The Digital Eye Strain FINAL Jan 2020

Total Page:16

File Type:pdf, Size:1020Kb

The Digital Eye Strain FINAL Jan 2020 2/2/20 Digital use around the World The Digital Eyestrain EXPLOSION! KRIS KERESTAN GARBIG, O.D. [email protected] 2 3 Mobile Device use Digital Device usage § 30% of all adults are High users spending 9+ hrs. per day § 45% in 2012 § 61% use 5+ hrs. per day § 67% 2019 § 47% of US smartphone users say they couldn’t live without their devices § Over 80% use at least 2 hrs. per day § 66% of smartphone users are addicted to their phones § 67% of internet users worldwide visit the web on their phone § 67% use 2 devices simultaneously 4 5 Internet Use Digital Device Sources § Average time spent ONLINE is 6 hours 42 minutes per day which § 77% TV equates to close to 100 days of ONLINE time each year for every § 69% Smart Phone internet user § 58% Laptop § 52% Desktop § 58% stream TV § 43% TaBlet § 30% stream gaming content § 17% Video game console § 23% watch live streams of gaming content § 67% use 2 devices simultaneously § 16% watch sporting tournaments 6 7 1 2/2/20 Activities using Digital Devices Digital Device Impact Gen. Z (Born between 1997-2010) § 57% “Alarm clock” § 54% Weather § Learned to use technology at a age young § 44% Work § Continually “Connected”… § 43% Recreational Reading Snap chat, Instagram, Twitter, FB, others??? § 26% Meal Preparation/Recipes § 32% Travel/Flight/Ticketing § Operate appliances, garage doors, lights, etc. § Unlimited Apps 8 9 But wait…Generation Alpha! AOA's American Eye-Q Survey Born after 2011 § Kids connected longer than parents think § Grow up with I-pads in hand § Will never live without a smartphone 80% use electronic devices 2+ hrs. per day § Able to transfer a thought online in secs. § 78% of parents are concerned § Most transformative generation ever § Only 29% have Back to school eye exams § Will spend 95% of life on a device 10 11 Risks of Digital Device Usage in Children Use of Devices in the Classroom § Increased Myopia § Schools are incorporating Digital Devices, 3-D § Prolonged Near range activities imaging and the latest computer applications into § Decreased exposure to Natural Outdoor light * their daily curriculum… § Long term Blue Light exposure § WHY???? § High Energy visiBle UV penetrates deeper into the eye • Learn faster • Concentrate Better § Macular Degeneration • Retain Better § Cataracts 12 13 2 2/2/20 Classroom Research Kids and Digital Eye Strain § Between 75-90% of ALL Learning is Visual! § 46% increase in student engagement § 21% increase in test scores § 80% of kids report Digital Eye Strain symptoms § Tired § Increase motivation, attention, participation § Burning § Decrease Behavior proBlems § Itchy § Blurred vision 14 15 The Digital Disconnect Millennials / Gen. Y (Born 1977-1997): § 38% spend at least nine hours on digital devices each day § 82% report symptoms of digital eye strain § Average time spent on Digital devices is 6 hours § 90% own a smartphone § 68% less likely than other generations to own a television 16 17 Boomers (Born 1946-1964): Gen X (Born 1965-1976): § 26% spend 9 hours on digital devices each day § 76% experience digital eye strain § 32% spend 9+ hours on digital devices each day § 40% say they would wear computer eyewear if an eye care provider informed them of the potential danger of blue light § 79% report symptoms of digital eye strain emitted from digital devices § 74% report not knowing aBout blue light damage § 81% are more likely to own a TV compared to other age § 48% more likely to own taBlets 18 19 3 2/2/20 Adults and Digital Eyestrain Impact on Children and Teens § Complex of symptoms associated with Digital device usage § Affects 80% of ALL American users § Reduced attention span (15.2 %) § Poor Behavior (13.3 %) § Eye Strain 33% § Neck, Shoulder, Back pain 35% § IrritaBility (13.5 %) § Blurred Vision 28% § Eye strain, dry or irritated eyes (9.1 %) § Headache 27% § Headaches (8.8 %) § Dry Eye 27% (Reduced Blinking) § Neck/shoulder pain (5 %) 20 21 Tear Physiology What they don’t know can hurt them! Research Study § 72% of adults are unaware of the potential dangers of blue light to § Office workers who experience digital eyestrain eyes undergo physiological changes in tear fluid similar to § 32% of adults do not take any people with dry eye. action to reduce symptoms of § Normal Blink Rate = 18 X min. digital eye strain § Digital use drops By half = 7- 8 X min. 22 23 DES: Causes/Solutions DES: Causes/Solutions 1. Text on a Screen 2. Excessive Usage Time Constant refocusing in front and Behind screen 62% usage of 5+ hrs/day resulting in dry tired eyes causing Blur, eyestrain and HA § Solution § Solution • Increase text size • Unplug! At least 2 hours Before Bed (80% use 1 hr prior to bed) • Enhance contrast and Brightness • Follow the 20/20/20 Rule (Only 14% take Breaks) • Glare filter • Remind yourself to Blink • Keep screen cleaned 24 25 4 2/2/20 DES: Causes/Solutions DES: Causes/Solutions 3. Workstation Distance and Setup 4. Pre-existing Vision Issues Close and Intermediate range • Refractive issues • Near/Intermediate correction required? § Solution • Dry Eye • Adjust distance to arms length (Palm to screen) • Decrease overhead and surrounding light § Solution • Tilt screen to minimize glare • Correct refractive issues • Drop screen height to just Below eye level • Treat Dry Eye - keep drops By computer • Blink Exercises 26 27 DES: Causes/Solutions So what is Blue Light anyway? 5. Glare and Blue Light § HEV light that appears white, But has a large Blue light component Reflection off walls and screens § Exposes the eye to hidden spikes in intensity at wavelengths within the blue portion of the spectrum. (400 to 450nm) § Solution § Emitted By digital devices and modern day lighting • Front and Back surface AR • Anti-Glare screen monitor • Adjust Room Lighting (Lamps vs. Overhead lights) 28 29 Blue Light Research § Cumulative and constant exposure to Blue light can damage retinal cells resulting in irreversiBle damage • Macular degeneration • Cataracts 30 31 5 2/2/20 Benefits of Blue Light? Blue Light and Sleep § Frequent exposure to Blue Light at Bedtime excites the Brain § Color vision and perception and prevents falling into natural restorative sleep. § EstaBlishes natural circadian rhythms and sleep-wake § Blocks production of Melatonin cycles in the human Body By aiding in cognitive functions § Night Shift Iphones § Alertness § SleepShield § Memory § Twilight § Emotion Regulation § LowBlueLights § Mood § BioBrite 32 33 Teenage Boy Sleep Study Blue Blocking vs. UV Blocking § 13 teens between 15 -17 yrs § Individuals with sleep difficulty were divided into two groups who § 1 week wearing Blue Blocking lenses between 6pm - bed wore lenses 3 hrs prior to bed. § 1 week wearing Clear lenses between 6pm - bed § Blue-blocking – AmBer tinted lenses § Ultraviolet Blocking - Yellow-tinted lenses Conclusion: § Participants who wore the blue-blocking glasses observed : § Felt sleepier with Blue Blockers § 50% increase in sleep quality § Higher Melatonin levels measured in saliva with Blue Blockers § 40% happier after they woke up 34 35 Blue Blockers and Melatonin Production Digital Devices and Dryness § Melatonin level production was measured after wearing § Decreased Blink rate from 18X minute to 7-8 X minute Sunglasses vs Blue Blockers: § Poor tear film staBility § Regular sunglasses - 46% decrease in melatonin § Major cause of CL dropout (20% over past 10 years) § Blue-blocking glasses - 6% increase in melatonin 36 37 6 2/2/20 Specialized Eyewear…Options Digital eyewear usage to consider… Top 3 reasons individuals report not using § How much Time is spent in front of the computer? eyewear for digital device usage § What is your Distance from the computer? 1. They don’t think they’re necessary § What other Viewing distances are required? 2. Their eyecare provider didn’t recommend using eyewear § What are the Surrounding light conditions? 3. They are too expensive § What Type of computer work is being done? 38 39 Digital Lens Types Digital Lens TECHNOLOGY § SV lenses at computer working distance - Usually +0.50 over Distance § With or without a prescription § Computer Office designs- wide intermediate and near with limited distance § Allows eyes to relax and adjust to intermediate-distance objects § Book, Desk (the Majority) and Room § Progressives- Limited function § Reduces glare during prolonged use of digital devices § Allows for relaxation, sharper focus and reduced Blur and pixilation 73.5% of Americans do not know eyewear can be used to reduce blue light exposure and combat digital eye strain. 