Neck Pain? Eye Strain?

Total Page:16

File Type:pdf, Size:1020Kb

Neck Pain? Eye Strain? Do you suffer from Headaches? Neck pain? Eye strain? Ask your doctor about neurolens® Could your eyes be causing your symptoms? When the eyes are out of sync, or misaligned, it puts higher demand on the visual system. This additional demand can put stress on the trigeminal nerve - the largest and most complex nerve connected to the brain, and the one responsible for head and neck sensations. “Over the course of the last year my headaches have decreased by 90%, my neck tension is almost completely gone, my eye fatigue and dryness is gone, and overall my quality of life, my mood, everything has improved greatly. It is all due to the neurolenses.” —Derek Could your eyes be causing your symptoms? The digital world has dramatically shifted how we use our vision, requiring us to see up close more frequently. With the increased demand on our visual system, the occurance of symptoms such as dry eye, headaches, neck pain, and digital eyestrain has signifigantly increased. 65% of Americans experience 1 these symptoms on a daily basis. Headaches Discomfort with Computer Use Tired Eyes Dry Eye Neck or shoulder Sensation pain / stiffness Light Sensitivity Dizziness 1The Vision Council “Digital Eye Strain Report 2016.” http://www.thevisioncouncil.org/ digital-eye-strain-report-2016 neurolens® Measurement Device If the neurolens® measurement device detects an imbalance in your vision, your eye doctor is one of the select few equipped to prescribe a therapeutic lens to treat your misalignment. If you experience any of these symptoms, you may be a candidate for neurolenses: Headaches You get headaches of any severity each week (even just a dull ache counts). Your headaches tend to get worse later in the day. Your headaches are generally worse at work than they are at home or on the weekends. Stiffness or Pain in Neck/Shoulders Your neck gets stiff or sore when you work at a computer or read. This might even be from your posture. You get frequent massages/chiropractic adjustments. Discomfort with Computer Use You feel like you are more productive at work in the morning vs. the after- noon. Your eyes get tired, burn, or get red easily when you work at a computer for long hours. The neurolens® measurement device indentifies how much your eyes are over-compensating when working at distance, intermediate, and especially near. Tired Eyes Your eyes feel fatigued/ tired at the end of a workday. Your eyes generally feel better in the morning compared to end of the day. Dry Eye Sensation Your eyes and/or contacts tend to dry out when you are working on a computer or reading. Your eyes progressively feel more dry/sandy/ gritty as the day goes on. Light Sensitivity Driving at night is difficult because of glare from headlights. Fluorescent lights bother you in large spaces( grocery store, department store, etc.). Dizziness Riding in a car gives you motion sickness. You sometimes feel a sensation of vertigo or disconnect- edness from your environment. More than just lenses designed for computer use, neurolenses® are the first and only prescription lenses that add a contoured prism to bring the eyes into alignment. Contoured prism has been shown in studies to relieve the headaches, neck/shoulder pain and eyestrain that many people experience when using digital devices, reading or doing detail work. Why won’t traditional lenses help my symptoms? With a traditional pair of lenses, no correction is made to fix your misalignment, which forces your visual system to constantly compensate. This added work often results in symptoms. If left untreated, symptoms are unlikely to improve on their own. Lenses customized for your eyes neurolenses aim to relieve symptoms by bringing the eyes into proper alignment at all distances. neurolenses are digitally designed, digitally manufactured, and developed specifically to treat your symptoms. More than just lenses designed for computer use, neurolenses® are the first and only prescription lenses that add a contoured prism to bring the eyes into alignment. Contoured prism has been shown in studies to relieve the headaches, neck/shoulder pain and eyestrain that many people experience when using digital devices, reading or doing detail work. 93% of patients who have purchased neurolenses have found symptom relief. neurolens® Contoured Prism Design “I had a nagging, moderate headache at the end of most work days. After neurolenses, I could tell my symptoms were alleviated immediately.” —Jenna neurolens® technology equips doctors with a new, clinically-tested treatment option specifically designed for our increasingly digital world. As we become more dependent on digital devices and working up close, you can turn to your doctor for answers to your symptoms. To learn more about neurolens and if you are a candidate, ask your eye care provider today. Ask your doctor about neurolens® today Relief Is In Sight™ Visit neurolenses.com to learn more. MKT-9107 05202020.
