Manufacturing Polyacrylonitrile Nanowires and Nanofibers for Sensing and Energy Storage Applications Juan Chen

Total Page:16

File Type:pdf, Size:1020Kb

Manufacturing Polyacrylonitrile Nanowires and Nanofibers for Sensing and Energy Storage Applications Juan Chen Louisiana Tech University Louisiana Tech Digital Commons Doctoral Dissertations Graduate School Spring 2016 Manufacturing polyacrylonitrile nanowires and nanofibers for sensing and energy storage applications Juan Chen Follow this and additional works at: https://digitalcommons.latech.edu/dissertations Part of the Chemical Engineering Commons, and the Nanoscience and Nanotechnology Commons MANUFACTURING POLYACRYLONITRILE NANOWIRES AND NANOFIBERS FOR SENSING AND ENERGY STORAGE APPLICATIONS by Juan Chen, B.S., M.S. A Dissertation Presented in Partial Fulfillment of the Requirements of the Degree Doctor of Philosophy COLLEGE OF ENGINEERING AND SCIENCE LOUISIANA TECH UNIVERSITY May 2016 ProQuest Number: 10300723 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10300723 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 LOUISIANA TECH UNIVERSITY THE GRADUATE SCHOOL FEBRUARY 18,2016 Date We hereby recommend that the thesis prepared under our supervision by Juan Chen, B.S., M.S. ______________________________ ______________________ entitled MANUFACTURING POLYACRYLONITRILE NANOWIRES _________ AND NANOFIBERS FOR SENSING AND ENERGY__________________________ STORAGE APPLICATIONS______________________ ________________________ be accepted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Engineering _______ _________________________________ Supervisor of Thesis Research Headin'DepartmentHeadin'Department Engineering Department Recomniendationpbncurred in: Advisory Committee Approved: Approved: G raduate SchoolDirector of Graduate Studies Graduate SchoolDirector Dean of the College GSForm 13 (8/ 10) ABSTRACT A novel flow guided assembly approach is presented to well align and accurately position nanowire arrays in pre-defined locations with high throughput and large scale manufacturing capability. In this approach, polyacrylonitrile (PAN)/N, N- dimethylformamide (DMF) solution is first filled in an array of microfluidic channels. Then a gas flow is introduced to blow out most solutions while pushing a little leftover against the channel wall to assemble into polymer nanowires. In this way, highly-ordered nanowires are conveniently aligned in the flow direction and patterned along both sides of the microchannels. In this study, we demonstrated this flow-guided assembly process by producing millimeter-long nanowires across 5 mm * 12 mm area in the same orientation and with basic “I-shape”, “T-shape”, and “cross” patterns. The assembled polymer nanowires were further converted to conductive carbon nanowires through a standard carbonization process. After integrated into electronic sensors, high sensitivity was found in model protein sensing tests. This new nanowire manufacturing approach is anticipated to open new doors to the fabrication of nanowire-based sensing systems and serve as the Good Manufacturing Practices (GMP) (a system for ensuring that products are consistently produced and controlled according to quality standards) for its simplicity, low cost, alignment reliability, and high throughput. By using the same polymer solution (polyacrylonitrile (PAN)/N, N- dimethylformamide (DMF) solution), a new, simple, and low-cost method has been iv developed in the production of porous composite nanofibers via a one-step foaming and electrospinning process. Sublimable aluminum acetylacetonate (AAC A) was dissolved into polyacrylonitrile (PAN)/N, N-dimethylformamide (DMF) solution as the foaming agent. Silicon nanoparticles were then added and the resulting suspension solution was further electrospun to produce PAN/silicon composite nanofibers. The PAN nanofibers were then foamed during a thermal stabilization treatment and further carbonized into carbon/silicon composite nanofibers. Such mesoporous composites nanofiber mats were explored as the anode material for lithium ion batteries. Within this composite of nanofiber electrode, carbon nanofibers serve as the conductive media, while silicon nanoparticles ensure high lithium ion capacity and electrical density. The inter-fiber macrovoids and intra-fiber mesopores provide the buffering space to accommodate the huge volume expansion and consequent stress in the composite anode during the alloying process to mitigate electrode pulverization. Its high surface-to-volume ratio helps facilitate lithium