40 41 Digital Lens TREATMENTS § Traditional AR § Reduces reflection and glare from indoor and outdoor lighting § Blue Blocking AR § Crizal No-Glare Lenses § Reduces reflection while Blocking out potentially harmful HEV light § Eye-Sun Protection Factor (E-SPF®) of 25 § Provencia § Lenses protect your eyes from harmful UV rays § Blue Protect 25 times more than if you weren’t wearing glasses at all 42 43 7 2/2/20 Zeiss BlueProtect Hi-Vision BlueControl • Reflects parts of the Blue-violet light emitted from § Enhanced contrast, improving LEDs as well as TV, computer or tablet screens, preventing it from entering the eye. clarity and color perception § Reduced glare for more • Reduces the transmission in the spectrum of 380–455 comfortaBle and relaxed vision nm (blue light hazard) while keeping the high § Reduced Blue light, preventing transmission level aBove 460 nm eye strain and fatigue 44 45 Digital Lens TREATMENTS § Colored Filters § “Protection the way Nature Intended” § Filters out harmful Blue and violet light § Prevention
Recommended publications
  • Hereditary Reversion Pigmentation of the Eyelids with Heterochromia of the Iris
    874 LEE MASTEN FRANCIS enucleated. The following report on the Other cells were round with hyper- specimen was submitted from the New chromatic nuclei; while scattered thruout York State Institute for the Study of the tumor were large deeply staining Malignant Diseases: cells with one or two nuclei but free from The gross appearance of a cross sec- pigment. There were apparently two tion of the eye shows a tumor lying in types of pigmented cells, the one a large the lower temporal quadrant of the eye, irregular cell with long protoplasmic evidently springing from the choroid processes densely filled with fine yellow- near the margin of the optic disc. This ish granules, evidently chromatophores. tumor measured 15x10 mm. and was The other type of pigmented cell was a slightly nodular irregular ovoid tumor. evidently a tumor cell of the type men- The surface appeared smooth, was dark tioned above but containing fewer gran- gray in color and was of a soft consist- ules than the chromatophores. Thruout ency. The retina was markedly detached the tumor were small areas of hemor- and contained a clear serous fluid. Cross rhage and between the cells could be section of the tumor mass showed a demonstrated here and there, free pig- deeply pigmented homogeneous surface. ment granules. Microscopically, the tumor varied as From this picture, we would make a to the cellular constituents. There were diagnosis of malignant melanoma, fre- areas showing many pigment cells and quently called melanosarcoma, but by other areas almost free from the same. some authorities considered as melanotic The tumor was very vascular showing many fine capillaries around which in carcinoma.
    [Show full text]
  • Blue Light and Your Eyes
    Blue Light and Your Eyes What is blue light? 211 West Wacker Drive, Suite 1700 Sunlight is made up of red, orange, yellow, green, blue, indigo and Chicago, Illinois 60606 violet light. When combined, it becomes the white light we see. 800.331.2020 Each of these has a different energy and wavelength. Rays on the PreventBlindness.org red end have longer wavelengths and less energy. On the other end, blue rays have shorter wavelengths and more energy. Light that looks white can have a large blue component, which can expose the eye to a higher amount of wavelength from the blue end of the spectrum. Where are you exposed to blue light? The largest source of blue light is sunlight. In addition, there are many other sources: • Fluorescent light • CFL (compact fluorescent light) bulbs • LED light • Flat screen LED televisions • Computer monitors, smart phones, and tablet screens Blue light exposure you receive from screens is small compared to the amount of exposure from the sun. And yet, there is concern over the long-term effects of screen exposure because of the close proximity of the screens and the length of time spent looking at them. According to a recent NEI-funded study, children’s eyes absorb more blue light than adults from digital device screens. This publication is copyrighted. This sheet may be reproduced—unaltered in hard print (photocopied) for educational purposes only. The Prevent Blindness name, logo, telephone number and copyright information may not be omitted. Electronic reproduction, other reprint, excerption or use is not permitted without written consent.