Recommended publications
  • Hereditary Reversion Pigmentation of the Eyelids with Heterochromia of the Iris
    874 LEE MASTEN FRANCIS enucleated. The following report on the Other cells were round with hyper- specimen was submitted from the New chromatic nuclei; while scattered thruout York State Institute for the Study of the tumor were large deeply staining Malignant Diseases: cells with one or two nuclei but free from The gross appearance of a cross sec- pigment. There were apparently two tion of the eye shows a tumor lying in types of pigmented cells, the one a large the lower temporal quadrant of the eye, irregular cell with long protoplasmic evidently springing from the choroid processes densely filled with fine yellow- near the margin of the optic disc. This ish granules, evidently chromatophores. tumor measured 15x10 mm. and was The other type of pigmented cell was a slightly nodular irregular ovoid tumor. evidently a tumor cell of the type men- The surface appeared smooth, was dark tioned above but containing fewer gran- gray in color and was of a soft consist- ules than the chromatophores. Thruout ency. The retina was markedly detached the tumor were small areas of hemor- and contained a clear serous fluid. Cross rhage and between the cells could be section of the tumor mass showed a demonstrated here and there, free pig- deeply pigmented homogeneous surface. ment granules. Microscopically, the tumor varied as From this picture, we would make a to the cellular constituents. There were diagnosis of malignant melanoma, fre- areas showing many pigment cells and quently called melanosarcoma, but by other areas almost free from the same. some authorities considered as melanotic The tumor was very vascular showing many fine capillaries around which in carcinoma.
    [Show full text]
  • Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
    Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder
    [Show full text]
  • Blue Light and Your Eyes
    Blue Light and Your Eyes What is blue light? 211 West Wacker Drive, Suite 1700 Sunlight is made up of red, orange, yellow, green, blue, indigo and Chicago, Illinois 60606 violet light. When combined, it becomes the white light we see. 800.331.2020 Each of these has a different energy and wavelength. Rays on the PreventBlindness.org red end have longer wavelengths and less energy. On the other end, blue rays have shorter wavelengths and more energy. Light that looks white can have a large blue component, which can expose the eye to a higher amount of wavelength from the blue end of the spectrum. Where are you exposed to blue light? The largest source of blue light is sunlight. In addition, there are many other sources: • Fluorescent light • CFL (compact fluorescent light) bulbs • LED light • Flat screen LED televisions • Computer monitors, smart phones, and tablet screens Blue light exposure you receive from screens is small compared to the amount of exposure from the sun. And yet, there is concern over the long-term effects of screen exposure because of the close proximity of the screens and the length of time spent looking at them. According to a recent NEI-funded study, children’s eyes absorb more blue light than adults from digital device screens. This publication is copyrighted. This sheet may be reproduced—unaltered in hard print (photocopied) for educational purposes only. The Prevent Blindness name, logo, telephone number and copyright information may not be omitted. Electronic reproduction, other reprint, excerption or use is not permitted without written consent.