ion transport between electrolytes and the active materials. Our electrochemical tests demonstrated higher reversible capacity and better capacity retention with this porous carbon/silicon composite nanofiber anode when compared with that made of nonporous composite nanofibers and CNF alone with similar treatments. APPROVAL FOR SCHOLARLY DISSEMINATION The author grants to the Prescott Memorial Library of Louisiana Tech University the right to reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood that “proper request” consists of the agreement, on the part of the requesting party, that said reproduction is for his personal use and that subsequent reproduction will not occur without written approval of the author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other works must be appropriately referenced to this Dissertation. Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at any time, any or all portions of this Dissertation. Author GS Form 14 (8/10) DEDICATION This dissertation is dedicated to my family who has supported me during the past seven years of living and study in US. vi TABLE OF CONTENTS ABSTRACT............................................................................. iii DEDICATION.............................................................................................................. vi LIST OF TABLES .................... x LIST OF FIGURES...................... xi ACKNOWLEDGMENTS..................................................... xiv CHAPTER 1 INTRODUCTION............... 1 1.1 Motivation ..................................................................................... 1 1.2 Objective... ........................................... 3 1.3 Outline ............................ 4 CHAPTER 2 LITERATURE REVIEW............................. 5 2.1 Current Status in Nanowire Sensor.... ............................................. 5 2.1.1 Nanowires Synthetic Method ....................... 7 2.1.2 Nanowire Alignment Method .......................................................... 7 2.1.2.1 Blown Bubble Film Method ....................... 8 2.1.2.2 Contact Printing Methods ........................ 9 2.1.2.3 Differential Roll Printing (DRP) ......... ...9 2.1.2.4 Micro Contact Printing ............................... 10 2.1.2.5 Langmuir-Blodgett (LB) Assembly ........ 12 2.1.3 Gas Blow/ Flow Guided Assembly ............................. 14 2.1.3.1 Alignment on Patterned Substrates ........ 16 2.1.3.2 Self Assembly of ID Nanostructures ........................................ ............18 vii 2.1.3.3 Solvent Evaporation Technique .............................. 20 2.2 Current Status of Electrospun Anode Material for Lithium Ion Batteries ........ 24 2.2.1 Principles of LIB ...........................................................................................26 2.2.2 New Anode Materials of LIB ....................................................................... 27 2.2.2.1 Carbon Based LIB Anode ......................................................................29 2.2.2.2 Si Nanowires Based Anode ...................................................................30 2.2.2.3 Si Nanoparticles Based Anode ..................................................... 32 2.2.2.4 Core-shell Si NWs ................................... 32 2.2.2.5 Hollow Si Nanostructures .......................................................33 2.2.2.6 Hollow Si Nanostructure with Clamping .............................................. 34 2 2 2 .1 Silicon/Carbon Nanofiber Composite Anode ........................................ 35 2.2.3 Electrospinning .................. 36 2.2.4 Other Methods for Improving LIB Properties ...................................... 37 2.2.5 Improve Electrochemical Performance by Adding Binder Materials ......... 38 CHAPTER 3 FLOW GUIDED ASSEMBLY CARBON NANOWIRE SENSOR 40 3.1 Introduction ................................. 40 3.2 Experiment Methods ......................... 42 3.2.1 Chemicals................................................................. 42 3.2.2 Polymer Solution Preparation ............ 42 3.2.3 Microfluidic Channel Template Fabrication of PAN Nanowire ..................42 3.2.4 Gas Blowing-based Flow-Guided Assembly Process ..................................44 3.2.5 Carbon Nanowire Production by Carbonation ........................... 45 3.2.6 Carbon Nanowire Sensor Testing ...................... ....45 3.3 Results and Discussion .............................................................................. 45 3.3.1 Characterizations of Nanowires.
