Cupressus Macrocarpa

Total Page:16

File Type:pdf, Size:1020Kb

Cupressus Macrocarpa Cupressus macrocarpa COMMON NAME Macrocarpa FAMILY Cupressaceae AUTHORITY Cupressus macrocarpa Hartw. ex Gordon FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Trees & Shrubs - Gymnosperms NVS CODE CUPMAC HABITAT Terrestrial. regenerating bush and scrub near planted trees and hedgerows. FEATURES Cupressus macrocarpa. Photographer: Peter de Medium sized tree to about 36 metres. Has distinctive fluted trunk when Lange mature, bark is thick, reddish brown beneath often becoming whitish on the surface. Adult foliage comprises many small dark green scales closely appressed to the branchlets, but not flattened. Juvenile foliage more needle like, and not appressed. Male cones up to about 3 mm long, yellow and knobbly arising on the tips of the branches. Female cone are also terminal, rosette-like at first, becoming a rounded brown cone with 8-14 scales when mature. Usually 10-20 small seeds per cone scale. SIMILAR TAXA The scales closely appressed on mature plants, but stems not becoming flattened separate Cupressus from other conifers. There are several Cupressus species in cultivation in New Zealand but C. macrocarpa is by far the most common, and can be identified by the blunt leaves lacking resin glands, and the shining brown mature cones. FLOWER COLOURS No flowers YEAR NATURALISED 1904 Cupressus macrocarpa. Photographer: Peter de Lange ORIGIN Monterey Peninsula, California, N. America ETYMOLOGY cupressus: Classical name, said to be derived from the Greek kuo ‘to produce’ and pari ‘equal’, alluding to the symmetrical form of the Italian cypress; alternatively the name is derived from an ancient Latin word for box, the wood once being used for coffins. macrocarpa: Large fruit Reason For Introduction Forestry Life Cycle Comments Occasional and scattered cultivation escape in the vicinity of planted trees (Webb et al 1988). Reproduction Seed. Seed At least 150 seeds per mature female cone, estimated at least 10 000 cones per mature tree. Dispersal People, wind, gravity. Tolerances seedlings are moderately shade-tolerant but do best on sunny banks. MORE INFORMATION https://www.nzpcn.org.nz/flora/species/cupressus-macrocarpa/.
Recommended publications
  • 1151CIRC.Pdf
    CIRCULAR 153 MAY 1967 OBSERVATIONS on SPECIES of CYPRESS INDIGENOUS to the UNITED STATES Agricultural Experiment Station AUBURN UNIVERSIT Y E. V. Smith, Director Auburn, Alabama CONTENTS Page SPECIES AND VARIETIES OF CUPRESSUS STUDIED 4 GEOGRAPHIC DISTRIBUTION-- 4 CONE COLLECTION 5 Cupressus arizonica var. arizonica (Arizona Cypress) 7 Cupressus arizonica var. glabra (Smooth Arizona Cypress) 11 Cupressus guadalupensis (Tecate Cypress) 11 Cupressus arizonicavar. stephensonii (Cuyamaca Cypress) 11 Cupressus sargentii (Sargent Cypress) 12 Cupressus macrocarpa (Monterey Cypress) 12 Cupressus goveniana (Gowen Cypress) 12 Cupressus goveniana (Santa Cruz Cypress) 12 Cupressus goveniana var. pygmaca (Mendocino Cypress) 12 Cupressus bakeri (Siskiyou Cypress) 13 Cupressus bakeri (Modoc Cypress) 13 Cupressus macnabiana (McNab Cypress) 13 Cupressus arizonica var. nevadensis (Piute Cypress) 13 GENERAL COMMENTS ON GEOGRAPHIC VARIATION ---------- 13 COMMENTS ON STUDYING CYPRESSES 19 FIRST PRINTING 3M, MAY 1967 OBSERVATIONS on SPECIES of CYPRESS INDIGENOUS to the UNITED STATES CLAYTON E. POSEY* and JAMES F. GOGGANS Department of Forestry THERE HAS BEEN considerable interest in growing Cupressus (cypress) in the Southeast for several years. The Agricultural Experiment Station, Auburn University, was the first institution in the Southeast to initiate work on the cy- presses in 1937, and since that time many states have introduced Cupressus in hope of finding a species suitable for Christmas tree production. In most cases seed for trial plantings were obtained from commercial dealers without reference to seed source or form of parent tree. Many plantings yielded a high proportion of columnar-shaped trees not suitable for the Christmas tree market. It is probable that seed used in Alabama and other Southeastern States came from only a few trees of a given geo- graphic source.