    [Show full text]
  • Eyemed Blue Light
    BLUE LIGHT: FREQUENTLY ASKED QUESTIONS From ZZZs to disease, the blue light battle is on It’s indisputable: our eyes are overexposed to digital devices like never before. And in the background hides potentially harmful blue light that may affect our sleep, or even cause long-term vision issues. But, here’s some good news — you can act now to potentially minimize vision issues later with advanced lens filtering technology formulated to guard your eyes. Q: WHAT IS BLUE LIGHT? A: Blue light is a natural part of the light spectrum visible to the human eye; it can come from fluorescent lighting, electronic screens, and of course, the sun. By day, blue light can be associated with boosted mood and attention, but by night, it can be a culprit of interrupted sleep. 1 Q: HOW DOES BLUE LIGHT INTERRUPT SLEEP? A: Researchers know that exposure to light at night suppresses the secretion of melatonin, a hormone that tells us when it is time to sleep. And an extended lack of deep sleep has been linked to depression and a decline in the body’s ability to fight off certain diseases. 1 Q: CAN BLUE LIGHT EXPOSURE CAUSE LONG-TERM DAMAGE TO MY EYESIGHT? A: In addition to disrupting sleep, blue light has been found to contribute to retinal stress, which could lead to an early onset of age-related macular degeneration (AMD).2 Macular degeneration deteriorates healthy cells within the macula, creating a loss of central vision that may impact reading, writing, driving, color perception and other cognitive functions. In serious cases, blindness can occur.
    [Show full text]
  • Taking Care of Our Eyes in the 21St Century Presented By: Carla Haynal Proprietary and Confidential | 1 HOW HAS the 21ST CENTURY AFFECTED OUR EYES?
    Taking Care of Our Eyes in the 21st Century Presented by: Carla Haynal Proprietary and Confidential | 1 HOW HAS THE 21ST CENTURY AFFECTED OUR EYES? • Lots of apps, social media, smartphones, and tablets • Time is spent looking at screens and not outside • More close-up work Proprietary and Confidential | 2 HOW HAS THE 21ST CENTURY AFFECTED OUR EYES? • Digital eye strain • Increased cases of myopia (nearsightedness) • Unprotected UV ray exposure Proprietary and Confidential | 3 DIGITAL EYE STRAIN DIGITAL EYE STRAIN • Digital eye strain is the physical discomfort felt after prolonged exposure to digital screens. • The light intensity increases the closer our eyes are to the source, so it’s important to maintain your digital distance. Proprietary and Confidential | 5 SYMPTOMS OF DIGITAL EYE STRAIN • Sore, tired, burning or itching eyes • Watery or dry eyes • Blurred or double vision • Headache • Sore neck, shoulders, or back • Increased light sensitivity • Difficulty concentrating • Feeling that you cannot keep your eyes open Proprietary and Confidential | 6 DIGITAL EYE STRAIN ProprietaryProprietary andand ConfidentialConfidential || 77 DIGITAL EYE STRAIN Millennials GenXers Boomers 40% 60% 25% use devices use devices use devices 9 hours a day 9 hours a day 9 hours a day Proprietary and Confidential | 8 DIGITAL EYE STRAIN KEEP AN Reduce exposure with INCREASE BLUE LIGHT- ARM’S FONT SIZE REDUCING on digital devices LENGTH eyewear from computer 20 | 20 | 20 Every 20 minutes, look 20 feet away for 20 seconds. Proprietary and Confidential | 9 WHAT IS BLUE LIGHT? BLUE LIGHT • Blue light is the highest energy portion of visible light. • The sun, smart phones, tablets, computer monitors, TVs, and LED and CFL all emit blue light.
