THE SILVICULTURE of TREES USED in BRITISH FORESTRY, 2ND EDITION This Page Intentionally Left Blank the Silviculture of Trees Used in British Forestry, 2Nd Edition

Total Page:16

File Type:pdf, Size:1020Kb

THE SILVICULTURE of TREES USED in BRITISH FORESTRY, 2ND EDITION This Page Intentionally Left Blank the Silviculture of Trees Used in British Forestry, 2Nd Edition THE SILVICULTURE OF TREES USED IN BRITISH FORESTRY, 2ND EDITION This page intentionally left blank The Silviculture of Trees Used in British Forestry, 2nd Edition Peter Savill Former Reader in Silviculture University of Oxford With illustrations by Rosemary Wise CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © Peter Savill 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Savill, Peter S. The silviculture of trees used in British forestry / Peter Savill. -- 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-026-6 (alk. paper) 1. Forests and forestry--Great Britain. 2. Trees--Great Britain. I. Title. SD391.S285 2013 634.90941--dc23 2012043421 ISBN-13: 978 1 78064 026 6 Commissioning editor: Vicki Bonham Editorial assistants: Emma McCann and Alexandra Lainsbury Production editor: Lauren Povey Typeset by SPi, Pondicherry, India. Printed and bound in the UK by the MPG Books Group. Contents Acknowledgements viii Introduction 1 ABIES 10 ALBA 10 GRANDIS 12 PROCERA 15 ACER 18 CAMPESTRE 18 PLATANOIDES 19 PSEUDOPLATANUS 23 ALNUS 29 CORDATA 29 GLUTINOSA 31 INCANA 36 RUBRA 37 ARIA 39 NIVEA 39 BETULA 41 PENDULA 41 PUBESCENS 41 BUXUS 48 SEMPERVIRENS 48 CARPINUS 52 BETULUS 52 CASTANEA 55 SATIVA 55 CEDRUS 60 ATLANTICA 60 LIBANI 62 CHAMAECYPARIS 65 LAWSONIANA 65 CORYLUS 69 AVELLANA 69 v vi Contents CRYPTOMERIA 72 JAPONICA 72 x CUPROCYPARIS 75 LEYLANDII 75 EUCALYPTUS 77 FAGUS 81 SYLVATICA 81 FRAXINUS 88 EXCELSIOR 88 ILEX 95 AQUIFOLIUM 95 JUGLANS 98 NIGRA 98 REGIA 101 LARIX 108 DECIDUA 108 KAEMPFERI 110 x MARSCHLINSII 110 MALUS 116 SYLVESTRIS 116 NOTHOFAGUS 119 ALPINA 119 OBLIQUA 119 PICEA 123 ABIES 123 SITCHENSIS 126 PINUS 132 CONTORTA 132 MURICATA 136 NIGRA 137 NIGRA ssp. NIGRA 140 NIGRA ssp. SALZMANNII 140 PEUCE 143 RADIATA 145 STROBUS 147 SYLVESTRIS 147 POPULUS 151 HYBRID 151 Contents vii NIGRA 156 TREMULA 157 PRUNUS 161 AVIUM 161 PSEUDOTSUGA 167 MENZIESII 167 QUERCUS 171 CERRIS 171 PETRAEA 173 ROBUR 173 RUBRA 186 ROBINIA 189 PSEUDOACACIA 189 SALIX 193 SEQUOIA 198 SEMPERVIRENS 198 SEQUOIADENDRON 201 GIGANTEUM 201 SORBUS 205 AUCUPARIA 205 TAXUS 208 BACCATA 208 THUJA 214 PLICATA 214 TILIA 218 CORDATA 218 PLATYPHYLLOS 223 TORMINARIA 225 TORMINALIS 225 TSUGA 229 HETEROPHYLLA 229 ULMUS 234 GLABRA 234 PROCERA 236 References 239 Key 257 Index 269 Acknowledgements I am grateful to many colleagues and generations of students at Oxford University who have contributed, in various ways, to the preparation of this book by their insights and by referring me to relevant papers in journals and elsewhere. I am especially indebted to Rosemary Wise who produced all the drawings. Jo Clark, Gabriel Hemery, Andrew Leslie, Jens-Peter Skovsgaard of the Swedish University of Agricultural Sciences, Valeriu-Norocel Nicolescu of Brasov University, Romania, John Fennessy of COFORD in Dublin, Gary Kerr from Forest Research and Jürgen Huss of Freiburg University all provided detailed information on various spe- cies. Michelle, my wife, has undertaken the tedious job of reading through and checking all the text. John Baker kindly photographed the leaves used to illustrate the key. Colleagues in four charities with which I have been associated for many years deserve particular acknowledgement: Woodland Heritage; the Royal Forestry Society of England, Wales and Northern Ireland; the Future Trees Trust; and the Earth Trust. Through my connections with them, I have been able to visit many of the most impressive woodlands in Great Britain and Ireland, and discuss silvicultural practices with their owners or