Diffuse Coevolution Between Two Epicephala Species (Gracillariidae) and Two Breynia Species (Phyllanthaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Diffuse Coevolution Between Two Epicephala Species (Gracillariidae) and Two Breynia Species (Phyllanthaceae) Diffuse Coevolution between Two Epicephala Species (Gracillariidae) and Two Breynia Species (Phyllanthaceae) Jing Zhang., Shuxia Wang., Houhun Li*., Bingbing Hu, Xiaofei Yang, Zhibo Wang College of Life Sciences, Nankai University, Tianjin, China Abstract The diffuse coevolution between two moth species (Epicephala lativalvaris and E. mirivalvata) and two plant species (Breynia fruticosa and B. rostrata) is reported based on field observations and indoor experiments conducted in Hainan and Fujian, China. Study results showed that the two Epicephala species jointly pollinated the two Breynia species, which led to a unique obligate pollination mutualism of two2to2two species specificity. A single Epicephala larva exclusively fed on seeds of host plants and developed to maturity by consuming all six seeds of each fruit, whereas a fraction of intact fruits were left to ensure the reproduction of plants within the whole population. Larvae of the two Epicephala species are competitive for resources; the population of E. mirivalvata is much smaller than that of E. lativalvaris, which has resulted from the differences in the female ovipositor structures and oviposition mode. The life history of Epicephala species highly coincides with the phenology of Breynia plants, and different phenology of B. fruticosa resulted in the different life history of the two Epicephala species in Hainan and Fujian. The natural hybridization of two host plants, possibly induced by the alternate pollination of two Epicephala species, is briefly discussed. Citation: Zhang J, Wang S, Li H, Hu B, Yang X, et al. (2012) Diffuse Coevolution between Two Epicephala Species (Gracillariidae) and Two Breynia Species (Phyllanthaceae). PLoS ONE 7(7): e41657. doi:10.1371/journal.pone.0041657 Editor: Dmitry A. Filatov, University of Oxford, United Kingdom Received February 14, 2012; Accepted June 25, 2012; Published July 27, 2012 Copyright: ß 2012 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported by the National Natural Science Foundation of China (No. 30930014). Funder’s website: http://www.nsfc.gov.cn/. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] . These authors contributed equally to this work. Introduction carrying numerous pollen grains on proboscis, which led to a deduction that this species was an active pollinator of B. fruticosa The obligate pollination relationship between plants and their [11]. Okamoto et al. [12] suggested the floral scent of Glochidion is seed-parasitic pollinators is perhaps one of the most specialized one of the important key signals that mediate the encounters of the cases in mutualism between insects and plants [1–4]. Ehrlich and species-specific partners in the Glochidion–Epicephala mutualism. In Raven defined coevolution as the interaction between two major tightly coevolved mutualism between Breynia vitis-idaea and groups of organisms with a close and evident ecological relation- Epicephala species, system-specific chemistry is not necessary for ship, such as plants and herbivores [5]. In the known classical efficient host location to Epicephala moths [13]. obligate pollination mutualism between figs–fig wasps and yuccas– By means of field observations and indoor experiments, we yucca moths, figs and yuccas depend exclusively on pollination of studied the phenology, the phylogenetic relationship and the fig wasps and yucca moths respectively, while sacrificing some morphological characters of the two Breynia species, as well as the seeds for larvae of fig wasps and yucca moths to feed [6,7]. The morphological characters, the behavior, the life history, the obligate pollination mutualism between Epicephala moths of phylogenetic relationship and the population size of the two Gracillariidae and Glochidion plants of Euphorbiaceae was discov- Epicephala species in Hainan and Fujian. Based on related ered in 2003 [3]. Three pollination relationships were proposed literature and results of our study, we discussed herein: (1) the [8]: (1) one Epicephala species obligately pollinates one Glochidion impact of the different phenology of the allopatric B. fruticosa species, (2) two Epicephala species jointly pollinate one Glochidion populations on the life history of the Epicephala moths in species, and (3) two Epicephala species jointly pollinate two closely coevolution; (2) the influence of moth pollinators on the related parapatric Glochidion species. The most distinctive floral hybridization of Breynia species; and (3) whether the relationship features associated with the pollination mode are the structures of between the pollinators is stable in this diffuse coevolution. the pistils and stamens: styles