    [Show full text]
  • The Visual System: Higher Visual Processing
    The Visual System: Higher Visual Processing Primary visual cortex The primary visual cortex is located in the occipital cortex. It receives visual information exclusively from the contralateral hemifield, which is topographically represented and wherein the fovea is granted an extended representation. Like most cortical areas, primary visual cortex consists of six layers. It also contains, however, a prominent stripe of white matter in its layer 4 - the stripe of Gennari - consisting of the myelinated axons of the lateral geniculate nucleus neurons. For this reason, the primary visual cortex is also referred to as the striate cortex. The LGN projections to the primary visual cortex are segregated. The axons of the cells from the magnocellular layers terminate principally within sublamina 4Ca, and those from the parvocellular layers terminate principally within sublamina 4Cb. Ocular dominance columns The inputs from the two eyes also are segregated within layer 4 of primary visual cortex and form alternating ocular dominance columns. Alternating ocular dominance columns can be visualized with autoradiography after injecting radiolabeled amino acids into one eye that are transported transynaptically from the retina. Although the neurons in layer 4 are monocular, neurons in the other layers of the same column combine signals from the two eyes, but their activation has the same ocular preference. Bringing together the inputs from the two eyes at the level of the striate cortex provide a basis for stereopsis, the sensation of depth perception provided by binocular disparity, i.e., when an image falls on non-corresponding parts of the two retinas. Some neurons respond to disparities beyond the plane of fixation (far cells), while others respond to disparities in front of the plane of the fixation (near cells).
    [Show full text]
  • Visual Stimulation Activities for Infants and Toddlers
    National Institute for the Mentally Handicapped VISUAL STIMULATION ACTIVITIES FOR INFANTS AND TODDLERS A GUIDE TO PARENTS AND CAREGIVERS DR. AMAR Jyoihi PERShA Ms. K.R.NAWVi National Institute for the Mentally Handicapped (Ministryof Social Justice & Empowerment, Government of India) Manovikasnagar, Secunderabad - 500 009, Andhra Pradesh, INDIA. Grams : MANOVIKAS Phone : 040-27751741 Fax :040-27750198 E-mail : [email protected] Website : www.nimhindia.org VISUAL STIMULATION ACTIVITIES FOR INFANTS AND TODDLERS Authors : Dr. Amar Jyothi Persha, Ms. K.R. Nawvi Copyright 2004 National Institute for the Mentally Handicapped Secunderabad - 500 009. All rights Reserved. ISBN 81 89001 02 7 Designing Ramana Chepuri, Ramesh Chepuri, Ramaswamy, Secunderabad - 500 003. Ph : 040-55762484 Printed by : Sree Ramana Process Pvt. Ltd., Secunderabad - 500 003. Ph : 040-27811750 ,&ii1iti iiiificti icçiIii FP-1T1 (i1 1TfTftrr Icl1,'T NATIONALINSTITUTE FOR THE Dr.L. GOVINDA RAO MENTALLYHANDICAPPED irector (Ministry of Social Justice and Empowerment, Government of India) FOREWORD This book is an outcome of the project titled "Development of stimulation activities for visually impaired infants and toddlers". Studies show that there are six lakh children born with visual problem each year, among them almost 80% have a residual visual capacity. The visual system gives us a variety of information about the environment, which is necessary for learning and acquiring skills for daily living. Vision is the sense that reveals the mystery of the world to the child. The eyes are the outgrowth of the brain and they parallel the development and growth of the brain in the first few months of life. Visual system matures rapidly as the brain does in these early years of life.
    [Show full text]
  • Eyemed Blue Light
    BLUE LIGHT: FREQUENTLY ASKED QUESTIONS From ZZZs to disease, the blue light battle is on It’s indisputable: our eyes are overexposed to digital devices like never before. And in the background hides potentially harmful blue light that may affect our sleep, or even cause long-term vision issues. But, here’s some good news — you can act now to potentially minimize vision issues later with advanced lens filtering technology formulated to guard your eyes. Q: WHAT IS BLUE LIGHT? A: Blue light is a natural part of the light spectrum visible to the human eye; it can come from fluorescent lighting, electronic screens, and of course, the sun. By day, blue light can be associated with boosted mood and attention, but by night, it can be a culprit of interrupted sleep. 1 Q: HOW DOES BLUE LIGHT INTERRUPT SLEEP? A: Researchers know that exposure to light at night suppresses the secretion of melatonin, a hormone that tells us when it is time to sleep. And an extended lack of deep sleep has been linked to depression and a decline in the body’s ability to fight off certain diseases. 1 Q: CAN BLUE LIGHT EXPOSURE CAUSE LONG-TERM DAMAGE TO MY EYESIGHT? A: In addition to disrupting sleep, blue light has been found to contribute to retinal stress, which could lead to an early onset of age-related macular degeneration (AMD).2 Macular degeneration deteriorates healthy cells within the macula, creating a loss of central vision that may impact reading, writing, driving, color perception and other cognitive functions. In serious cases, blindness can occur.
