Environmentally Friendly Plasma Activation of Acrylonitrile–Butadiene–Styrene and Polydimethylsiloxane Surfaces to Improve Paint Adhesion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polyacrylonitrile Ternary System
Thermodynamic Study of a Water–Dimethylformamide– Polyacrylonitrile Ternary System Lianjiang Tan,1 Ding Pan,1 Ning Pan2 1State Key Laboratory for Chemical Fiber Modification and Polymer Materials, Donghua University, Shanghai 201620, People’s Republic of China 2Biological and Agricultural Engineering Department, University of California, Davis, California 65616 Received 23 October 2007; accepted 6 March 2008 DOI 10.1002/app.28392 Published online 15 September 2008 in Wiley InterScience (www.interscience.wiley.com). ABSTRACT: Experimental cloud-point data were ob- formation. The skin–core structure and fingerlike pores in tained by cloud-point titration. The phase diagram for a polyacrylonitrile fiber may be effectively eliminated if the ternary system of water–dimethylformamide–polyacryloni- composition of the spinning solution is properly chosen, trile was determined by numerical calculation on the basis and consequently, homogeneous polyacrylonitrile fiber of the extended Flory–Huggins theory and was found to with a bicontinuous structure and good mechanical proper- agree well with the cloud-point data. To construct the theo- ties can be obtained through the spinning process. Ó 2008 retical phase diagram, three binary interaction parameters Wiley Periodicals, Inc. J Appl Polym Sci 110: 3439–3447, 2008 were obtained with different methods. The ternary phase diagram was used to investigate the mechanism of fiber Key words: fibers; mixing; phase behavior; thermodynamics INTRODUCTION with the method of cloud-point titration.1–11 At high polymer concentration, however, the interaction Polyacrylonitrile (PAN) is soluble in many polar or- between macromolecules is so strong that the poly- ganic liquids, such as dimethylformamide (DMF), di- mer solution shows signs of crystallization or methyl sulfoxide, and dimethyl acetemide. -
INTERIOR OIL-BASED POLYURETHANE #8010 Gloss, #8012 Satin & #8017 Semi-Gloss
INTERIOR OIL-BASED POLYURETHANE #8010 Gloss, #8012 Satin & #8017 Semi-Gloss LYURETHANE #8010 SERIES Recommended Uses: Tinting/Intermixing: Environmental Impact: Cabot Interior Polyurethane is an Do not tint or intermix with other products. These products are in compliance with V.O.C. TECHNICAL DATA ultra-durable finish formulated to protect (Volatile Organic Compounds) requirements interior wood surfaces from nicks, Coverage/Thinning: for Specialty Architectural Coatings under scratches, spills and stains. This easy-to- Approximately 500–650 sq. ft./gal. current regulations. Call Cabot’s Technical apply polyurethane enhances the natural (46–60 m²) depending upon surface wood grain with a beautiful, clear finish. Services & Support for additional information porosity. INTERIOR OIL-BASED PO For interior and protected exterior wood pertaining to current V.O.C. rulings. Packaging/Containers: surfaces including floors, doors, furniture WARNING! VAPOR HARMFUL. and cabinets. Use on bare, stained or Available in 1/2 pint, quart and gallon COMBUSTIBLE LIQUID & VAPOR. previously varnished or finished wood. This containers. product is fast drying, has superior DANGER: CONTAINS PETROLEUM durability, and protects against spills and Restrictions: DISTILLATES. COMBUSTIBLE: stains. ON FLOOR APPLICATIONS, DO NOT DO NOT SMOKE. Keep away from sparks, Composition: USE OVER PRODUCTS THAT CONTAIN open flame and lit cigarettes. Turn off stoves, Oil-modified urethane STEARATES, SUCH AS SANDING heaters, electric motors, pilot lights and other SEALERS. Do not apply when air or surface Finish: sources of ignition during use and until all temperature is below 50°F. Do not apply vapors are gone. Prevent buildup of vapors Dries to a highly durable, protective clear over wet or damp surfaces. -
A Review of Electrospun Carbon Fibers As Electrode Materials for Energy Storage