are usually reduced to entire tips and medially fused, or filaments and anthers are variously fused [9– Results 10]. An obligate pollination relationship between Breynia vitis-idaea Life History of Epicephala Moths and Phenology of and an unnamed Epicephala species was discovered in 2004 [11]. Breynia Plants This Epicephala species actively pollinated B. vitis-idaea and was In Hainan, B. fruticosa has six fruit periods per year, lasting from observed loading numerous pollen grains on proboscis. Another the first period in early January to the sixth period in late Epicephala species on leaves of B. fruticosa was also observed November. Epicephala lativalvaris and E. mirivalvata have six PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e41657 Coevolution between Two Epicephala and Two Breynia Figure 1. Female flowers and fruits with double characters of Breynia plants. Female flowers (A) and fruits (B) with erect stigmas and flat calyx sepals. Female flowers (C) and fruits (D) with excurved stigmas and reflexed calyx sepals. (cs) calyx sepals. (s) stigma. doi:10.1371/journal.pone.0041657.g001 generations correspondingly, lasting from the first generation in A single larva of both E. lativalvaris and E. mirivalvata needs to middle January to the sixth generation in late December (Table consume all six seeds within a fruit to develop into maturity. S1). Mature larvae (the last instar) gnawed a hole in the fruit wall and In Fujian, both B. fruticosa and B. rostrata have 4–5 fruit periods exited, then produced cocoons and turned into pupae on leaves of per year, which lasted from the first period in early June to the fifth hosts or the ambient plants. Pupal stage of E. lativalvaris lasted 9– period in late April of the following year. A large number of 15 days, and pupal stage of E. mirivalvata lasted 9–12 days. Adults flowers withered in winter due to absence of pollinators. A small of both Epicephala species could survive 3–5 days by sucking nectar amount of flowers that were pollinated during middle to late for nutrition (Figure S1). November were dormant and no seeds were formed until middle or late March of the following year, and the fifth fruit period lasted Hybridization of Breynia Species from middle to late April. Both E. lativalvaris and E. mirivalvata have We found some plant individuals are difficult to identify, 4–5 generations correspondingly, which lasted from the first because they possess double morphological characters of both B. generation in middle June to the fifth generation in middle May of fruticosa and B. rostrata: three individuals (Figure 1: A, B) in Hainan the following year. Larvae that pupated during early to middle with erect stigmas (characteristic of B. rostrata) and flat calyx sepals November could emerge into adults, pollinate mature female (characteristic of B. fruticosa); nineteen individuals (Figure 1: C, D) flowers and lay eggs of the fifth generation during middle to late in Fujian with excurved stigmas (characteristic of B. fruticosa) and November. Larvae that pupated in late November overwintered in reflexed calyx sepals (characteristic of B. rostrata). pupas, and they began to emerge in late April and disappeared in The result of the hand-pollination hybridization experiment middle May. Pollinated flowers and Epicephala eggs in flowers were showed that there are no reproductive barriers between B. fruticosa dormant until middle or late March of the following year, and the and B. rostrata. 90% B. fruticosa female flowers (n = 50) with pollen adults of the fifth generation emerged in middle May (Table S2). grains from B. rostrata developed, so did 94% B. rostrata female We smelled flower fragrance of both B. fruticosa and B. rostrata at flowers (n = 50) with pollen grains from B. fruticosa (Table S7). night only, which suggests that they were blooming at night. PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e41657 Coevolution between Two Epicephala and Two Breynia Figure 2. Behavior of female Epicephala moths. Epicephala lativalvaris collecting pollen grains on male flower of Breynia fruticosa (A) and actively pollinating for Breynia fruticosa (B) and B. rostrata (C). E. lativalvaris inserting ovipositor through calyx lobe and ovary to lay eggs on B. fruticosa (D) and B. rostrata (E). (F) Egg of E. lativalvaris. E. mirivalvata laying eggs between ovary and calyx lobe on B. fruticosa (G) and B. rostrata (H). (I) Egg of E. mirivalvata. (e) egg. doi:10.1371/journal.pone.0041657.g002
Recommended publications
  • Eavesdropping on Visual Secrets