    [Show full text]
  • Olfaction Modulates Ambiguous Visual Motion Perception
    OPEN Smelling directions: Olfaction modulates SUBJECT AREAS: ambiguous visual motion perception HUMAN BEHAVIOUR Shenbing Kuang & Tao Zhang PERCEPTION MOTION State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. OLFACTORY CORTEX Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have Received documented enhanced olfactory performance with concurrent presence of congruent color- or shape- 27 February 2014 related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory Accepted pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual 3 July 2014 motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We Published showed that, after introducing an association between motion directions and olfactory cues, olfaction could 23 July 2014 indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. Correspondence and requests for materials n our daily life, we are constantly exposed to multiple sensory inputs from different sensory modalities of should be addressed to varying reliability. Yet we could effortless integrate these parallel sensory signals and maintain a unified T.Z. (taozhang@psych. I perception that allows us to interact with the external world.
    [Show full text]
  • Taking Care of Our Eyes in the 21St Century Presented By: Carla Haynal Proprietary and Confidential | 1 HOW HAS the 21ST CENTURY AFFECTED OUR EYES?
    Taking Care of Our Eyes in the 21st Century Presented by: Carla Haynal Proprietary and Confidential | 1 HOW HAS THE 21ST CENTURY AFFECTED OUR EYES? • Lots of apps, social media, smartphones, and tablets • Time is spent looking at screens and not outside • More close-up work Proprietary and Confidential | 2 HOW HAS THE 21ST CENTURY AFFECTED OUR EYES? • Digital eye strain • Increased cases of myopia (nearsightedness) • Unprotected UV ray exposure Proprietary and Confidential | 3 DIGITAL EYE STRAIN DIGITAL EYE STRAIN • Digital eye strain is the physical discomfort felt after prolonged exposure to digital screens. • The light intensity increases the closer our eyes are to the source, so it’s important to maintain your digital distance. Proprietary and Confidential | 5 SYMPTOMS OF DIGITAL EYE STRAIN • Sore, tired, burning or itching eyes • Watery or dry eyes • Blurred or double vision • Headache • Sore neck, shoulders, or back • Increased light sensitivity • Difficulty concentrating • Feeling that you cannot keep your eyes open Proprietary and Confidential | 6 DIGITAL EYE STRAIN ProprietaryProprietary andand ConfidentialConfidential || 77 DIGITAL EYE STRAIN Millennials GenXers Boomers 40% 60% 25% use devices use devices use devices 9 hours a day 9 hours a day 9 hours a day Proprietary and Confidential | 8 DIGITAL EYE STRAIN KEEP AN Reduce exposure with INCREASE BLUE LIGHT- ARM’S FONT SIZE REDUCING on digital devices LENGTH eyewear from computer 20 | 20 | 20 Every 20 minutes, look 20 feet away for 20 seconds. Proprietary and Confidential | 9 WHAT IS BLUE LIGHT? BLUE LIGHT • Blue light is the highest energy portion of visible light. • The sun, smart phones, tablets, computer monitors, TVs, and LED and CFL all emit blue light.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • Assessing the Factors and Prevalence of Digital Eye Strain Among Digital
    Int J Med. Public Health. 2021; 11(1):19-23. A Multifaceted Peer Reviewed Journal in the field of Medicine and Public Health Original Article www.ijmedph.org | www.journalonweb.com/ijmedph Assessing the Factors and Prevalence of Digital Eye Strain among Digital Screen Users using a Validated Questionnaire – An Observational Study Shashi Ahuja1,*, Mary Stephen1, Naveen Ranjith1, Parthiban2 ABSTRACT Introduction: Digital screen usage has grown up rampantly and various ocular complaints arise as a result of the same. Digital eye strain causes constant trouble to people with prolonged digital screen usage and this study was done to find the factors in digital screen that could be modified to reduce the eye strain.Methods: In this study a