managers. The figures in Table 1 were provided by Jackie Watson of the Economics and Statistics Branch of the Forestry Commission, and are reproduced with permission. The scientific names of the trees used in this book were kindly checked by Stephen Harris, Druce Curator of the Oxford University Herbaria. Several have changed since the first edition was produced in 1991. viii Introduction Many books have been written about trees that grow in Britain. They range from guides for identification to books that have been lavishly illus- trated by talented photographers and artists. One of the best known of the former group is Alan Mitchell’s (1974) A Field Guide to the Trees of Britain and Northern Europe and its successors, and among the latter is Thomas Pakenham’s (1996) Meetings with Remarkable Trees. Numerous publications by the Forestry Commission also provide much basic information that can be useful when selecting species for specific sites. Few books, however, cater particularly well for the person who seeks detailed information about the silvicultural characteristics and requirements of individual species. Among the authors to do this were M.L. Anderson in his Selection of Tree Species, which was first published in 1950, and Macdonald et al. (1957) in their Exotic Forest Trees in Great Britain. The information they provided about species, though still very useful, has inevitably become some- what dated as techniques have changed and knowledge has increased. More recently, Ray (2001) and Pyatt et al. (2001) have produced a computer-based ecological site classification that has proved invaluable in assisting the selection of species, as well as indicating how species might respond to climate change. It is based upon matching a four-climatic vari- able (accumulated temperature, moisture deficit, windiness and conti- nentality) and two soil variables (moisture and nutrient regimes) with the requirements of 31 possible species of tree. In addition, the shade tolerance of each species is taken into account. Yet computer programs, however sophisticated, can never substitute for educated and informed thinking, knowledge and understanding. © Peter Savill 2013. The Silviculture of Trees Used in British Forestry, 2nd Edn (P. Savill) 1 2 Introduction Matching species to site The climate of an area limits the range of species that can be grown suc- cessfully. Temperature, precipitation and wind are usually considered the important elements of climate for forestry. The more favourable the climate, the greater the range of species from which a choice can be made. In upland regions of Britain where the cli- mate is harsh and soils are often poor, the number is limited to two or three, whereas on good soils, in the better climate of the lowlands, a choice from about 20 may often be possible. These latter sites are said to have greater amplitude. Forestry has traditionally taken second place to agriculture, and most forest sites are marginal for agricultural production in some way. A large pro- portion of British forests are at high elevations where growing seasons are much shorter than in the lowlands and exposure to gales is common. Apart from physical problems such as steepness, stoniness and exposure, many forest soils tend to be drought-prone or waterlogged, suffer from extremes of acidity or alkalinity, or have compacted or cemented layers. Two-thirds of the state-owned forests have soils that suffer from poor aeration due to permanent or periodic waterlogging (Toleman and Pyatt, 1974). There are numerous important interrelationships between the physical, chemical and biological influences in a soil that can affect species choice. In many places today there is considerable past experience of which species will grow and how they will perform, either from existing stands of the same tree on the site itself, or from similar nearby areas. Site