    [Show full text]
  • Jaiswal Amit Et Al. IRJP 2011, 2 (11), 58-61
    Jaiswal Amit et al. IRJP 2011, 2 (11), 58-61 INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 2230 – 8407 Available online www.irjponline.com Review Article REVIEW / PHARMACOLOGICAL ACTIVITY OF PLATYCLADUS ORIEANTALIS Jaiswal Amit1*, Kumar Abhinav1, Mishra Deepali2, Kasula Mastanaiah3 1Department Of Pharmacology, RKDF College Of Pharmacy,Bhopal, (M.P.)India 2Department Of Pharmacy, Sir Madanlal Institute Of Pharmacy,Etawah (U.P.)India 3 Department Of Pharmacology, The Erode College Of Pharmacy, Erode, Tamilnadu, India Article Received on: 11/09/11 Revised on: 23/10/11 Approved for publication: 10/11/11 *Email: [email protected] , [email protected] ABSTRACT Platycladus orientalis, also known as Chinese Arborvitae or Biota. It is native to northwestern China and widely naturalized elsewhere in Asia east to Korea and Japan, south to northern India, and west to northern Iran. It is a small, slow growing tree, to 15-20 m tall and 0.5 m trunk diameter (exceptionally to 30 m tall and 2 m diameter in very old trees). The different parts of the plant are traditionally used as a diuretic, anticancer, anticonvulsant, stomachic, antipyretic, analgesic and anthelmintic. However, not many pharmacological reports are available on this important plant product. This review gives a detailed account of the chemical constituents and also reports on the pharmacological activity activities of the oil and extracts of Platycladus orientalis. Keywords: Dry distillation, Phytochemisty, Pharmacological activity, Platycladus orientalis. INTRODUCTION cultivated in Europe since the first half of the 18th century. In cooler Botanical Name : Platycladus orientalis. areas of tropical Africa it has been planted primarily as an Family: Cupressaceae.
    [Show full text]
  • Seiridium Canker of Cypress Trees in Arizona Jeff Schalau
    ARIZONA COOPERATIVE E TENSION AZ1557 January 2012 Seiridium Canker of Cypress Trees in Arizona Jeff Schalau Introduction Leyland cypress (x Cupressocyparis leylandii) is a fast- growing evergreen that has been widely planted as a landscape specimen and along boundaries to create windbreaks or privacy screening in Arizona. The presence of Seiridium canker was confirmed in Prescott, Arizona in July 2011 and it is suspected that the disease occurs in other areas of the state. Seiridium canker was first identified in California’s San Joaquin Valley in 1928. Today, it can be found in Europe, Asia, New Zealand, Australia, South America and Africa on plants in the cypress family (Cupressaceae). Leyland cypress, Monterey cypress, (Cupressus macrocarpa) and Italian cypress (C. sempervirens) are highly susceptible and can be severely impacted by this disease. Since Leyland and Italian cypress have been widely planted in Arizona, it is imperative that Seiridium canker management strategies be applied and suitable resistant tree species be recommended for planting in the future. The Pathogen Seiridium canker is known to be caused by three different fungal species: Seiridium cardinale, S. cupressi and S. unicorne. S. cardinale is the most damaging of the three species and is SCHALAU found in California. S. unicorne and S. cupressi are found in the southeastern United States where the primary host is JEFF Leyland cypress. All three species produce asexual fruiting Figure 1. Leyland cypress tree with dead branch (upper left) and main leader bodies (acervuli) in cankers. The acervuli produce spores caused by Seiridium canker. (conidia) which spread by water, human activity (pruning and transport of infected plant material), and potentially insects, birds and animals to neighboring trees where new Symptoms and Signs infections can occur.