    [Show full text]
  • Assessing the Factors and Prevalence of Digital Eye Strain Among Digital
    Int J Med. Public Health. 2021; 11(1):19-23. A Multifaceted Peer Reviewed Journal in the field of Medicine and Public Health Original Article www.ijmedph.org | www.journalonweb.com/ijmedph Assessing the Factors and Prevalence of Digital Eye Strain among Digital Screen Users using a Validated Questionnaire – An Observational Study Shashi Ahuja1,*, Mary Stephen1, Naveen Ranjith1, Parthiban2 ABSTRACT Introduction: Digital screen usage has grown up rampantly and various ocular complaints arise as a result of the same. Digital eye strain causes constant trouble to people with prolonged digital screen usage and this study was done to find the factors in digital screen that could be modified to reduce the eye strain.Methods: In this study a validated questionnaire was used among computer users and various symptoms people experienced were analysed. Dry eye test i.e. Schirmer’s tests I and II were performed in all the study subjects and dry eye was confirmed among the users. Results: In our study grittiness was the most common complaint and questionnaire employed in this study was 85 % sensitive and 72 % specific for identifying Digital eye strain. It also has a high positive predictive value of 85.6% in identifying dry eye among the users. In this study it has been found that almost all people with computer screen usage of >5 hr had symptoms of dry eye and also test positive for the same. Conclusion: Digital eye strain present most commonly as minor complaints like grittiness of eyes and more symptoms are seen in people who used contact lens and used digital screen for prolonged duration.
    [Show full text]
  • Blue Light and Digital Eye Strain Educating Patients and Providing Solutions
    Blue Light and Digital Eye Strain Educating Patients and Providing Solutions Anne-Marie Lahr, OD Dangers of Blue Light Dangers of blue light Ocular discomfort Interruption of sleep patterns and circadian rhythms Link between blue light exposure and macular degeneration Increased prevalence of blue light Solutions for Protection What Is Blue Light? Visible Light Spectrum 390 nm to 750 nm Blue Light 380 nm – 500 nm High Energy Visible HEV Blue Light is All Around Us The Tablet Revolution The Tablet Revolution April 2010: First iPad released A family portable computer Held at 12-24 inched from eyes Backlit display Moving into schools Outselling computers Same apps as the Smartphones Easier to read on than iPhone 35% of Americans own a tablet Digital Usage The Age of Digital Devices Typical Viewing Distances for New Media Devices 2 to 4 ft As the day 12 to 24 in progresses..we actually move closer to the back lit devices because our focusing system begins to 'lock-up'...bringing 12 to 18 in the device closer in order to keep the muscle in focus..... In turn, adding even more stress! Effects of Chromatic Aberration When light from a small white object is refracted by a prism, it is dispersed into its monochromatic constituents, the blue wavelengths being deviated more than the red To an eye viewing through the prism, the image of the object appears fringed with blue on the apex side of the prism Images: Nikon Courtesy of Mark Mattison-Shupnick Our Eyes and Digital Devices Our eyes can properly focus on images and print on back-lit digital devices.
    [Show full text]
  • FY2022 NIH, NEI Funding
    Iris M. Rush, CAE Executive Director Association for Research in Vision and Ophthalmology [email protected]; 240-221-2906 TESTIMONY SUPPORTING INCREASED FISCAL YEAR 2022 FUNDING FOR THE NATIONAL INSTITUTES OF HEALTH (NIH) AND NATIONAL EYE INSTITUTE (NEI) LABOR, HEALTH AND HUMAN SERVICES, EDUCATION AND RELATED AGENCIES SUBCOMMITTEE OF THE HOUSE COMMITTEE ON APPROPRIATIONS May 19, 2021 EXECUTIVE SUMMARY The Association for Research in Vision and Ophthalmology (ARVO), on behalf of the eye and vision research community, thanks Congress, especially the House and Senate LHHS Appropriations Subcommittees, for the strong bipartisan support for the National Institutes of Health (NIH) funding increases from Fiscal Year (FY) 2016 through FY2021. This past investment in NIH has improved our understanding of fundamental life and health sciences and prepared the nation to combat unprecedented health threats, including COVID-19. To maintain this momentum in FY2022, ARVO strongly supports $51 billion in NIH funding as proposed by President Biden, including no less than $46.1 billion for NIH’s base program level budget (absent proposed funding for the Advanced Research Projects Agency–Health [ARPA-H]), an increase of at least $3.177 billion or 7.4%, which would allow NIH’s base budget to keep pace with the Biomedical Research and Development Price Index (BRDPI) and allow for 5% growth. This increase will support promising science across all Institutes and Centers (ICs), ensure continued Innovation Account funding established through the 21st Century Cures Act for special initiatives, and support early-stage investigators. Along with partners and other scientific societies, ARVO also urges one-time emergency funding for federal agency “research recovery” investment to enable NIH to mitigate pandemic-related disruptions without foregoing promising new science.