condi- tions should guide species choice in any approach to forest management, and this is particularly important for continuous-cover forestry given its demanding requirements in terms of stand stability, diversity, the use of natural processes and multipurpose management. Exceptional climatic events can reveal inadequacies in species selec- tion that may not be apparent in more normal periods. This is one rea- son why extreme caution should be observed before a relatively untried, but promising, exotic tree is planted on a wide scale. A common pattern with introductions everywhere is one of initial establishment in gardens and arboreta and then, if successful, perhaps half a rotation later, this is followed by small-scale planting on estates and by government depart- ments. Large plantations of the most promising species are established some 20–50 years after that (Streets, 1962). Thus, Sitka spruce, which is the major plantation tree in Great Britain and Ireland, was first introduced in 1831. It was established as one of the chief exotics in the early 1920s and by the mid-1950s it became the most widely planted tree. Premature extensive planting often leads to problems. For example, in Britain the cold winters of 1981−82 and 2010−11 killed many Eucalyptus spp. that were being tested experimentally, but at the same time they were also being promoted for widespread planting by a few people. Introduction 3 The general considerations that must be taken into account when deciding what to plant on a site are described in many silviculture text- books. The amount of information available about the climatic and site requirements of each species, and other features of their silviculture, var- ies considerably but is closely related to how common and important they are. For some, especially the major conifers, oak and beech, knowledge is quite comprehensive, while for others such as lime and walnut it is scanty and sometimes almost non-existent.
Recommended publications
  • 1151CIRC.Pdf
    CIRCULAR 153 MAY 1967 OBSERVATIONS on SPECIES of CYPRESS INDIGENOUS to the UNITED STATES Agricultural Experiment Station AUBURN UNIVERSIT Y E. V. Smith, Director Auburn, Alabama CONTENTS Page SPECIES AND VARIETIES OF CUPRESSUS STUDIED 4 GEOGRAPHIC DISTRIBUTION-- 4 CONE COLLECTION 5 Cupressus arizonica var. arizonica (Arizona Cypress) 7 Cupressus arizonica var. glabra (Smooth Arizona Cypress) 11 Cupressus guadalupensis (Tecate Cypress) 11 Cupressus arizonicavar. stephensonii (Cuyamaca Cypress) 11 Cupressus sargentii (Sargent Cypress) 12 Cupressus macrocarpa (Monterey Cypress) 12 Cupressus goveniana (Gowen Cypress) 12 Cupressus goveniana (Santa Cruz Cypress) 12 Cupressus goveniana var. pygmaca (Mendocino Cypress) 12 Cupressus bakeri (Siskiyou Cypress) 13 Cupressus bakeri (Modoc Cypress) 13 Cupressus macnabiana (McNab Cypress) 13 Cupressus arizonica var. nevadensis (Piute Cypress) 13 GENERAL COMMENTS ON GEOGRAPHIC VARIATION ---------- 13 COMMENTS ON STUDYING CYPRESSES 19 FIRST PRINTING 3M, MAY 1967 OBSERVATIONS on SPECIES of CYPRESS INDIGENOUS to the UNITED STATES CLAYTON E. POSEY* and JAMES F. GOGGANS Department of Forestry THERE HAS BEEN considerable interest in growing Cupressus (cypress) in the Southeast for several years. The Agricultural Experiment Station, Auburn University, was the first institution in the Southeast to initiate work on the cy- presses in 1937, and since that time many states have introduced Cupressus in hope of finding a species suitable for Christmas tree production. In most cases seed for trial plantings were obtained from commercial dealers without reference to seed source or form of parent tree. Many plantings yielded a high proportion of columnar-shaped trees not suitable for the Christmas tree market. It is probable that seed used in Alabama and other Southeastern States came from only a few trees of a given geo- graphic source.