validated questionnaire was used among computer users and various symptoms people experienced were analysed. Dry eye test i.e. Schirmer’s tests I and II were performed in all the study subjects and dry eye was confirmed among the users. Results: In our study grittiness was the most common complaint and questionnaire employed in this study was 85 % sensitive and 72 % specific for identifying Digital eye strain. It also has a high positive predictive value of 85.6% in identifying dry eye among the users. In this study it has been found that almost all people with computer screen usage of >5 hr had symptoms of dry eye and also test positive for the same. Conclusion: Digital eye strain present most commonly as minor complaints like grittiness of eyes and more symptoms are seen in people who used contact lens and used digital screen for prolonged duration.
    [Show full text]
  • Rapid Evolution of the Visual System: a Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat
    The Journal of Neuroscience, January 1993, 13(l): 208-229 Rapid Evolution of the Visual System: A Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat Robert W. Williams,’ Carmen Cavada,2 and Fernando Reinoso-Suhrez* ‘Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163 and *Departamento de Morfologia, Facultad de Medicina, Universidad Aut6noma de Madrid, 28029 Madrid, Spain The large Spanish wildcat, Fe/is silvestris tartessia, has re- and important topic, it has been difficult to study the process tained features of the Pleistocene ancestor of the modern of brain evolution in any detail. Our approach has been to domestic cat, F. catus. To gauge the direction and magnitude identify a pair of closely related living species,one from a highly of short-term evolutionary change in this lineage, we have conservative branch that has retained near identity with the compared the retina, the optic nerve, and the dorsal lateral ancestral species,and the other from a derived branch that has geniculate nucleus (LGN) of Spanish wildcats and their do- undergone rapid evolutionary change. The recent recognition mestic relatives. Retinas of the two species have the same that evolution and speciationcan occur in short bursts separated area. However, densities of cone photoreceptors are higher by long interludes of stasisprovides a sound theoretical basis in wildcat-over 100% higher in the area centralis-where- for a search for such pairs (Schindewolf, 1950; Eldredge and as rod densities are as high, or higher, in the domestic lin- Gould, 1972; Stanley, 1979; Gould and Eldredge, 1986).
    [Show full text]
  • Neck Pain Exercises
    Information and exercise sheet NECK PAIN Neck pain usually gets better in a few weeks. You with your shoulders and neck back. Don’t wear a neck can usually treat it yourself at home. It’s a good idea collar unless your doctor tells you to. Neck pain usually to keep your neck moving, as resting too much could gets better in a few weeks. Make an appointment with make the pain worse. your GP or a physiotherapist if your pain does not improve, or you have other symptoms, such as: This sheet includes some exercises to help your neck pain. It’s important to carry on exercising, even • pins and needles when the pain goes, as this can reduce the chances • weakness or pain in your arm of it coming back. Neck pain can also be helped by • a cold arm sleeping on a firm mattress, with your head at the • dizziness. same height as your body, and by sitting upright, Exercises Many people find the following exercises helpful. 1 If you need to, adjust the position so that it’s comfortable. Try to do these exercises regularly. Do each one a few times to start with, to get used to them, and gradually increase how much you do. 1. Neck stretch Keeping the rest of the body straight, push your chin forward, so your throat is stretched. Gently tense your neck muscles and hold for five seconds. Return your head to the centre and push it backwards, keeping your chin up. Hold for five seconds. Repeat five times.
    [Show full text]