    Evol Ecol DOI 10.1007/s10682-013-9656-9 REVIEW ARTICLE Eavesdropping on visual secrets Nicholas C. Brandley • Daniel I. Speiser • So¨nke Johnsen Received: 22 October 2012 / Accepted: 28 May 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Private communication may benefit signalers by reducing the costs imposed by potential eavesdroppers such as parasites, predators, prey, or rivals. It is likely that private communication channels are influenced by the evolution of signalers, intended receivers, and potential eavesdroppers, but most studies only examine how private communication benefits signalers. Here, we address this shortcoming by examining visual private com- munication from a potential eavesdropper’s perspective. Specifically, we ask if a signaler would face fitness consequences if a potential eavesdropper could detect its signal more clearly. By integrating studies on private communication with those on the evolution of vision, we suggest that published studies find few taxon-based constraints that could keep potential eavesdroppers from detecting most hypothesized forms of visual private com- munication. However, we find that private signals may persist over evolutionary time if the benefits of detecting a particular signal do not outweigh the functional costs a potential eavesdropper would suffer from evolving the ability to detect it. We also suggest that all undetectable signals are not necessarily private signals: potential eavesdroppers may not benefit from detecting a signal if it co-occurs with signals in other more detectable sensory modalities. In future work, we suggest that researchers consider how the evolution of potential eavesdroppers’ sensory systems influences private communication. Specifically, Electronic supplementary material The online version of this article (doi:10.1007/s10682-013-9656-9) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Evaluation of Antibacterial and Antioxidant Properties of Some Traditional Medicinal Plants
    Evaluation of antibacterial and antioxidant properties of some traditional medicinal plants TICLE R from India A Sreerangegowda Thippeswamy, Rayasandra Umesh Abhishek, Kiragandur Manjunath, Devihalli Chikkaiah Mohana L Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka, India A Background: Medicinal plants have been used to prevent and treat various health problems. Aim: The present study was conducted to evaluate the antibacterial and antioxidant activities of aqueous and solvent extracts of some selected medicinal plants. IGIN Materials and Methods: The disc diffusion method was employed for the determination of antimicrobial activity, and antioxidant R activity was evaluated by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging, hydrogen peroxide reducing and ‑carotene/linoleic acid bleaching inhibition assays. Folin-Ciocalteu reagent method was employed for the determination of total phenolic contents. O Results: Aqueous and solvent extracts of Acacia catechu, A. ferruginea, Adenanthera pavonina, Albizia odoratissima, Anogeissus latifolia, Breynia vitis‑idaea, Salacia oblonga, Senna spectabilis and Solanum indicum showed significant antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Streptococcus faecalis, and promising antioxidant properties. The antioxidant activities were positively correlated with total phenolic contents. Discussion and Conclusion: The promising
    [Show full text]
  • Phylogenetic Reconstruction Prompts Taxonomic Changes in Sauropus, Synostemon and Breynia (Phyllanthaceae Tribe Phyllantheae)
    Blumea 59, 2014: 77–94 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684484 Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae) P.C. van Welzen1,2, K. Pruesapan3, I.R.H. Telford4, H.-J. Esser 5, J.J. Bruhl4 Key words Abstract Previous molecular phylogenetic studies indicated expansion of Breynia with inclusion of Sauropus s.str. (excluding Synostemon). The present study adds qualitative and quantitative morphological characters to molecular Breynia data to find more resolution and/or higher support for the subgroups within Breynia s.lat. However, the results show molecular phylogeny that combined molecular and morphological characters provide limited synergy. Morphology confirms and makes the morphology infrageneric groups recognisable within Breynia s.lat. The status of the Sauropus androgynus complex is discussed. Phyllanthaceae Nomenclatural changes of Sauropus species to Breynia are formalised. The genus Synostemon is reinstated. Sauropus Synostemon Published on 1 September 2014 INTRODUCTION Sauropus in the strict sense (excluding Synostemon; Pruesapan et al. 2008, 2012) and Breynia are two closely related tropical A phylogenetic analysis of tribe Phyllantheae (Phyllanthaceae) Asian-Australian genera with up to 52 and 35 species, respec- using DNA sequence data by Kathriarachchi et al. (2006) pro- tively (Webster 1994, Govaerts et al. 2000a, b, Radcliffe-Smith vided a backbone phylogeny for Phyllanthus L. and related 2001). Sauropus comprises mainly herbs and shrubs, whereas genera. Their study recommended subsuming Breynia L. (in- species of Breynia are always shrubs. Both genera share bifid cluding Sauropus Blume), Glochidion J.R.Forst. & G.Forst., or emarginate styles, non-apiculate anthers, smooth seeds and and Synostemon F.Muell.