    [Show full text]
  • Tests with Wood-Decay Fungi to Control Sprouting from Cut Stumps Infected by Dutch Elm Disease
    $ 0HQNLVHWDO%DOWLF)RUHVWU\YRO ,661 Tests with Wood-Decay Fungi to Control Sprouting from Cut Stumps Infected by Dutch Elm Disease 1* 1 2 3 AUDRIUS MENKIS ,RIMVYDAS 9ASAITIS ,INGA-LENA ÖSTBRANT ,ALFAS PLIŪRA ANDJAN 1 STENLID 1 Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden 2 Swedish Forest Agency Gotland District, P.O. Box 1417, SE-62125 Visby, Sweden 3 Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų str. 1, Gi- rionys, LT-53101 Kaunas district, Lithuania * Corresponding author: [email protected]; tel. +4618672729 Menkis, A., Vasaitis, R., Östbrant, I.-L., Pliūra, A. and Stenlid, J. 2017. Tests with Wood-Decay Fungi to Control Sprouting from Cut Stumps Infected by Dutch Elm Disease. Baltic Forestry 23(1): 270-273. Abstract The Dutch elm disease pathogen Ophiostoma novo-ulmi in year 2005 invaded the Swedish island of Gotland, which pos- sesses large and valuable population of elms. The control of the disease is accomplished when infected elms are harvested and destroyed, and stumps are treated with the glyphosate herbicide to kill the stumps and the root systems, and prevent further spread of the disease to the neighbouring trees via root contacts. The aim of the present study was to test an alternative method to control the stump sprouting by deploying two species of saprotrophic wood-decay fungi as biological control agents. The study was carried out during three consecutive years 2014, 2015 and 2016. Fungal inoculum of Chondrostereum purpureum and Stereum hirsutum was prepared by cultivating vegetative mycelia in liquid nutrient medium and then formulating into a gel.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Seiridium Canker of Cypress Trees in Arizona Jeff Schalau
    ARIZONA COOPERATIVE E TENSION AZ1557 January 2012 Seiridium Canker of Cypress Trees in Arizona Jeff Schalau Introduction Leyland cypress (x Cupressocyparis leylandii) is a fast- growing evergreen that has been widely planted as a landscape specimen and along boundaries to create windbreaks or privacy screening in Arizona. The presence of Seiridium canker was confirmed in Prescott, Arizona in July 2011 and it is suspected that the disease occurs in other areas of the state. Seiridium canker was first identified in California’s San Joaquin Valley in 1928. Today, it can be found in Europe, Asia, New Zealand, Australia, South America and Africa on plants in the cypress family (Cupressaceae). Leyland cypress, Monterey cypress, (Cupressus macrocarpa) and Italian cypress (C. sempervirens) are highly susceptible and can be severely impacted by this disease. Since Leyland and Italian cypress have been widely planted in Arizona, it is imperative that Seiridium canker management strategies be applied and suitable resistant tree species be recommended for planting in the future. The Pathogen Seiridium canker is known to be caused by three different fungal species: Seiridium cardinale, S. cupressi and S. unicorne. S. cardinale is the most damaging of the three species and is SCHALAU found in California. S. unicorne and S. cupressi are found in the southeastern United States where the primary host is JEFF Leyland cypress. All three species produce asexual fruiting Figure 1. Leyland cypress tree with dead branch (upper left) and main leader bodies (acervuli) in cankers. The acervuli produce spores caused by Seiridium canker. (conidia) which spread by water, human activity (pruning and transport of infected plant material), and potentially insects, birds and animals to neighboring trees where new Symptoms and Signs infections can occur.
    [Show full text]
  • Achieving Effective Rhododendron Control by Investigating Novel Methods of Forest Vegetation Management
    Achieving effective Rhododendron control by investigating novel methods of forest vegetation management By Edward Daly Submitted in accordance with the requirements for the degree in Doctor of Philosophy Waterford Institute of Technology School of Science 2014 Abstract In Ireland one of the most serious invasive alien species which poses a threat to local biodiversity, particularly to our native woodlands, is Rhododendron ponticum L.. Rhododendron was first introduced to Ireland during the 19th century as an ornamental garden plant and has since become an established invasive species throughout Ireland. Rhododendron has also, in recent decades, become a significant management issue in plantation forests throughout Ireland. This study sets out to improve our understanding of the auto-ecology and invasion dynamics of rhododendron in Irish forests and to investigate control options to inform future rhododendron management plans. The study was divided into three broad areas. The first study sought to investigate the efficacy of a recently discovered Irish isolate of the fungal pathogen Chondrostereum purpureum as an inhibitor of rhododendron and Betula pendula (birch) sprouting in Ireland. The treated stumps were monitored for fungal colonisation and adventitious sprouting for the ensuing 18 months. The results demonstrated that a combination of mechanical cutting and the subsequent application of C. purpureum is not an effective method of vegetation management for either rhododendron or birch. As a successful primary invader, rhododendron is often found in areas when recent land management activities have taken place. Disturbed substrate coverage and the absence of predators provide rhododendron with optimum regeneration conditions. Many land management practices (particularly in a forestry situation) expose soil.