A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mao, Xianwen, T. Hatton, and Gregory Rutledge. “A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage.” COC 17, no. 13 (June 1, 2013): 1390–1401. As Published http://dx.doi.org/10.2174/1385272811317130006 Publisher Bentham Science Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/92409 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage Xianwen Mao, T. Alan Hatton, and Gregory C. Rutledge* Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge Massachusetts, 02139, USA E-mail: [email protected] Abstract: The applications of electrospun carbon fiber webs to the development of energy storages devices, including both supercapacitors and lithium ion batteries (LIB), are reviewed. Following a brief discussion of the fabrication process and characterization methods for ultrafine electrospun carbon fibers, recent advances in their performance as supercapacitors and LIBs anode materials are summarized. Optimization of the overall electrochemical properties of these materials through choice of thermal treatment conditions, incorporation of additional active components (such as carbon nanotubes, metal oxides, and catalysts), and generation of novel fibrous structures (such as core-shell, multi-channel or porous fibers) is highlighted. Further challenges related to improving the conductivity, surface area, and mechanical properties of the carbon nanofiber webs, as well as the scale-up ability of the fabrication technique, are discussed. -
Synthesis and Some Solution Properties of Block Copolymer Styrene—Acrylonitrile
Synthesis and some solution properties of block copolymer styrene—acrylonitrile V. CHRÁSTOVÁ, D. MIKULÁŠOVA, P. CITOVICKÝ, and J. SCHENKMAYER Department of Chemical Technology of Plastics and Fibres, Slovak Technical University, CS-812 37 Bratislava Received 19 June 1986 Styrene—acrylonitrile block copolymers were synthesized by emulsion polymerization at 30 °C, in which peroxide of powdered isotactic polypropyl ene as a heterogeneous initiator, disodium salt of ethylenediaminetetraace- tic acid as an activator, and Slovasol 2430 as a nonionic emulsifier were used. For the preparation of the block copolymer one of the characteristic proper ties of the mentioned polymerization system, i.e. the existence of long-living polystyrene radical in emulsion was evaluated. After removing of the initia tor the first monomer — styrene was polymerized up to a certain conversion and then acrylonitrile was added to the growing polystyrene radicals. A block copolymer was formed, which contained a pure polystyrene block and an acrylonitrile sequence with fragments of styrene. The obtained co polymers with various styrene—acrylonitrile ratio were characterized by IR spectroscopy. By means of viscometry and light scattering some of their properties in methyl ethyl ketone and ^TV-dimethylformamide were stud ied. Блок-сополимеры стирола и акрилонитрила были получены по средством эмульсионной полимеризации при 30 °С, в которой применя лись перекись порошкообразного изотактического полипропилена в качестве гетерогенного инициатора, двунатриевая соль этилен- диаминтетрауксусной кислоты в качестве активатора и Словасол 2430 в качестве неионного эмульгатора. В целях получения блок-сополимера оценивалось одно из характеристических свойств упомянутой по- лимеризационной системы, а именно присутствие долгоживущих по листирол ьных радикалов в эмульсии. После устранения инициатора первый мономер — стирол — полимеризовался до определенной степени конверсии, а затем к растущим полистирольным радикалам добавлялся акрилонитрил. -
A Summary of the NBS Literature Reviews on the Chemical Nature And
r NATL INST. OF STAND & TECH NBS Reference PUBLICATIONS 1 AlllDS Tfi37fiE NBSIR 85-326tL^ A Summary of the NBS Literature Reviews on the Chemical Nature and Toxicity of the Pyrolysis and Combustion Products from Seven Plastics: Acrylonitrile- Butadiene- Styrenes (ABS), Nylons, Polyesters, Polyethylenes, Polystyrenes, Poly(Vinyl Chlorides) and Rigid Polyurethane Foams Barbara C. Levin U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 June 1986 Sponsored in part by: g Consumer Product Safety Commission sda. MD 20207 100 .056 85-3267 1986 4 NBS RESEARCH INFORf/ATION CENTER NBSIR 85-3267 A SUMMARY OF THE NBS LITERATURE REVIEWS ON THE CHEMICAL NATURE AND TOXICITY OF THE PYROLYSIS AND I COMBUSTION PRODUCTS FROM SEVEN PLASTICS: ACRYLONITRILE-BUTADIENE- STYRENES (ABS), NYLONS, POLYESTERS, POLYETHYLENES, POLYSTYRENES, POLY(VINYL CHLORIDES) AND RIGID POLYURETHANE FOAMS Barbara C. Levin U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 June 1 986 Sponsored in part by: The U.S. Consumer Product Safety Commission Bethesda, MD 20207 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director Table of Contents Page Abstract 1 1.0 Introduction 2 2.0 Scope 3 3.0 Thermal Decomposition Products 4 4.0 Toxicity 9 5.0 Conclusion 13 6.0 Acknowledgements 14 References 15 iii List of Tables Page Table 1. Results of Bibliographic Search 17 Table 2 . Thermal Degradation Products 18 Table 3. Test Methods Used to Assess Toxicity of the Thermal Decomposition Products of Seven Plastics 26 Table 4. -
DAP® PREMIUM POLYURETHANE CONSTRUCTION ADHESIVE SEALANT Is a One-Part, Moisture- Curing, Non-Sag, Elastomeric Commercial-Grade Sealant
DAP Premium Polyurethane Construction Adhesive Sealant PRODUCT DESCRIPTION DAP® PREMIUM POLYURETHANE CONSTRUCTION ADHESIVE SEALANT is a one-part, moisture- curing, non-sag, elastomeric commercial-grade sealant. It is specifically formulated to provide a long- lasting, durable seal when filling exterior gaps, joints and cracks. This high performance sealant offers superior adhesion to most substrates and remains flexible to withstand up to 70% total joint movement when installed into a properly prepared joint. Can be applied above or below the waterline. Exceptional cut and tear resistance. Handles foot and vehicle traffic. Paintable. Meets or exceeds ASTM C920, Type S, Grade NS, Class 35, use T, NT, O, M, I. NSF/ANSI Standard 61. Interior/exterior use. PACKAGING COLOR UPC 10.1 fl. oz. (300 mL) White 7079818810 10.1 fl. oz. (300 mL) Black 7079818816 10.1 fl. oz. (300 mL) Gray 7079818814 KEY FEATURES & BENEFITS Professional grade, elastomeric sealant Meets ASTM C920, Class 35 Meets NSF/ANSI Standard 61 70% total joint movement Above or below waterline use Superior adhesion & durability 100% waterproof & weatherproof seal Impact & cut resistant Paintable 50 year Interior/exterior use 3/3/2019 SUGGESTED USES USE FOR CAULKING & SEALING: Windows Fascia Chimneys Doors Expansion joints Common roofing detail Siding Control joints applications Siding corner joints Pre-cast panels Flashing Butt joints Pipes Eaves Corner joints Vents Downspouts Tuck pointing Ducts Trim Foundations ADHERES TO: Wood Most plastics Brick Aluminum Fiber Cement Stone Most metals Glass Concrete Vinyl Stucco Mortar PVC trimboard Composite Asphalt FOR BEST RESULTS Application temperature range is between 40ºF and 100ºF. Minimum joint depth is ¼”. -
Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers
SYNTHESIS AND CHARACTERIZATION OF SOLUTION AND MELT PROCESSIBLE POLY(ACRYLONITRILE-CO-METHYL ACRYLATE) STATISTICAL COPOLYMERS Padmapriya Pisipati Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Macromolecular Science and Engineering James E. McGrath, Chair Judy S. Riffle, Acting Chair Eugene G. Joseph Sue J. Mecham Donald G. Baird 02/20/2015 Blacksburg, VA Keywords: melt processability, polyacrylonitrile, carbon fibers, methyl acrylate, acrylic fibers, plasticizer, solution processing, high tensile modulus Copyright 2015, Padmapriya Pisipati SYNTHESIS AND CHARACTERIZATION OF SOLUTION AND MELT PROCESSIBLE POLY (ACRYLONITRILE-CO-METHYL ACRYLATE) STATISTICAL COPOLYMERS ABSTRACT Padmapriya Pisipati Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 µm. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. -
Polyurethane and PTFE Membranes for GBR
Med Oral Patol Oral Cir Bucal. 2010 Mar 1;15 (2):e401-6. Polyurethane and PTFE membranes for GBR Journal section: Biomaterials doi:10.4317/medoral.15.e401 Publication Types: Research Polyurethane and PTFE membranes for guided bone regeneration: Histopathological and ultrastructural evaluation Adriana-Socorro-Ferreira Monteiro 1, Luís-Guilherme-Scavone Macedo 2, Nelson-Luiz Macedo 3, Ivan Bal- ducci 4 1 DDS, MSc, PhD in Oral Pathology, Department of Biosciences and Oral Diagnostic, UNESP - São Paulo State University - São José dos Campos Dental School 2 DDS, MSc, Pos-graduate, Restorative Dentistry, Department of Dental Materials and Prosthesis - UNESP São Paulo State University - São José dos Campos Dental School 