Recommended publications
  • Polyacrylonitrile Ternary System
    Thermodynamic Study of a Water–Dimethylformamide– Polyacrylonitrile Ternary System Lianjiang Tan,1 Ding Pan,1 Ning Pan2 1State Key Laboratory for Chemical Fiber Modification and Polymer Materials, Donghua University, Shanghai 201620, People’s Republic of China 2Biological and Agricultural Engineering Department, University of California, Davis, California 65616 Received 23 October 2007; accepted 6 March 2008 DOI 10.1002/app.28392 Published online 15 September 2008 in Wiley InterScience (www.interscience.wiley.com). ABSTRACT: Experimental cloud-point data were ob- formation. The skin–core structure and fingerlike pores in tained by cloud-point titration. The phase diagram for a polyacrylonitrile fiber may be effectively eliminated if the ternary system of water–dimethylformamide–polyacryloni- composition of the spinning solution is properly chosen, trile was determined by numerical calculation on the basis and consequently, homogeneous polyacrylonitrile fiber of the extended Flory–Huggins theory and was found to with a bicontinuous structure and good mechanical proper- agree well with the cloud-point data. To construct the theo- ties can be obtained through the spinning process. Ó 2008 retical phase diagram, three binary interaction parameters Wiley Periodicals, Inc. J Appl Polym Sci 110: 3439–3447, 2008 were obtained with different methods. The ternary phase diagram was used to investigate the mechanism of fiber Key words: fibers; mixing; phase behavior; thermodynamics INTRODUCTION with the method of cloud-point titration.1–11 At high polymer concentration, however, the interaction Polyacrylonitrile (PAN) is soluble in many polar or- between macromolecules is so strong that the poly- ganic liquids, such as dimethylformamide (DMF), di- mer solution shows signs of crystallization or methyl sulfoxide, and dimethyl acetemide.
    [Show full text]
  • A Review of Electrospun Carbon Fibers As Electrode Materials for Energy Storage
    A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mao, Xianwen, T. Hatton, and Gregory Rutledge. “A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage.” COC 17, no. 13 (June 1, 2013): 1390–1401. As Published http://dx.doi.org/10.2174/1385272811317130006 Publisher Bentham Science Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/92409 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage Xianwen Mao, T. Alan Hatton, and Gregory C. Rutledge* Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge Massachusetts, 02139, USA E-mail: [email protected] Abstract: The applications of electrospun carbon fiber webs to the development of energy storages devices, including both supercapacitors and lithium ion batteries (LIB), are reviewed. Following a brief discussion of the fabrication process and characterization methods for ultrafine electrospun carbon fibers, recent advances in their performance as supercapacitors and LIBs anode materials are summarized. Optimization of the overall electrochemical properties of these materials through choice of thermal treatment conditions, incorporation of additional active components (such as carbon nanotubes, metal oxides, and catalysts), and generation of novel fibrous structures (such as core-shell, multi-channel or porous fibers) is highlighted. Further challenges related to improving the conductivity, surface area, and mechanical properties of the carbon nanofiber webs, as well as the scale-up ability of the fabrication technique, are discussed.
    [Show full text]
  • Synthesis and Some Solution Properties of Block Copolymer Styrene—Acrylonitrile
    Synthesis and some solution properties of block copolymer styrene—acrylonitrile V. CHRÁSTOVÁ, D. MIKULÁŠOVA, P. CITOVICKÝ, and J. SCHENKMAYER Department of Chemical Technology of Plastics and Fibres, Slovak Technical University, CS-812 37 Bratislava Received 19 June 1986 Styrene—acrylonitrile block copolymers were synthesized by emulsion polymerization at 30 °C, in which peroxide of powdered isotactic polypropyl­ ene as a heterogeneous initiator, disodium salt of ethylenediaminetetraace- tic acid as an activator, and Slovasol 2430 as a nonionic emulsifier were used. For the preparation of the block copolymer one of the characteristic proper­ ties of the mentioned polymerization system, i.e. the existence of long-living polystyrene radical in emulsion was evaluated. After removing of the initia­ tor the first monomer — styrene was polymerized up to a certain conversion and then acrylonitrile was added to the growing polystyrene radicals. A block copolymer was formed, which contained a pure polystyrene block and an acrylonitrile sequence with fragments of styrene. The obtained co­ polymers with various styrene—acrylonitrile ratio were characterized by IR spectroscopy. By means of viscometry and light scattering some of their properties in methyl ethyl ketone and ^TV-dimethylformamide were stud­ ied. Блок-сополимеры стирола и акрилонитрила были получены по­ средством эмульсионной полимеризации при 30 °С, в которой применя­ лись перекись порошкообразного изотактического полипропилена в качестве гетерогенного инициатора, двунатриевая соль этилен- диаминтетрауксусной кислоты в качестве активатора и Словасол 2430 в качестве неионного эмульгатора. В целях получения блок-сополимера оценивалось одно из характеристических свойств упомянутой по- лимеризационной системы, а именно присутствие долгоживущих по­ листирол ьных радикалов в эмульсии. После устранения инициатора первый мономер — стирол — полимеризовался до определенной степени конверсии, а затем к растущим полистирольным радикалам добавлялся акрилонитрил.