    [Show full text]
  • And Leafflower Trees (Phyllanthaceae: Phyllanthus Sensu Lato [Glochidion]) in Southeastern Polynesia
    Coevolutionary Diversification of Leafflower Moths (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in Southeastern Polynesia By David Howard Hembry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Rosemary Gillespie, Chair Professor Bruce Baldwin Professor Patrick O’Grady Spring 2012 1 2 Abstract Coevolution between phylogenetically distant, yet ecologically intimate taxa is widely invoked as a major process generating and organizing biodiversity on earth. Yet for many putatively coevolving clades we lack knowledge both of their evolutionary history of diversification, and the manner in which they organize themselves into patterns of interaction. This is especially true for mutualistic associations, despite the fact that mutualisms have served as models for much coevolutionary research. In this dissertation, I examine the codiversification of an obligate, reciprocally specialized pollination mutualism between leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) on the oceanic islands of southeastern Polynesia. Leafflower moths are the sole known pollinators of five clades of leafflowers (in the genus Phyllanthus s. l., including the genera Glochidion and Breynia), and thus this interaction is considered to be obligate. Female moths actively transfer pollen from male flowers to female flowers, using a haired proboscis to transfer pollen into the recessed stigmatic surface at the end of the fused stylar column. The moths then oviposit into the flowers’ ovaries, and the larva which hatches consumes a subset, but not all, of the developing fruit’s seed set.
    [Show full text]
  • Four New Species of Epicephala Meyrick, 1880 (Lepidoptera
    A peer-reviewed open-access journal ZooKeys 508: 53–67Four (2015) new species of Epicephala Meyrick, 1880 (Lepidoptera, Gracillariidae)... 53 doi: 10.3897/zookeys.508.9479 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Four new species of Epicephala Meyrick, 1880 (Lepidoptera, Gracillariidae) associated with two species of Glochidion (Phyllanthaceae) from Hainan Island in China Houhun Li1, Zhibo Wang1, Bingbing Hu1 1 College of Life Sciences, Nankai University, Tianjin 300071, P. R. China Corresponding author: Houhun Li ([email protected]) Academic editor: E. van Nieukerken | Received 1 March 2015 | Accepted 3 June 2015 | Published 15 June 2015 http://zoobank.org/48D1C46F-5037-4324-BD97-FE47AB32C6E7 Citation: Li H, Wang Z, Hu B (2015) Four new species of Epicephala Meyrick, 1880 (Lepidoptera, Gracillariidae) associated with two species of Glochidion (Phyllanthaceae) from Hainan Island in China. ZooKeys 508: 53–67. doi: 10.3897/zookeys.508.9479 Abstract Four new Epicephala species that feed on the seeds of Glochidion sphaerogynum (Phyllanthaceae) from Yinggeling Mountain Nature Reserves in Hainan Province of China are described: E. domina sp. n., E. impolliniferens sp. n., E. angustisaccula sp. n. and E. camurella sp. n. The latter two species are also associ- ated with Glochidion wrightii. Photographs of adults and genital structures are provided. Keywords Lepidoptera, Gracillariidae, Epicephala, Phyllanthaceae, Glochidion, new species, China Introduction The genus Epicephala Meyrick, 1880 consists of 49 described species worldwide, mainly distributed in the Old World, with 15 species occurring in the Australian Region, 28 in the Oriental Region, one in the Palaearctic Region, and six in the Afrotropical Re- gion (Vári 1961; Kuznetzov 1979; Nielsen et al.
