansas 66045 USA 24 25 X. Li 26 Department of Geography, The University of Kansas, Lawrence, Kansas 66045 USA 27 28 A. T. Peterson 29 Natural History Museum and Biodiversity Research Center, The University of Kansas, 30 Lawrence, Kansas 66045 USA 31 32 33 34 Corresponding Author: 35 A. Townsend Peterson 36 Tel: (785) 864-3926 37 Fax: (785) 864-5335 38 Email: [email protected] 39 40 The original publication is available at www.springerlink.com | DOI: 10.1007/s10531-010-9790-4 Menon et al. Biodiversity consequences of sea level rise 2 41 Running Title: Biodiversity consequences of sea level rise 42 43 Preliminary global assessment of biodiversity consequences 44 of sea level rise mediated by climate change 45 46 Shaily Menon ● Jorge Soberón ● Xingong Li ● A. Townsend Peterson 47 48 49 Abstract Considerable attention has focused on the climatic effects of global climate change on 50 biodiversity, but few analyses and no broad assessments have evaluated the effects of sea level 51 rise on biodiversity.
    [Show full text]
  • A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands
    A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands Prepared by Levke Sörensen at the UNEP World Conservation Monitoring Centre Cambridge, UK January 2007 This report was prepared at the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC). The lead author is Levke Sörensen, scholar of the Carlo Schmid Programme of the German Academic Exchange Service (DAAD). Acknowledgements This report benefited from major support from Peter Herkenrath, Lera Miles and Corinna Ravilious. UNEP-WCMC is also grateful for the contributions of and discussions with Jaime Webbe, Programme Officer, Dry and Subhumid Lands, at the CBD Secretariat. Disclaimer The contents of the map presented here do not necessarily reflect the views or policies of UNEP-WCMC or contributory organizations. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP-WCMC or contributory organizations concerning the legal status of any country, territory or area or its authority, or concerning the delimitation of its frontiers or boundaries. 3 Table of contents Acknowledgements............................................................................................3 Disclaimer ...........................................................................................................3 List of tables, annexes and maps .....................................................................5 Abbreviations
    [Show full text]
  • WELLS in the DESERT Retracing the Mexican War Trails of Kearny and Cooke Through Baja California
    WELLS IN THE DESERT Retracing the Mexican War Trails of Kearny and Cooke through Baja California by Tom Jonas “ UCH AS THESE, are times that try men’s souls,” Asa Bement SClarke wrote after arriving at Alamo Mocho well in the Southern California desert late on the night of June 23, 1849, bound for the California gold fields. “Some broke out in the most extravagant expressions, declaring that we had lost the way,— should never find water,—all perish, &c. Others said nothing, but jogged steadily on, with a fixed determination to persevere. After traveling an hour or two more, we came suddenly to the brow of a steep sand-bank, and saw fires beneath us. We all shouted; some asking if there was any water, to which the reply was — yes, if you can wait for it.” Clarke, parched after a long trek across the hot, sandy Andrade Mesa, goes on to describe how, “Going down the steep bank, we encountered a horrid stench arising from dead animals which lay around; tying the mules to prevent them from falling into the wells, I soon found one of these holes, which was twelve or fourteen feet deep. Letting myself down by a stick which lay across the top, I found a little muddy water at the bottom, which I dipped with my tin cup. Never did water taste more sweet.”1 Alamo Mocho was one of the few water holes in the ninety-plus- mile desert crossing between Yuma, Arizona, and Carrizo Creek, California. For some years it was a vital stop along the trail, but Tom Jonas is a cartographer who produces maps for history books and conducts his own research using traditional documentary and cartographic studies, plus rephotography, to relocate historic campsites and trails.
    [Show full text]
  • Geographic Variation in Cactus Wren Songs Jonathan L
    GEOGRAPHIC VARIATION IN CACTUS WREN SONGS JONATHAN L. ATWOOD and SUSANNAH B. LERMAN, Conservation Biology Program, Department of Environmental Studies, Antioch University, New England, 40 Avon Street, Keene, New Hampshire 03431-3516 (current address of Lerman: Graduate Program in Organismic & Evolutionary Biology, University of Massachu- setts Amherst, 319 Morrill Science Center South, 611 N. Pleasant Street, Amherst, Massachusetts 01003) ABSTRACT: We compared Cactus Wren (Campylorhynchus brunneicapillus) songs recorded in three regions of coastal southern California (Ventura and Los Angeles counties, Orange County, and San Diego County), Baja California, and the Sonoran and Chihuahuan deserts. On the basis of four measures of the fine structure of individual notes, songs of wrens from Baja California south of 31° N latitude were most distinct; songs of birds from the three regions of coastal southern California were similar and most like songs given by birds in Baja California. Cactus Wrens in coastal southern California are geographically isolated, morphologically different, and differ in song behavior from those in Baja California. Compared with Sonoran and Chihuahuan desert populations, Cactus Wrens in coastal southern California are geographically isolated, differ in song behavior, and occur in a unique and unusual ecological setting. These characteristics suggest that the U.S. Fish and Wildlife Service should reconsider its 1994 decision denying coastal Cactus Wrens protection under the Endangered Species Act because the population was deemed to not meet the definition of a “distinct population segment.” The Cactus Wren (Campylorhynchus brunneicapillus) is one of the most familiar and conspicuous members of the avifauna of North America’s arid regions. Distributed commonly and widely throughout the lowlands of Baja California and the Mojave, Sonoran, and Chihuahuan deserts, the species also occurs in coastal southern California and extreme northwestern Baja California (American Ornithologists’ Union 1998).
    [Show full text]
  • Baja California Desert
    346 Baja California Desert Baja California Desert the most crucial factor to determine the unique- ness of this desert. Category: Desert Biomes. In addition to the isolated nature of the penin- Geographic Location: North America. sula as a whole, scattered and sequestered habi- Summary: !e only desert in the world tats at different scales are superimposed on the surrounded by two seas, this geologically desert along its length. Sea islands of various sizes isolated peninsula sets the stage for a myriad are present along the Pacific coast; they are espe- of remarkable plants and animals exemplifying cially abundant throughout the Gulf of California. adaptations to an isolated and arid environment. !e highest tips of the mountain ranges that form the backbone of the Peninsula contain small sky !e Baja California Desert is the peninsular arm islands of relict temperate ecosystems. of the mainland Sonoran Desert, and although Scattered palm oases in deep and sheltered dis- closely related to each other, they contain dramati- junct canyons represent mesic (moderately moist) cally different evolutionary histories. While the refuges within a landscape of dry rock and sand. mainland Sonoran Desert biota evolved connected Both seacoasts are dotted with coastal lagoons to both northern temperate biomes and southern often harboring mangroves, here at their north- tropical forests, the evolution of the Baja Califor- ernmost occurrence in North America, that con- nia peninsula took a different trajectory due to its stitute critically important wetland ecosystems. long history of isolation. !e Baja California Des- !is mosaic of insularity at different temporal ert is a paradigm of the importance of geography and spatial scales, constitutes the driving force of and time, the two axes along which life develops its biological speciation: adaptation to local, isolated variations in shaping the natural world.
    [Show full text]