    [Show full text]
  • Cupressus Macrocarpa
    Cupressus macrocarpa COMMON NAME Macrocarpa FAMILY Cupressaceae AUTHORITY Cupressus macrocarpa Hartw. ex Gordon FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Trees & Shrubs - Gymnosperms NVS CODE CUPMAC HABITAT Terrestrial. regenerating bush and scrub near planted trees and hedgerows. FEATURES Cupressus macrocarpa. Photographer: Peter de Medium sized tree to about 36 metres. Has distinctive fluted trunk when Lange mature, bark is thick, reddish brown beneath often becoming whitish on the surface. Adult foliage comprises many small dark green scales closely appressed to the branchlets, but not flattened. Juvenile foliage more needle like, and not appressed. Male cones up to about 3 mm long, yellow and knobbly arising on the tips of the branches. Female cone are also terminal, rosette-like at first, becoming a rounded brown cone with 8-14 scales when mature. Usually 10-20 small seeds per cone scale. SIMILAR TAXA The scales closely appressed on mature plants, but stems not becoming flattened separate Cupressus from other conifers. There are several Cupressus species in cultivation in New Zealand but C. macrocarpa is by far the most common, and can be identified by the blunt leaves lacking resin glands, and the shining brown mature cones. FLOWER COLOURS No flowers YEAR NATURALISED 1904 Cupressus macrocarpa. Photographer: Peter de Lange ORIGIN Monterey Peninsula, California, N. America ETYMOLOGY cupressus: Classical name, said to be derived from the Greek kuo ‘to produce’ and pari ‘equal’, alluding to the symmetrical form of the Italian cypress; alternatively the name is derived from an ancient Latin word for box, the wood once being used for coffins. macrocarpa: Large fruit Reason For Introduction Forestry Life Cycle Comments Occasional and scattered cultivation escape in the vicinity of planted trees (Webb et al 1988).
    [Show full text]
  • Non-Expressway Master Plant List
    MASTER PLANT LIST GENERAL INTRODUCTION TO PLANT LISTS Plants are living organisms. They possess variety in form, foliage and flower color, visual texture and ultimate size. There is variation in plants of the same species. Plants change: with seasons, with time and with the environment. Yet here is an attempt to categorize and catalogue a group of plants well suited for highway and expressway planting in Santa Clara County. This is possible because in all the existing variety of plants, there still remains a visual, morphological and taxonomical distinction among them. The following lists and identification cards emphasize these distinctions. 1 of 6 MASTER PLANT LIST TREES Acacia decurrens: Green wattle Acacia longifolia: Sydney golden wattle Acacia melanoxylon: Blackwood acacia Acer macrophyllum: Bigleaf maple Aesculus californica: California buckeye Aesculus carnea: Red horsechestnut Ailanthus altissima: Tree-of-heaven Albizia julibrissin: Silk tree Alnus cordata: Italian alder Alnus rhombifolia: White alder Arbutus menziesii: Madrone Calocedrus decurrens: Incense cedar Casuarina equisetifolia: Horsetail tree Casuarina stricta: Coast beefwood Catalpa speciosa: Western catalpa Cedrus deodara: Deodar cedar Ceratonia siliqua: Carob Cinnamomum camphora: Camphor Cordyline australis: Australian dracena Crataegus phaenopyrum: Washington thorn Cryptomeria japonica: Japanese redwood Cupressus glabra: Arizona cypress Cupressus macrocarpa: Monterey cypress Eriobotrya japonica: Loquat Eucalyptus camaldulensis: Red gum Eucalyptus citriodora: Lemon-scented
    [Show full text]
  • Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
    Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm.