    [Show full text]
  • Three New Species of Epicephala Meyrick (Lepidoptera, Gracillariidae
    A peer-reviewed open-access journal ZooKeys 484: 71–81Three (2015) new species of Epicephala Meyrick (Lepidoptera, Gracillariidae)... 71 doi: 10.3897/zookeys.484.8696 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Three new species of Epicephala Meyrick (Lepidoptera, Gracillariidae) associated with Phyllanthus microcarpus (Benth.) (Phyllanthaceae) Houhun Li1, Xiaofei Yang1 1 College of Life Sciences, Nankai University, Tianjin 300071, P. R. China Corresponding author: Houhun Li ([email protected]) Academic editor: E. van Nieukerken | Received 6 October 2014 | Accepted 10 February 2015 | Published 5 March 2015 http://zoobank.org/6D1F37E9-002D-496A-8E79-BF53935DEC65 Citation: Li H, Yang X (2015) Three new species of Epicephala Meyrick (Lepidoptera, Gracillariidae) associated with Phyllanthus microcarpus (Benth.) (Phyllanthaceae). ZooKeys 484: 71–81. doi: 10.3897/zookeys.484.8696 Abstract Three new species of Epicephala Meyrick, 1880 are described based on specimens reared from fruits of Phyllanthus microcarpus (Benth.): Epicephala microcarpa sp. n. and E. laeviclada sp. n. from Guangxi and Hainan, and Epicephala tertiaria sp. n. from Guangdong and Guangxi. Photographs of adults and illustra- tions of genital structures are provided. Keywords Lepidoptera, Gracillariidae, Phyllanthaceae, Epicephala, Phyllanthus, new species, China Introduction The genus Epicephala Meyrick, 1880 of the moth family Gracillariidae has been report- ed to have close coevolutionary relationships with the genera Glochidion, Phyllanthus and Breynia of the plant family Phyllanthaceae. Epicephala currently consists of 46 de- scribed species worldwide, mainly distributed in the Old World (Vári 1961; Kuznetzov 1979; Nielsen et al. 1996; De Prins and De Prins 2005, 2011; Zhang et al. 2012). In China, nine species have been recorded prior to this study (Zhang et al.
    [Show full text]
  • Cytotaxonomic Studies in the Euphorbiaceae, Subtribe
    CYTOTAXONOMICSTUDIES IN THE EUPHORBIACEAE, SUBTRIBE PHYLLANTHINAE' GRADY L. WEBSTER and J.R. ELLIS Departmentof Biological Sciences, Purdue University,Lafayette, Indiana and Galton Laboratory,University College, London, England ABSTRACT WEBSTER, GRADY L. (Purdue U., Lafayette,Ind.), and J. R. ELLIS, Cytotaxonomicstudies in the Euphorbiaceae, subtribePhyllanthinae. Amer. Jour. Bot. 49: (1): 1X18. Illus. 1962.-Chromosome numbersare reportedfor 18 species of mostlyWest Indian Euphorbiaceae, subtribe Phyllanthinae, 13 of these for the first time (including the firstpublished count for the genus Margaritaria). For 4 species, a number differentfrom previous determinationshas been recorded. The base chromosomenumber in Breynia, Fluggea, Margaritaria,and most species of Phyllanthusappears to be 13. However, in Phyllanthus subg. Isocladus haploid numbers of 8 and 18 were observed.One species, Phyllanthuspulcher, is a sterile hexaploid (n - 39) of presumablyhybrid origin. The cytological data do not support Perry's suggestionthat annual taxa are primitivein the Euphorbiaceae. THE 7,000 species of the famllyEuphorbiaceae regarded as unequivocallyconfirmed. The few presentsuch a vegetativeand floraldiversity that workerswho have studiedtaxa of the subtribein- systematictreatment of the grouphas alwaysbeen clude Perry (1943), Raghavan (1957), Raghavan controversial.Not only have there been many and Arora (1958), JanakiAmmal and Raghavan schools of thoughtin delimltingtaxa withinthe (1958), and Thombre(1959). family,but its recognitionas a naturalgroup has In the presentcontribution we wish to report been seriouslyquestioned on the basis that it is the resultsof cytologicalobservations on 18 spe- polyphyleticin origin.Hutchinson (1959) suggests cies belongingto 4 generaof subtribe Phyllanthinae, derivationof the familyfrom at least 4 different most of which are eithernative to or cultivated orders(Blixales, Tiliales, Malvales, and Celastrales). in the West Indies.