    [Show full text]
  • Visual Impairment Age-Related Macular
    VISUAL IMPAIRMENT AGE-RELATED MACULAR DEGENERATION Macular degeneration is a medical condition predominantly found in young children in which the center of the inner lining of the eye, known as the macula area of the retina, suffers thickening, atrophy, and in some cases, watering. This can result in loss of side vision, which entails inability to see coarse details, to read, or to recognize faces. According to the American Academy of Ophthalmology, it is the leading cause of central vision loss (blindness) in the United States today for those under the age of twenty years. Although some macular dystrophies that affect younger individuals are sometimes referred to as macular degeneration, the term generally refers to age-related macular degeneration (AMD or ARMD). Age-related macular degeneration begins with characteristic yellow deposits in the macula (central area of the retina which provides detailed central vision, called fovea) called drusen between the retinal pigment epithelium and the underlying choroid. Most people with these early changes (referred to as age-related maculopathy) have good vision. People with drusen can go on to develop advanced AMD. The risk is considerably higher when the drusen are large and numerous and associated with disturbance in the pigmented cell layer under the macula. Recent research suggests that large and soft drusen are related to elevated cholesterol deposits and may respond to cholesterol lowering agents or the Rheo Procedure. Advanced AMD, which is responsible for profound vision loss, has two forms: dry and wet. Central geographic atrophy, the dry form of advanced AMD, results from atrophy to the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye.
    [Show full text]
  • Study of Intraocular Pressure Among Individuals Working on Computer Screens for Long Hours
    Ann Med Physiol . 2017; 1 (1): 22- 25 Quench Academy of Medical Education and Research Annals of Medical Physiology www.amphysiol . c o m Original Research Article Study of intraocular pressure among individuals working on computer screens for long hours Sanam Maria Qudsiya1 , Farisa Khatoon1, Aftab Abdul Khader2, Mohammed Asghar Ali3, Mohammed Abdul Hannan Hazari1 , Fareen Sultana1, Ayesha Farheen1 1Department of Physiology and 2Department of Ophthalmology, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad-500058, Telangana, India. 3Department of Physiology Fatima Institute of Medical Sciences, Ramarajupalli, Pulivendula Road, Kadapa-516003, Andhra Pradesh, India. Article history Abstract Received 05 April 2017 In today’s world computers are ubiquitous and found in different forms which Accepted 07 April 2017 can effect intraocular pressure (IOP). Present study was undertaken to find Early online 11 April 2017 Print 30 April 2017 out effect of day-to-day exposure to computer screen on IOP in normal individuals. 70 individuals (who met the screening conditions and devoid of Keywords obvious ocular pathology and systemic diseases) had their IOP’s checked Computer screens before and 4 hour after computer session on same day, all working in Intraocular pressure (IOP) general day shift, involving reading English printed material. The results Long hours showed significant (p<0.005) increase with IOP values before exposure Schiotz tonometry being 17.893.25 and 16.992.84 and after exposure being 19.673.4 and 18.702.4 in left and right eye respectively. Increase in IOP was noted in 70% and 67% individuals in left and right eye. Differences in IOP of right and left eye may be due to dominance of eye or direction of script from left to right.