    [Show full text]
  • A Quantitative Assessment of Shoot Flammability for 60 Tree and Shrub Species Supports Rankings Based on Expert Opinion
    CSIRO PUBLISHING International Journal of Wildland Fire 2016, 25, 466–477 http://dx.doi.org/10.1071/WF15047 A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion Sarah V. WyseA,B,G, George L. W. PerryA,C, Dean M. O’ConnellD, Phillip S. HollandD, Monique J. WrightD, Catherine L. HostedD,E, Samuel L. WhitelockD, Ian J. GearyD,F, Ke´vinJ.L.MaurinD and Timothy J. CurranD ASchool of Environment, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand. BRoyal Botanic Gardens Kew, Wakehurst Place, RH17 6TN, UK. CSchool of Biological Sciences, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand. DEcology Department, Lincoln University, PO Box 85084, Lincoln 7647, Canterbury, New Zealand. EWai-Ora Forest Landscapes Ltd, 48 Watsons Road, Harewood 8051, Christchurch, New Zealand. FDepartment of Geology, University of Otago, PO Box 56 Dunedin 9054, New Zealand. GCorresponding author. Email: [email protected] Abstract. Fire is an important ecological disturbance in vegetated ecosystems across the globe, and also has considerable impacts on human infrastructure. Vegetation flammability is a key bottom-up control on fire regimes and on the nature of individual fires. Although New Zealand (NZ) historically had low fire frequencies, anthropogenic fires have considerably impacted indigenous vegetation as humans used fire extensively to clear forests. Few studies of vegetation flammability have been undertaken in NZ and only one has compared the flammability of indigenous plants; this was a qualitative assessment derived from expert opinion. We addressed this knowledge gap by measuring the flammability of terminal shoots from a range of trees and shrubs found in NZ.
    [Show full text]
  • L ;, SEGUNDO ENCUENTRO REGIONAL Clid
    ~~Rfsr. l/x",q,\;, SEGUNDO ENCUENTRO REGIONAL C.l.I.D. Gl... ~ ~ ) ~ . J AMERICA LATINA y EL CARIBE ~t- 1L..LJr\!JI- \ f ,", ~ul)('l\:7 SANTIAGO- CHILE 13 AL 17 DE MAYO 1985 FILIAL CORFO CANADA CHILE 111111111111111111 0002369 FORE TACION EN ZONAS ARIDAS y SEMIARIDAS ACTAS . ~o 1985 FORESTACION EN ZONAS ARIDAS y SEMIARIDAS Informe del Segundo Encuentro Regional de C.I.I.D., Am~rica Latina y el Caribe, realizado en Santiago, Chile, entre los días 13 y 17 de Hayo de 1985, or ganizado por el Instituto Foreetal, INFOR, Chile-;­ y auepiciado por el Csntro Internacional de Inves tigaciones para el Desarrollo, C.I.I.D. El Encueñ tro cont6 con la participaci6n de: Argentina Bolivia Brasil ColOlllbia Chile H~x1co Perú -. I 1 , Coordinadores Sr. Darele lIebb, Director Asocia do Ciencias Forestales C.I.I.D~ Sr. Sentiaso Barroa, Ingeniero Forestal, INFOR, Chile. IHDICE página DTRODUCCIOII 1 PROGRAHA DE EllCUElTRO 3 IIOHINA PIRTICIP&IITES 1 RESnMDIES DE TRABAJOS 10 TRlBl.JOS PRESEllTADOS 29 - COtIPORTAttIEIITO DE ProaopiB IIpp EII PETROLINA-PE (BRASIL) (RESULTADOS PRELIMIIIlRES) '; , fl,..) (' F 30 -Iv/,/I ••• lo INTRODUCCION [- (:)"1 ,,; ! ('. (. A 31 2. MATERIAL Y METODOS 32 3. RESULTADOS y DISCUSION 33 BIBLIOGRAFIA 35 - ENSAYOS EXPERIMENTALES COI EL GENERO PROSOPIS E INTRO DUCCION DE ESPECIES Y PROCEDENCUS EN LA ZONA IRIDI si CHURA 36 1. ANTECEDENTES 37 2. DIAGNOSTICO DE LA ZONA 39 2.1 Localización Geográfica del Ensayo 39 2.2 Clima 39 2.2.1 Temperaturas medias 39 2.2.2 Precipitaciones medias 40 2.3 Suelos 40 3. FLORA DE LA REGION COSTERA ARIDA DE PIURA 41 4.