    [Show full text]
  • Leafflower–Leafflower Moth Mutualism in the Neotropics: Successful Transoceanic Dispersal from the Old World to the New World by Actively-Pollinating Leafflower Moths
    RESEARCH ARTICLE Leafflower±leafflower moth mutualism in the Neotropics: Successful transoceanic dispersal from the Old World to the New World by actively-pollinating leafflower moths 1 2 2 Atsushi KawakitaID *, Akira A. Wong SatoID , Juana R. Llacsahuanga Salazar , Makoto Kato3 a1111111111 1 The Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan, 2 Faculty of Forestry Sciences, National Agrarian University La Molina, Lima, Peru, 3 Graduate School of Human and a1111111111 Environmental Studies, Kyoto University, Kyoto, Japan a1111111111 a1111111111 * [email protected] a1111111111 Abstract In the Old World tropics, several hundred species of leafflowers (Phyllanthus sensu lato; OPEN ACCESS Phyllanthaceae) are engaged in obligate mutualisms with species-specific leafflower moths Citation: Kawakita A, Sato AAW, Salazar JRL, Kato (Epicephala; Gracillariidae) whose adults actively pollinate flowers and larvae consume the M (2019) Leafflower±leafflower moth mutualism in the Neotropics: Successful transoceanic dispersal resulting seeds. Considerable diversity of Phyllanthus also exists in the New World, but from the Old World to the New World by actively- whether any New World Phyllanthus is pollinated by Epicephala is unknown. We studied the pollinating leafflower moths. PLoS ONE 14(1): pollination biology of four woody Phyllanthus species occurring in Peru over a period of four e0210727. https://doi.org/10.1371/journal. years, and found that each species is associated with a species-specific, seed-eating Epice- pone.0210727 phala moth, here described as new species. Another Epicephala species found associated Editor: Adrien Sicard, Swedish University of with herbaceous Phyllanthus is also described. This is the first description of Epicephala Agricultural Sciences, SWEDEN from the New World.
    [Show full text]
  • (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus Sensu Lato [Glochidion]) in Southeastern Polynesia
    Coevolutionary Diversification of Leafflower Moths (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in Southeastern Polynesia By David Howard Hembry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Rosemary Gillespie, Chair Professor Bruce Baldwin Professor Patrick O’Grady Spring 2012 1 2 Abstract Coevolution between phylogenetically distant, yet ecologically intimate taxa is widely invoked as a major process generating and organizing biodiversity on earth. Yet for many putatively coevolving clades we lack knowledge both of their evolutionary history of diversification, and the manner in which they organize themselves into patterns of interaction. This is especially true for mutualistic associations, despite the fact that mutualisms have served as models for much coevolutionary research. In this dissertation, I examine the codiversification of an obligate, reciprocally specialized pollination mutualism between leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) on the oceanic islands of southeastern Polynesia. Leafflower moths are the sole known pollinators of five clades of leafflowers (in the genus Phyllanthus s. l., including the genera Glochidion and Breynia), and thus this interaction is considered to be obligate. Female moths actively transfer pollen from male flowers to female flowers, using a haired proboscis to transfer pollen into the recessed stigmatic surface at the end of the fused stylar column. The moths then oviposit into the flowers’ ovaries, and the larva which hatches consumes a subset, but not all, of the developing fruit’s seed set.