    [Show full text]
  • Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers
    SYNTHESIS AND CHARACTERIZATION OF SOLUTION AND MELT PROCESSIBLE POLY(ACRYLONITRILE-CO-METHYL ACRYLATE) STATISTICAL COPOLYMERS Padmapriya Pisipati Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Macromolecular Science and Engineering James E. McGrath, Chair Judy S. Riffle, Acting Chair Eugene G. Joseph Sue J. Mecham Donald G. Baird 02/20/2015 Blacksburg, VA Keywords: melt processability, polyacrylonitrile, carbon fibers, methyl acrylate, acrylic fibers, plasticizer, solution processing, high tensile modulus Copyright 2015, Padmapriya Pisipati SYNTHESIS AND CHARACTERIZATION OF SOLUTION AND MELT PROCESSIBLE POLY (ACRYLONITRILE-CO-METHYL ACRYLATE) STATISTICAL COPOLYMERS ABSTRACT Padmapriya Pisipati Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 µm. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers.
    [Show full text]
  • Investigation Into the Gelation and Crystallization of Polyacrylonitrile
    European Polymer Journal 45 (2009) 1617–1624 Contents lists available at ScienceDirect European Polymer Journal journal homepage: www.elsevier.com/locate/europolj Investigation into the gelation and crystallization of polyacrylonitrile Lianjiang Tan a, Huifang Chen a, Ding Pan a,*, Ning Pan b a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People’s Republic of China b Biological and Agricultural Engineering Department, University of California, Davis, CA 6561, USA article info abstract Article history: Polyacrylonitrile (PAN) is soluble in dimethyl sulfoxide (DMSO) and the resulting solution Received 28 May 2008 can gel by various mechanisms. The effects of temperature and water on the thermorevers- Received in revised form 21 October 2008 ible gelation of PAN have attracted much attention because of their importance in the fiber Accepted 2 December 2008 formation and film casting. Rheological tests were employed in this study to examine the Available online 11 December 2008 gelation behavior and determine the gel point temperature of PAN–DMSO solution. Calori- metric studies of PAN–DMSO gels were conducted through Differential Scanning Calorim- etry and no crystallization was discovered in these gels prepared at low temperature. X-ray Keywords: diffraction of different PAN gels indicated that in the absence of water, gels resulted from Polyacrylonitrile Dimethyl sulfoxide PAN–DMSO solution by decreasing temperature were not crystallizable. In contrast, water- Gelation induced gelation led to crystallization of PAN gel. The water content in the formed gel is Crystallization responsible for its crystallinity and average crystallite size. Ó 2008 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Preparation and Some Properties of a Nanocomposite of Polyacrylonitrile with Acetylene Black
    Polymer Journal, Vol. 36, No. 10, pp. 812—816 (2004) Preparation and Some Properties of a Nanocomposite of Polyacrylonitrile with Acetylene Black y Arjun MAITY and Mukul BISWAS Department of Chemistry, Presidency College, Calcutta-73, India (Received April 15, 2004; Accepted July 12, 2004; Published October 15, 2004) ABSTRACT: Conducting nanocomposites of polyacrylonitrile (PAN) with acetylene black (AB) were prepared via K2CrO4–NaAsO2 initiated redox polymerization of acrylonitrile in presence of AB suspension in aqueous-methanol medium at 60 C. Prolonged extraction of PAN–AB composite by DMF failed to extract the loaded polyacrylonitrile completely from the acetylene black, as confirmed by FT IR studies. SEM analyses revealed the formation of agglom- erates of particles of nonuniform sizes and shapes. TEM analysis indicated that average particle diameters of the PAN– AB composite were in the range of 120–250 nm. Thermal stability of the PAN–AB composite was appreciably im- proved relative to that for the unmodified base polymer. The dc conductivity of the PAN–AB composite was in the range of 10À4–10À2 S/cm depending on the amount of AB in the PAN–AB composite, a value remarkably improved relative to that of the PAN homopolymer (>10À11 S/cm). [DOI 10.1295/polymj.36.812] KEY WORDS Polyacrylonitrile / Acetylene Black / K2CrO4–NaAsO2 Redox System / Thermal Stability / Conductivity / Considerable research interest has been shown late- capable of initiating the polymerization of N-vinylcar- ly in the modification of fundamental polymers like bazole. Interestingly, this system led to the simultane- polyacrylonitrile (PAN), polymethylmethacrylate ous formation of a PNVC–AB composite with a con- (PMMA), polystyrene (PS), etc.