    [Show full text]
  • Downloaded from Brill.Com10/02/2021 07:21:54PM Via Free Access 126 IAWA Journal, Vol
    IAWA Journal, Vol. 28 (2), 2007: 125-137 WOOD ULTRASTRUCTURE OF ANCIENT BURIED LOGS OF FITZROYA CUPRESSOlDES Maria A. Castro1 and Fidel A. Roig2 SUMMARY The anatomy and ultrastructure of subfossil wood of Fitzroya cup res­ soides from the late Pleistocene (>50,000 14C years before present) were compared with those of extant F. cupressoides trees from southern Chile, using light microscopy (polarized light and ftuorescence), scanning elec­ tron microscopy coupled with an energy dispersive X-ray spectroscopy system, and transmission electron microscopy. The ancient wood showed an unchanged gross wood structure, loss of cell wall birefringence, loss of lignin autoftuorescence, and a loss of the original microfibrillar pat­ tern. The energy dispersive X-ray spectroscopy analysis indicated higher than normal contents of S, Cl, and Na in subfossil wood. Ultrastructural modifications in the cell wall of the subfossil wood could have important implications for further studies involving isotopic and wood anatomical measurements of ancient wood. Key words: Fitzroya cupressoides, Pleistocene subfossil wood, cell wall ultrastructure, TEM, SEM-EDXA analysis, wood anatomy. INTRODUCTION The temperate rain forest of South America has a very rich tree species assemblage with a high level of endemism (Arroyo et al. 1993). One of the natural endemies is Fitzroya cupressoides (Molina) I.M.lohnston (alerce, Cupressaceae), a tree species that grows under a relatively low annual mean temperature and high precipitation in areas ofthe southernAndes ofChile and southwesternArgentina. Tree-ring analysis revealed that Fitzroya is a slow-growing tree and is one of the longest-lived tree species in the world, known to reach up to around 3,500 years of age (Lara & Villalba 1993).
    [Show full text]
  • Non-Expressway Master Plant List
    MASTER PLANT LIST GENERAL INTRODUCTION TO PLANT LISTS Plants are living organisms. They possess variety in form, foliage and flower color, visual texture and ultimate size. There is variation in plants of the same species. Plants change: with seasons, with time and with the environment. Yet here is an attempt to categorize and catalogue a group of plants well suited for highway and expressway planting in Santa Clara County. This is possible because in all the existing variety of plants, there still remains a visual, morphological and taxonomical distinction among them. The following lists and identification cards emphasize these distinctions. 1 of 6 MASTER PLANT LIST TREES Acacia decurrens: Green wattle Acacia longifolia: Sydney golden wattle Acacia melanoxylon: Blackwood acacia Acer macrophyllum: Bigleaf maple Aesculus californica: California buckeye Aesculus carnea: Red horsechestnut Ailanthus altissima: Tree-of-heaven Albizia julibrissin: Silk tree Alnus cordata: Italian alder Alnus rhombifolia: White alder Arbutus menziesii: Madrone Calocedrus decurrens: Incense cedar Casuarina equisetifolia: Horsetail tree Casuarina stricta: Coast beefwood Catalpa speciosa: Western catalpa Cedrus deodara: Deodar cedar Ceratonia siliqua: Carob Cinnamomum camphora: Camphor Cordyline australis: Australian dracena Crataegus phaenopyrum: Washington thorn Cryptomeria japonica: Japanese redwood Cupressus glabra: Arizona cypress Cupressus macrocarpa: Monterey cypress Eriobotrya japonica: Loquat Eucalyptus camaldulensis: Red gum Eucalyptus citriodora: Lemon-scented
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
    1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus).
    [Show full text]
  • A Quantitative Assessment of Shoot Flammability for 60 Tree and Shrub Species Supports Rankings Based on Expert Opinion
    CSIRO PUBLISHING International Journal of Wildland Fire 2016, 25, 466–477 http://dx.doi.org/10.1071/WF15047 A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion Sarah V. WyseA,B,G, George L. W. PerryA,C, Dean M. O’ConnellD, Phillip S. HollandD, Monique J. WrightD, Catherine L. HostedD,E, Samuel L. WhitelockD, Ian J. GearyD,F, Ke´vinJ.L.MaurinD and Timothy J. CurranD ASchool of Environment, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand. BRoyal Botanic Gardens Kew, Wakehurst Place, RH17 6TN, UK. CSchool of Biological Sciences, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand. DEcology Department, Lincoln University, PO Box 85084, Lincoln 7647, Canterbury, New Zealand. EWai-Ora Forest Landscapes Ltd, 48 Watsons Road, Harewood 8051, Christchurch, New Zealand. FDepartment of Geology, University of Otago, PO Box 56 Dunedin 9054, New Zealand. GCorresponding author. Email: [email protected] Abstract. Fire is an important ecological disturbance in vegetated ecosystems across the globe, and also has considerable impacts on human infrastructure. Vegetation flammability is a key bottom-up control on fire regimes and on the nature of individual fires. Although New Zealand (NZ) historically had low fire frequencies, anthropogenic fires have considerably impacted indigenous vegetation as humans used fire extensively to clear forests. Few studies of vegetation flammability have been undertaken in NZ and only one has compared the flammability of indigenous plants; this was a qualitative assessment derived from expert opinion. We addressed this knowledge gap by measuring the flammability of terminal shoots from a range of trees and shrubs found in NZ.