    [Show full text]
  • MEMOIRE DE FIN D'etudes Evaluation De L'activité Antagoniste
    REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE BLIDA 1 FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE DEPARTEMENT DES BIOTECHNOLOGIES MEMOIRE DE FIN D’ETUDES En vue de l’obtention du diplôme de Master 2 Option : Biologie des Interactions Plantes-Microorganismes Présenté par : BOUKERCHAOUI Saliha Evaluation de l’activité antagoniste des filtrats de cultures d’un isolat de Trichoderma sp. Vis- à-vis de quelques champignons phytopathogénes Soutenu devant le jury : BENCHABANE M. Professeur U. Blida 1 Président AMMAD F. M.C.B. U. Blida 1 Promotrice BOUCHENAK F. M.C.B. U. Blida 1 Examinatrice YALA A. Doctorante U. Blida 1 Invitée ANNEE UNIVERSITAIRE 2016/2017 Remerciements Ce travail a été réalisé au niveau du laboratoire de mycologie du département des Biotechnologies de l’Université de Blida1. Et au laboratoire de mycologie à l’institut national de la protection des végétaux d’El Harrach (INPV). Je remercie, en premier lieu, ALLAH le tout puissant de m’avoir donné le courage, la force et la volonté pour bien mener ce travail. Au terme de ce travail, Je tiens à exprimer toute ma gratitude, ma reconnaissance et mes sincères remerciements à ma promotrice Mme Ammad F. d’avoir accepté de m’encadrer, diriger et donné la chance de travailler ce sujet, sa confiance, sa disponibilité et la générosité qu’elle a m’ont accordée pour faire avancer ce travail. Je remercie sincèrement Pr. BENCHABANE M de m’avoir honoré en acceptant de présider le jury de mon travail. Je remercie également à Mlle BOUCHENAK f.
    [Show full text]
  • Chondrostereum Purpureum As a Biological Control Agent
    Jan Lemola The efficacy of Chondrostereum purpureum as a biological control agent A comparative analysis of the decay fungus (Chondrostereum purpureum), a chemical herbicide and mechanical cutting to con- trol sprouting of broad-leaved tree species. Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Environmental Engineering Thesis 7. 11. 2014 Abstract Jan Lemola Author(s) The efficacy of Chondrostereum purpureum as a biological con- Title trol agent Number of Pages 33 pages + 3 appendices Date 7 November 2014 Degree Bachelor of Engineering Degree Programme Environmental Engineering Specialisation option Renewable Energy Instructor(s) Leena Hamberg, Researcher (Metla) Carola Fortelius, Lecturer (Metropolia) In forestry, manual control of broad-leaved trees is tedious and costly. To reduce costs, chemicals have been applied to keep these species in control. However, some chemicals are not recommended to use because of possibly adverse effects on the environment. Instead of chemicals, biological alternatives, such as a fungus, Chondrostereum purpureum, might be used to prevent sprouting. C. purpureum is a common decay fungus in Finland; it has been investigated at Metla, to find out whether it could be used as a bio- logical control agent against sprouting of broad-leaved tree species. This thesis project is related to the Metla research project. The aim of the thesis project is to investigate, how efficiently C. purpureum prevents sprouting of broad-leaved tree species such as birch, aspen, rowan and willow when compared to chemical treatment and mechanical cutting only, and whether C. purpureum is able to penetrate into the roots of these broad-leaved trees. In the field, freshly cut weed trees were inoculated with C.
    [Show full text]