    [Show full text]
  • Synthesis, Characterization and Conductivity Properties of Polystyrene/Polyacrylonitrile/Polyindole Ternary Composites
    Journal of Material Science and Technology Research, 2020, 7, 41-48 41 Synthesis, Characterization and Conductivity Properties of Polystyrene/Polyacrylonitrile/Polyindole Ternary Composites C. Soykan* and O.C. Candoğan Department of Materials Science and Nanotechnology, Faculty of Engineering, University of Uşak, 64200- Uşak, Turkey Abstract: In this investigation, polystyrene/polyacrylonitrile/polyindole (PSt/PAN/PIN) ternary composites with various amounts of PSt, PAN and PIN were synthesized using FeCl3 as an oxidant agent by chemical polymerization technique. The formation of ternary composites was assisted by Fourier transform infrared spectroscopy. Morphological studies demonstrated all composite have a smooth surface. The results of thermal gravimetric analysis indicate that incorporation of PIN in composites advances the thermal stability. X-ray diffraction analysis show that the amorphous nature of PIN and its ternary composites. The conductivities of PIN and the PSt/PAN/PIN composites were investigated with a four-probe technique. The conductivity of PIN was found to be 5.0 × 10–3 S cm–1, also the conductivities of the PSt/PAN/PIN composites were determined to 3.5 × 10–4, 7.4 × 10–4, 1.3 × 10–3, 2.2 × 10–3 and 2.8 × 10–3 S cm–1 respectively, with 9, 27, 45, 63 and 81 wt % of PIN. Keywords: Chemical Synthesis, Ternary Composites, Conducting Polymers, Thermogravimetry. 1. INTRODUCTION insulating matrix because of its unique properties [14]. They are important commercial plastic and is attractive As a material class, conductive polymers have a candidates as components for synthesis of composites. few characteristics including easy synthesis, PSt very affordable offers lightness and durability, high macromolecular character, electrical handling thermal stability and exhibits mechanical strength [15].
    [Show full text]
  • United States Patent Office Patented Nov
    3,220,917 United States Patent Office Patented Nov. 30, 1965 2 fracture generally along lines of molecular orientation. 3,220,917 HIGH ACRYLONTRLE POLYMER SOLUTIONS As a consequence of fibrillation the fiber or filament is CONTAINING POLYGXYALKYLENE GLYCOELS longitudinally divided into segments or fibrils. Often, Fred J. Lowes, Jr., 500 Crescent Drive, Midland, Mich. fibrillation may result in a frosty or whitened appear No Drawing. Fied Dec. 11, 1961, Ser. No. 158,59A 5 ance, even of dyed fibers and fabrics. 16 Claims. (Cl. 16-165) The loss of color or change toward white is affected by several variables including the amount of division This invention relates to compositions of matter that and size of fibrils produced during the processing of the are especially adapted for use in spinning acrylonitrile spun product. Fibrils can be of such small diameters polymer Synthetic textile fibers or the like structures. 10 that incident light is scattered. Fibrillation of textile It relates more particularly to spinnable solutions of such fibers and fabric produced therefrom appears to result polymers in concentrated aqueous salt solutions having from transverse forces which ultimately cause a shatter certain polyoxyalkylene glycols dissolved therein. The ing of the fiber along the lines of least resistance, namely, invention is also concerned with shaped articles, espe longitudinally. Thus, a fiber or related filamentous arti cially filamentary structures, having increased flexibility 5 cle having greater characteristic flexibility may often be and resistance to fibrillation and to methods for prepara less prone to fibrillation than a corresponding relatively tion of such compositions and articles.