3 DDS, MSc, PhD, Assistant Professor, Department of Diagnosis and Surgery, Periodontics Division - UNESP São Paulo State University - São José dos Campos Dental School 4 DDS, MSc, Assistant Professor, Department of Social Dentistry and Pediatric Clinics, Biostatistic Division - UNESP São Paulo State University - São José dos Campos Dental School Correspondence: Department of Diagnosis and Surgery São José dos Campos Dental School, UNESP Monteiro AS, Macedo LG, Macedo NL, Balducci I.. Polyurethane and Avenida Engenheiro Francisco José Longo, 777 PTFE membranes for guided bone regeneration: Histopathological and Caixa Postal 314 ultrastructural evaluation. Med Oral Patol Oral Cir Bucal. 2010 Mar 1;15 CEP 12245-000 São José dos Campos, SP - Brazil (2):e401-6. [email protected] http://www.medicinaoral.com/medoralfree01/v15i2/medoralv15i2p401.pdf Article Number: 2701 http://www.medicinaoral.com/ © Medicina Oral S. L. C.I.F. B 96689336 - pISSN 1698-4447 - eISSN: 1698-6946 eMail: [email protected] Received: 13/02/2009 Indexed in: Accepted: 02/08/2009 -SCI EXPANDED -JOURNAL CITATION REPORTS -Index Medicus / MEDLINE / PubMed -EMBASE, Excerpta Medica -SCOPUS -Indice Médico Español Abstract Objective: The purpose of this study was to research a membrane material for use in guided bone regeneration. -
Proceedings Of
Research Article – IJAAT – 2017 – 32 International Journal of Advances on Automotive and Technology http://dx.doi.org/10.15659/ijaat.17.09.524 Promech Corp. Press, Istanbul, Turkey Manuscript Received March 20, 2017; Accepted August 10, 2017 Vol.1, No. 4, pp. 212-216, October, 2017 This paper was recommended for publication in revised form by Co-Editor Yasin Karagoz EFFECT OF PLASMA TREATMENT ON WETTABILITY PROPERTIES OF THE ELECTROPHORETIC COATING (E-COAT) ON STEEL AUTOMOTIVE PARTS *Ekrem Altuncu Fatih Kurtuldu Sakarya University, Techonology Faculty, Sakarya University, Technology Faculty Dept. of Metallurgy and Materials Eng. Dept. of Metallurgy and Materials Eng. Serdivan, Sakarya, Turkey Serdivan, Sakarya, Turkey Keywords: E-coat, Plasma Treatment, Surface, Contact Angle * Corresponding author: Phone: 0264 295 7217 E-mail address: [email protected] ABSTRACT electrophoretic coating (e-coat) on steel automotive parts are investigated. Different plasma surface treatment parameters as Today, e-coatings or powder paintings are considered as an distance, velocity, pass number are employed on e-coated important market and play a major role in automotive industry. surfaces and measured their water contact angle. And also They not only impart decorative and a pleasant appeal to car experimental results are compared with wetting properties of bodies, also protect them against degrading environmental the powder coated and plasma treated surfaces. effects. Their use extends from metallic parts to polymeric based vehicle components both as exterior and interior types. INTRODUCTION Two main goals are envisaged when coatings are applied to substrates. The first involves protecting the substrate against The automotive industry is one of the most important users various aggressive environmental agents (such as UV, humidity of modern surface technologies. -
Investigation Into the Gelation and Crystallization of Polyacrylonitrile
European Polymer Journal 45 (2009) 1617–1624 Contents lists available at ScienceDirect European Polymer Journal journal homepage: www.elsevier.com/locate/europolj Investigation into the gelation and crystallization of polyacrylonitrile Lianjiang Tan a, Huifang Chen a, Ding Pan a,*, Ning Pan b a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People’s Republic of China b Biological and Agricultural Engineering Department, University of California, Davis, CA 6561, USA article info abstract Article history: Polyacrylonitrile (PAN) is soluble in dimethyl sulfoxide (DMSO) and the resulting solution Received 28 May 2008 can gel by various mechanisms. The effects of temperature and water on the thermorevers- Received in revised form 21 October 2008 ible gelation of PAN have attracted much attention because of their importance in the fiber Accepted 2 December 2008 formation and film casting. Rheological tests were employed in this study to examine the Available