    [Show full text]
  • The Taxonomic Position and the Scientific Name of the Big Tree Known As Sequoia Gigantea
    The Taxonomic Position and the Scientific Name of the Big Tree known as Sequoia gigantea HAROLD ST. JOHN and ROBERT W. KRAUSS l FOR NEARLY A CENTURY it has been cus­ ing psychological document, but its major,ity tomary to classify the big tree as Sequoia gigan­ vote does not settle either the taxonomy or tea Dcne., placing it in the same genus with the nomenclature of the big tree. No more the only other living species, Sequoia semper­ does the fact that "the National Park Service, virens (Lamb.) End!., the redwood. Both the which has almost exclusive custodY of this taxonomic placement and the nomenclature tree, has formally adopted the name Sequoia are now at issue. Buchholz (1939: 536) pro­ gigantea for it" (Dayton, 1943: 210) settle posed that the big tree be considered a dis­ the question. tinct genus, and he renamed the tree Sequoia­ The first issue is the generic status of the dendron giganteum (Lind!.) Buchholz. This trees. Though the two species \differ con­ dassification was not kindly received. Later, spicuously in foliage and in cone structure, to obtain the consensus of the Calif.ornian these differences have long been generally botanists, Dayton (1943: 209-219) sent them considered ofspecific and notofgeneric value. a questionnaire, then reported on and sum­ Sequoiadendron, when described by Buchholz, marized their replies. Of the 29 answering, was carefully documented, and his tabular 24 preferred the name Sequoia gigantea. Many comparison contains an impressive total of of the passages quoted show that these were combined generic and specific characters for preferences based on old custom or sentiment, his monotypic genus.
    [Show full text]
  • The Following Tree Seedlings Are Available to Order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery
    The following tree seedlings are available to order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery: Scientific Name: Common Name: Dibble/ Pot size: Acacia koa……………………… Koa……………………………….. Small Acacia koaia……………………... Koai’a……………………………. Small Araucaria columnaris…………….. Norfolk-island Pine……………… Small Cryptomeria japonica……………. Sugi Pine………………………… Small Cupressus lusitanica……………... Mexican Cypress………………… Small Cupressus macrocarpa…………… Monterey Cypress……………….. Small Cupressus simpervirens………….. Italian Cypress…………………… Medium Eucalyptus deglupta……………… Rainbow Bark……………………. Small Eucalyptus robusta……………….. Swamp Mahogany……………….. Small Metrosideros polymorpha……….. Ohia……………………………… Medium or 3” pot Pinus elliotii……………………… Slash Pine………………………... Small Pinus radiata……………………... Monterey Pine…………………… Small Podocarpus sp……………………. Podocarpus………………………. 3” pot Santalum sp……………………… Sandalwood……………………… Medium or 3” pot Tristania conferta………………… Brush Box………………………... Small Acacia koa (Koa): This large hardwood tree is endemic to the Hawaiian Islands. The tree has exceeded 100 ft in height with basal diameter far beyond 50 inches in old growth stands. The wood is prized for furniture and canoe works. This legume has pods with black seeds for reproduction. The wood has similar properties to that of black walnut. The yellow flowers are borne in dense round heads about 2@ in diameter. Tree growth is best above 800 ft; seems to grow best in the ‘Koa belt’ which is situated at an elevation range between 3,500 - 6,000 ft. It is often found in areas where there is fog in the late afternoons. It should be planted in well- drained fertile soils. Grazing animals relish the Koa foliage, so young seedlings should be protected Acacia koaia (Koaia): Related to the Koa, Koaia is native to Hawaii. The leaves and flowers are much the same as Koa.