    [Show full text]
  • A Acrylonitrile-Butadiene-Styrene (ABS) Plastics, 44, 179 Active
    Index A Cationic polymerization Acrylonitrile-butadiene-styrene (ABS) alkene monomer, 286 plastics, 44, 179 carbonyl monomer, 213, 215 Active material, 76 chain transfer reaction, 151, 197 Additive co-initiator, 193 lubricant, 85, 287 commercial applications, 290 odorant, 85 friedel-crafts catalyst, 187 pigment, 85 initiators, 185 plasticizer, 85 kinetic chain length, 198 Anionic copolymerization, 236, 237, 259, 296, kinetics, 283 297 rate constant, 155, 205 Anionic polymerization reaction mechanisms, 191 carbonyl monomer, 213, 215 termination reaction, 162 chain transfer, 45, 197, 276, 280, 283 Cationic polymerization of epoxides initiator, 143, 170, 193, 198, 200, 201, 204, initiation, 277, 278, 280 208, 209, 211, 214, 215, 273 propagation, 278, 279, 280 kinetics, 196, 267 termination and transfer processes, 280 rate constant, 192 Chain copolymerization, 233, 236, reaction mechanisms, 191, 211, 231, 299 297 termination, 162, 188, 199, 200, 201, 203, Chain polymerization 204, 271, 285 free radical, 3, 9, 138, 150 Anionic polymerization of epoxides ionic, 3, 187, 276 chain transfer to monomer, 276 Chemical property degree of polymerization, 2, 171, 197, 198, chemical permeation, 61 274, 284, 285 chemical resistance, 61 exchange reaction, 274 moisture permeation, 62, 63 kinetics, 196, 204 moisture resistance, 62 reaction mechanisms, 191, 201, 211, 231, Chemical structure analysis by 299 chemical reaction method, 90 Arrhenius equation, 47, 169 electron spin resonance, 98 infrared spectroscopy (IR), 90–92 mass spectroscopy of MALDI-TOF MS, B 18, 19 Bond strength, 70 nuclear magnetic resonance spectroscopy (NMR), 95, 96, 98 Raman spectroscopy, 92, 93 C UV-visible spectroscopy, 93 Cardo polymer, 83, 87 Chromophores, 82, 93 Cationic copolymerization, 236, 237, 256–259, Cohesive energy density, 12 296 Commercial copolymers, 263 W.-F.
    [Show full text]
  • Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4mn9o18 Cathode
    polymers Article Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode Yongguang Zhang 1, Zhumabay Bakenov 2 ID , Taizhe Tan 1,* and Jin Huang 1,* 1 School of Materials and Energy, Synergy Innovation Institute of GDUT, Guangdong University of Technology, Guangzhou 510006, China; [email protected] 2 Institute of Batteries LLC, National Laboratory Astana, School of Engineering, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan; [email protected] * Correspondence: [email protected] (T.T.); [email protected] (J.H.) Received: 7 June 2018; Accepted: 31 July 2018; Published: 2 August 2018 Abstract: A gel polymer electrolyte was formed by trapping an optimized Na+/Zn2+ mixed-ion aqueous electrolyte in a polyacrylonitrile nanofiber polymer matrix. This electrolyte was used in a novel aqueous sodium-ion battery (ASIB) system, which was assembled by using a zinc anode and Na4Mn9O18 cathode. The nanorod-like Na4Mn9O18 was synthesized by a hydrothermal soft chemical reaction. The structural and morphological measurement confirmed that the highly crystalline Na4Mn9O18 nanorods are uniformly distributed. Electrochemical tests of Na4Mn9O18//Zn gel polymer battery demonstrated its high cycle stability along with a good rate of performance. The battery delivers an initial discharge capacity of 96 mAh g−1, and 64 mAh g−1 after 200 cycles at a high cycling rate of 1 C. Our results demonstrate that the Na4Mn9O18//Zn gel polymer battery is a promising and safe high-performance battery. Keywords: aqueous sodium-ion battery; cathode; gel polymer electrolyte; Na4Mn9O18 nanorod; polyacrylonitrile nanofiber 1. Introduction The lithium-ion battery (LIB) is the most preferred technology for application in portable electronic devices [1,2].