online 11 December 2008 gelation behavior and determine the gel point temperature of PAN–DMSO solution. Calori- metric studies of PAN–DMSO gels were conducted through Differential Scanning Calorim- etry and no crystallization was discovered in these gels prepared at low temperature. X-ray Keywords: diffraction of different PAN gels indicated that in the absence of water, gels resulted from Polyacrylonitrile Dimethyl sulfoxide PAN–DMSO solution by decreasing temperature were not crystallizable. In contrast, water- Gelation induced gelation led to crystallization of PAN gel. The water content in the formed gel is Crystallization responsible for its crystallinity and average crystallite size. Ó 2008 Elsevier Ltd. All rights reserved. -
Preparation and Some Properties of a Nanocomposite of Polyacrylonitrile with Acetylene Black
Polymer Journal, Vol. 36, No. 10, pp. 812—816 (2004) Preparation and Some Properties of a Nanocomposite of Polyacrylonitrile with Acetylene Black y Arjun MAITY and Mukul BISWAS Department of Chemistry, Presidency College, Calcutta-73, India (Received April 15, 2004; Accepted July 12, 2004; Published October 15, 2004) ABSTRACT: Conducting nanocomposites of polyacrylonitrile (PAN) with acetylene black (AB) were prepared via K2CrO4–NaAsO2 initiated redox polymerization of acrylonitrile in presence of AB suspension in aqueous-methanol medium at 60 C. Prolonged extraction of PAN–AB composite by DMF failed to extract the loaded polyacrylonitrile completely from the acetylene black, as confirmed by FT IR studies. SEM analyses revealed the formation of agglom- erates of particles of nonuniform sizes and shapes. TEM analysis indicated that average particle diameters of the PAN– AB composite were in the range of 120–250 nm. Thermal stability of the PAN–AB composite was appreciably im- proved relative to that for the unmodified base polymer. The dc conductivity of the PAN–AB composite was in the range of 10À4–10À2 S/cm depending on the amount of AB in the PAN–AB composite, a value remarkably improved relative to that of the PAN homopolymer (>10À11 S/cm). [DOI 10.1295/polymj.36.812] KEY WORDS Polyacrylonitrile / Acetylene Black / K2CrO4–NaAsO2 Redox System / Thermal Stability / Conductivity / Considerable research interest has been shown late- capable of initiating the polymerization of N-vinylcar- ly in the modification of fundamental polymers like bazole. Interestingly, this system led to the simultane- polyacrylonitrile (PAN), polymethylmethacrylate ous formation of a PNVC–AB composite with a con- (PMMA), polystyrene (PS), etc. -
Polystyrene Vs Polyurethane Insulation in Walk-In Freezers
Customers are saving• thousands of dollars with new high-tech insulation. What's Important? between the metal skins. The insulation material provides the walk-in with resistance to heat flow, which allows the When buying a walk-in cooler or freezer, the initial cost of walk-in to be refrigerated and hold cold temperatures. the walk-in is almost always the deciding factor. The cost to operate the walk-in is rarely considered. You may think Types of Insulation all walk-ins perform about the same. This mistake can cost you dearly. In the walk-in cooler and freezer business, there are two common types of plastic foam insulation, polyurethane You pay for the walk-in once, but if the insulation is and extruded polystyrene. Extruded polystyrene is not to inefficient, you will pay for that every month for the life of be confused with expanded polystyrene, which is also the walk-in. In the following , you will find an evaluation of used in walk-in coolers. Expanded polystyrene is white two types of insulation that are being used in walk-in and has different structural and insulating properties. In coolers and freezers. this document, we will be discussing extruded polystyrene only. Construction Polyurethane Walk-in coolers are generally constructed of modular panels made of insulating material and protective skins. Polyurethane can be applied in two different ways in the The protective skins can be made of metal or fiberglass. construction of walk-in coolers or freezers. One method is The purpose of the skin is to protect the insulation, which is fragile and cannot be used independently.