    [Show full text]
  • David H. Hembry
    Hembry January 2016 David H. Hembry University of Arizona, Department of Ecology and Evolutionary Biology PO Box 210088, Tucson, AZ 85721 [email protected]; [email protected] Phone (lab): (520) 626-9315, (mobile): (510) 812-7969 Education and Training 2015– University of Arizona, NIH PERT Postdoctoral Researcher; sponsor: K. M. Dlugosch 2014–2015 University of California, Berkeley, NSF International Research Fellow (reentry component); host: M. B. Eisen 2013–2014 Kyoto University, NSF International Research Fellow; host: A. Kawakita 2012–2013 Kyoto University, Japan Society for the Promotion of Science Postdoctoral Researcher; host: A. Kawakita 2005–2012 University of California, Berkeley, Ph.D., Environmental Science, Policy, and Management Committee: R. G. Gillespie (chair), B. G. Baldwin, P. M. O’Grady 1999–2003 Harvard University, B.A., Biology Advisers: N. E. Pierce, A. H. Knoll Other Appointments 2012–2014 Visiting International Scholar, Kyoto University 2003–2005 Research Student, Kyoto University 2001, 2003 Research Assistant, University of California, Santa Cruz supervisor: J. N. Thompson Publications Newman EA, Winkler CA, Hembry DH. Submitted. Effects of anthropogenic wildfire activity in low elevation Pacific island vegetation communities in French Polynesia. Submitted 4 January 2016 to International Journal of Wildland Fire. Hembry DH, Balukjian B. In press. Molecular phylogeographic synthesis of the Society Islands (Tahiti; South Pacific) reveals departures from hotspot archipelago models. Accepted 29 November 2015 at Journal of Biogeography. Hembry DH. In press. Phyllantheae-Epicephala mutualistic interactions on oceanic islands in the Pacific. In: Kato M, Kawakita A (eds) Obligate Pollination Mutualism in Phyllanthaceae. Tokyo: Springer Japan. Hembry DH. In press. Biogeography of interactions.
    [Show full text]
  • Phyllanthaceae
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Phyllanthaceae Family Profile Phyllanthaceae Family Description A family of 59 genera and 1745 species, pantropiocal but especially in Malesia. Genera Actephila - A genus of about 20 species in Asia, Malesia and Australia; about ten species occur naturally in Australia. Airy Shaw (1980a, 1980b); Webster (1994b); Forster (2005). Antidesma - A genus of about 170 species in Africa, Madagascar, Asia, Malesia, Australia and the Pacific islands; five species occur naturally in Australia. Airy Shaw (1980a); Henkin & Gillis (1977). Bischofia - A genus of two species in Asia, Malesia, Australia and the Pacific islands; one species occurs naturally in Australia. Airy Shaw (1967). Breynia - A genus of about 25 species in Asia, Malesia, Australia and New Caledonia; seven species occur naturally in Australia. Backer & Bakhuizen van den Brink (1963); McPherson (1991); Webster (1994b). Bridelia - A genus of about 37 species in Africa, Asia, Malesia and Australia; four species occur naturally in Australia. Airy Shaw (1976); Dressler (1996); Forster (1999a); Webster (1994b). Cleistanthus - A genus of about 140 species in Africa, Madagascar, Asia, Malesia, Australia, Micronesia, New Caledonia and Fiji; nine species occur naturally in Australia. Airy Shaw (1976, 1980b); Webster (1994b). Flueggea - A genus of about 16 species, pantropic but also in temperate eastern Asia; two species occur naturally in Australia. Webster (1984, 1994b). Glochidion - A genus of about 200 species, mainly in Asia, Malesia, Australia and the Pacific islands; about 15 species occur naturally in Australia.
    [Show full text]