    [Show full text]
  • Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules VI
    Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules VI. Acrylic Polymers Cite as: Journal of Physical and Chemical Reference Data 11, 1065 (1982); https://doi.org/10.1063/1.555671 Published Online: 15 October 2009 Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich ARTICLES YOU MAY BE INTERESTED IN Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene Journal of Physical and Chemical Reference Data 11, 313 (1982); https:// doi.org/10.1063/1.555663 Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VIII. Polyesters and Polyamides Journal of Physical and Chemical Reference Data 12, 65 (1983); https:// doi.org/10.1063/1.555678 Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers Journal of Physical and Chemical Reference Data 12, 29 (1983); https:// doi.org/10.1063/1.555677 Journal of Physical and Chemical Reference Data 11, 1065 (1982); https://doi.org/10.1063/1.555671 11, 1065 © 1982 American Institute of Physics for the National Institute of Standards and Technology. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules VI. Acrylic Polymers Umesh Gaur, Suk-fai lau, Brent B. Wunderlich, and Bernhard Wunderlich Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181 Heat capacity of poly(methyl methacrylate), polyacrylonitrile, poly(methyl acrylate), poly(ethyl acrylate), poly(n-butyl acrylate), poly(iso-butyl acrylate), poly(octadecyl acry­ late), poly(methacrylic acid), poly(ethyl methacrylate), poly(n-butyl methacrylate), po­ ly(iso-butyl methacrylate), poly{hexyl methacrylate), poly(dodecyl methacrylate), poly{oc­ tadecyl methacrylate) and polymethacrylamide is reviewed on the basis of measurements on 35 samples reported in the literature.
    [Show full text]
  • Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery
    Energies 2014, 7, 4588-4600; doi:10.3390/en7074588 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Discussion Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery Sheng S. Zhang Electrochemistry Branch, RDRL-SED-C, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, USA; E-Mail: [email protected] or [email protected]; Tel.: +1-301-394-0981; Fax: +1-301-394-0273 Received: 20 May 2014; in revised form: 17 June 2014 / Accepted: 10 July 2014 / Published: 18 July 2014 Abstract: Sulfurized polyacrylonitrile (SPAN) is one of the most important sulfurized carbon materials that can potentially be coupled with the carbonaceous anode to fabricate a safe and low cost “all carbon” lithium-ion battery. However, its chemical structure and electrochemical properties have been poorly understood. In this discussion, we analyze the previously published data in combination with our own results to propose a more reasonable chemical structure that consists of short –Sx– chains covalently bonded onto cyclized, partially dehydrogenated, and ribbon-like polyacrylonitrile backbones. The proposed structure fits all previous structural characterizations and explains many unique electrochemical phenomena that were observed from the Li/SPAN cells but have not been understood clearly. Keywords: lithium-sulfur battery; sulfur cathode; sulfurized carbon; sulfurized polyacrylonitrile; polysulfide 1. Introduction Sulfurized carbons are a class of new cathode materials, which have recently attracted considerable interest in developing high energy density rechargeable lithium/sulfur (Li/S) batteries [1]. Among numerous potential candidates, sulfurized polyacrylonitrile (SPAN) has been most intensively studied due to its excellent electrochemical performance and low process cost.
    [Show full text]