    [Show full text]
  • THE SILVICULTURE of TREES USED in BRITISH FORESTRY, 2ND EDITION This Page Intentionally Left Blank the Silviculture of Trees Used in British Forestry, 2Nd Edition
    THE SILVICULTURE OF TREES USED IN BRITISH FORESTRY, 2ND EDITION This page intentionally left blank The Silviculture of Trees Used in British Forestry, 2nd Edition Peter Savill Former Reader in Silviculture University of Oxford With illustrations by Rosemary Wise CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © Peter Savill 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Savill, Peter S. The silviculture of trees used in British forestry / Peter Savill. -- 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-026-6 (alk. paper) 1. Forests and forestry--Great Britain. 2. Trees--Great Britain. I. Title. SD391.S285 2013 634.90941--dc23 2012043421 ISBN-13: 978 1 78064 026 6 Commissioning editor: Vicki Bonham Editorial assistants: Emma McCann and Alexandra Lainsbury Production editor: Lauren Povey Typeset by SPi, Pondicherry, India. Printed and bound in the UK by the MPG Books Group. Contents Acknowledgements viii Introduction 1 ABIES
    [Show full text]
  • Friends of Botanic Gardens Forum Newsletter Edition 4
    FRIENDS OF BOTANIC GARDENS FORUM NEWSLETTER EDITION 4 1 Dear Friends, The best time to plant a tree was 20 years ago. The second best time is now. (Chinese proverb) Well, here at last the 4th issue of the Friends of Botanic Gardens Forum. I have to first of all apologise for the delay in getting this out to you – but I suspect you are all doing as I have been doing these past few months – catching up with friends, family, holidays, your own gardens, considering future events – live or virtual over the forthcoming autumn/winter months and perhaps getting back to volunteering in the gardens/arboreta with whom you are associated. Next up I want to thank you all for your contributions – I have found it so interesting reading about the gardens and the activities of your groups and volunteers. The descriptions are tantalising and I look forward to visiting all of your spaces at some point in the not too distant future. You will note that a number of the gardens are celebrating significant anniversaries. We have already heard about the Royal Botanic Garden Edinburgh - 350 last year, and this year, Oxford Botanic Garden – 400, but we also have Dundee Botanic Garden celebrating 50 years. The project which the Friends at Dundee have supported will be a great asset to the garden and the Dundee community. It has been difficult to mark these occasions given the variable Covid restrictions. Any of you who have visited Edinburgh in the past might have seen the Floral Clock in Princes Street Gardens – last year, the RBGE was due to feature on the clock, but a decision was made to focus on the NHS in recognition of its extraordinary work during the Pandemic.
    [Show full text]
  • Sc-Monarch-Butterfly.Pdf
    U.S. Fish & Wildlife Service February 2019 Conserving South Carolina’s At-Risk Species: www.fws.gov/charleston www.fws.gov/southeast/endangered-species-act/at-risk-species Species facing threats to their survival Monarch butterfly habitats are high altitude Mexican conifer engaging citizen scientists in monitoring (Danaus plexippus) forests, coastal California conifers, or Eu- Monarchs during their migratory, breed- calyptus groves. In South Carolina during ing, and overwintering seasons. Addition- the fall, winter, and early spring, Mon- ally, more research needs to be conducted archs can be found basking or roosting on to better document the distribution of evergreen trees and shrubs such as: wintering Monarchs along the South Car- Southern red cedar (Juniperus virginiana olina coast. Monarchs that winter along var. silicicola), Wax myrtle (Morella ce- the Atlantic coast, the extent of which is rifera), Red bay (Persea borbonia), and Ley- not yet determined, may provide a re- land cypress (Cupressus x leylandii). serve of wintering Monarchs that could become extremely valuable to the long- Status term survival of the eastern migratory Monarch butterfly/Photo credit: Jennifer The Monarch population has recently de- population of North American Monarchs. Koches clined to a fraction of its previous size. In the 1990s, estimates of up to one billion References Description Monarchs overwintered in the oyamel fir Jepsen, S., D. F. Schweitzer, B. Young, The Monarch butterfly is a large orange forests northwest of Mexico City, and N. Sears, M. Ormes, and S. H. Black. butterfly that is similar in appearance to more than one million Monarchs overwin- 2015. Conservation Status and Ecology of the smaller Viceroy (Limenitis archippus), tered in forested groves on the California Monarchs in the United States.
    [Show full text]