    [Show full text]
  • Computer Vision Syndrome—A Common Cause of Unexplained Visual Symptoms in the Modern Era
    Received: 1 March 2017 | Accepted: 10 April 2017 DOI: 10.1111/ijcp.12962 REVIEW ARTICLE Computer vision syndrome—A common cause of unexplained visual symptoms in the modern era Sunil Munshi1 | Ashley Varghese1 | Sushma Dhar-Munshi2 1Department of Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK Summary 2Department of Ophthalmology, Kings Mill Objectives: The aim of this study was to assess the evidence and available literature Hospital, Sherwood Forest Hospitals NHS on the clinical, pathogenetic, prognostic and therapeutic aspects of Computer vision Trust, Sutton-In-Ashfield, UK syndrome. Correspondence Methods: Information was collected from Medline, Embase & National Library of Dr Sunil Munshi, Honorary Clinical Associate Professor, Department of Stroke, Nottingham Medicine over the last 30 years up to March 2016. The bibliographies of relevant arti- City Hospital, Nottingham University cles were searched for additional references. Hospitals NHS Trust, Nottingham, UK Email: [email protected] Findings: Patients with Computer vision syndrome present to a variety of different specialists, including General Practitioners, Neurologists, Stroke physicians and Ophthalmologists. While the condition is common, there is a poor awareness in the public and among health professionals. Interpretations and Implications: Recognising this condition in the clinic or in emer- gency situations like the TIA clinic is crucial. The implications are potentially huge in view of the extensive and widespread use of computers and visual display units. Greater public awareness of Computer vision syndrome and education of health pro- fessionals is vital. Preventive strategies should form part of work place ergonomics routinely. Prompt and correct recognition is important to allow management and avoid unnecessary treatments.
    [Show full text]
  • 8 Ways to Reduce Digital Eye Strain
    8 Ways to Reduce Digital Eye Strain Digital Eye Strain (DES), sometimes called Computer Vision Syndrome (CVS) is a term used to describe the eye strain experienced with extended digital screen use (smartphones, tablets, computer monitors, etc.). The symptoms of digital eye strain can include headaches, tired eyes, dry eyes, red eyes, neck and back pain, and overall fatigue and discomfort. What can be done about digital eye strain? We can all agree that these digital devices we spend our day using aren’t going away any time soon, so lets discuss some steps we can take to help our eyes work more easily and comfortably when browser surfing, checking Facebook and email, and oh yes, working also! Many of the preventive measures may sound obvious, but they are frequently overlooked or ignored. 1. Take vision breaks. Extended amounts of time spent focusing on a computer monitor or digital device stresses the eye’s focusing (accommodative) system because we don’t tend to shift our focus away from the screen. This extended focus can last for hours at a time. Just like any other muscle in the body, the focusing muscles can fatigue and tire and lead to eye strain, digital eye strain. Following the 20-20-20 rule can help. After every 20- minutes of screen time, shift your focus away from the screen and look at an object at least 20 feet away from you (preferably out a window), for 20 seconds. This will help “stretch” the focusing muscles and help curb the effects of digital eye strain.
    [Show full text]
  • Blue Light from Digital Screens Used at Work
    Evidence-Based Practice Group Answers to Clinical Questions Blue Light from Digital Screens Used at Work A Rapid Systematic Review By WorkSafeBC Evidence-Based Practice Group Dr. Craig Martin Manager, Clinical Services Chair, Evidence-Based Practice Group September 2018 Clinical Services – Worker and Employer Services Blue Light from Digital Screens Used at Work i About this report Blue Light from Digital Screens Used at Work Published: September 2018 About the Evidence-Based Practice Group The Evidence-Based Practice Group was established to address the many medical and policy issues that WorkSafeBC officers deal with on a regular basis. Members apply established techniques of critical appraisal and evidence-based review of topics solicited from both WorkSafeBC staff and other interested parties such as surgeons, medical specialists, and rehabilitation providers. Suggested Citation WorkSafeBC Evidence-Based Practice Group, Martin CW. Blue Light from Digital Screens Used at Work Richmond, BC: WorksafeBC Evidence-Based Practice Group; Sep 2018. Contact Information Evidence-Based Practice Group WorkSafeBC PO Box 5350 Stn Terminal Vancouver BC V6B 5L5 Email [email protected] Phone 604 279-7417 Toll-free 1 888 967-5377 ext 7417 WorkSafeBC Evidence-Based Practice Group September 2018 www.worksafebc.com/evidence Blue Light from Digital Screens Used at Work 1 Objective This review aims to explore potential hazardous effects of blue light from digital screens (e.g., computer screens) used at workplaces Background Amongst all digital devices used in modern work life (e.g., tablets, laptops, netbooks, smart phones, digital sound/video conferencing and presentation systems) office desktop computers stand out as the essential ones.
    [Show full text]