Exploring the Patient Perspective of Fatigue in Adults with Visual Impairment: a Qualitative Study

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Patient Perspective of Fatigue in Adults with Visual Impairment: a Qualitative Study Open Access Research BMJ Open: first published as 10.1136/bmjopen-2016-015023 on 3 August 2017. Downloaded from Exploring the patient perspective of fatigue in adults with visual impairment: a qualitative study Wouter Schakel,1 Christina Bode,2 Hilde P A van der Aa,1 Carel T J Hulshof,3 Judith E Bosmans,4 Gerardus H M B van Rens,1,5 Ruth M A van Nispen1 To cite: Schakel W, Bode C, van ABSTRACT Strengths and limitations of this study der Aa HPA, et al. Exploring the Objectives Fatigue is an often mentioned symptom by patient perspective of fatigue in patients with irreversible visual impairment. This study ► This qualitative study provides an in-depth adults with visual impairment: explored the patient perspective of fatigue in visually a qualitative study. BMJ Open exploration of the patient perspective of fatigue impaired adults with a focus on symptoms of fatigue, 2017;7:e015023. doi:10.1136/ in visually impaired adults regarding symptoms causes, consequences and coping strategies. bmjopen-2016-015023 of fatigue, causes, consequences and coping Setting Two large Dutch low vision multidisciplinary strategies. ► Prepublication history and rehabilitation organisations. ► Participants were selected from two Dutch low additional material are available. Participants 16 visually impaired adults with severe vision multidisciplinary rehabilitation centres To view these files, please visit symptoms of fatigue selected by purposive sampling. the journal online (http:// dx. doi. through purposive sampling to reflect a range of Methods A qualitative study involving semistructured org/ 10. 1136/ bmjopen- 2016- demographic characteristics (gender, age and work interviews. A total of four first-level codes were top–down 015023). status) and disease characteristics (ophthalmic predetermined in correspondence with the topics of the diagnosis, visual acuity, visual field and disease research question. Verbatim transcribed interviews were Received 10 November 2016 duration). Revised 24 May 2017 analysed with a combination of a deductive and inductive ► Participant’s symptoms of self-reported fatigue Accepted 5 June 2017 approach using open and axial coding. were checked with a well-validated instrument to Results Participants often described the symptoms of assess fatigue severity. fatigue as a mental, daily and physical experience. The ► A random selection of 10% of the citations most often mentioned causes of fatigue were a high was matched to the existing coding scheme cognitive load, the intensity and amount of activities, independently by a second researcher to improve the high effort necessary to establish visual perception, http://bmjopen.bmj.com/ reliability of the coding process. difficulty with light intensity and negative cognitions. ► Limitations include the relatively small sample size Fatigue had the greatest impact on the ability to carry out and the relatively young age and high amount of rare social roles and participation, emotional functioning and eye conditions in our sample which may limit the 1 cognitive functioning. The most common coping strategies Department of Ophthalmology, transferability of the findings to the total population were relaxation, external support, socialising and physical VU University Medical Centre of visually impaired adults. and Amsterdam Public Health exercise and the acceptance of fatigue. Research Institute, Amsterdam, Conclusions Our results indicate that low vision- The Netherlands related fatigue is mainly caused by population specific 2Department of Psychology, on September 24, 2021 by guest. Protected copyright. determinants that seem different from the fatigue available for the visually impaired population. Health & Technology, University experience described in studies with other patient of Twente, Enschede, The Cognitive behavioural therapy has proven to populations. Fatigue may be central to the way patients Netherlands be an effective treatment option for fatigue 3 react, adapt and compensate to the consequences of Coronel Institute of in patients with cancer,2 chronic fatigue vision loss. These findings indicate a need for future Occupational Health, Academic syndrome3 and Q fever fatigue syndrome4 Medical Center, University of research aimed at interventions specifically tailored to the Amsterdam, Amsterdam, The unique aspects of fatigue related to vision loss. but has not been evaluated in patients with Netherlands visual impairment. To the best of our knowl- 4Department of Health Sciences edge, there seem to be no studies available and Amsterdam Public Health which address the prevalence or determi- Research Institute, Faculty INTRODUCTION nants of fatigue in visually impaired persons. of Earth and Life Sciences, VU University Amsterdam, Fatigue is an often mentioned complaint Previous research on fatigue in visually Amsterdam, The Netherlands by patients with irreversible visual impair- impaired patients is often limited to patient 5Department of Ophthalmology, ment. In fact, they have prioritised fatigue populations in which fatigue or feelings of Elkerliek Hospital, Helmond, The in the top five of problems with the highest exhaustion is a known symptom.5–7 In only a Netherlands rehabilitation urgency.1 However, low-vision few studies, the relation between fatigue and Correspondence to professionals are at a loss on how to deal visual impairment has been assessed. Mojon- Wouter Schakel; effectively with fatigue because currently, Azzi et al found that a greater impairment of w. schakel@ vumc. nl no evidence-based treatment options are vision was associated with a higher probability Schakel W, et al. BMJ Open 2017;7:e015023. doi:10.1136/bmjopen-2016-015023 1 Open Access BMJ Open: first published as 10.1136/bmjopen-2016-015023 on 3 August 2017. Downloaded from of feeling fatigued.8 Similar results have been reported in representations are an important determinant of The Blue Mountains Eye Study by Chia et al. In their popu- behaviour and can have an impact on the way patients lation-based study, irreversible visual impairment (due cope with their illness.32 Understanding these cognitive to various eye conditions) was associated with increased representations can give insights into the emotional fatigue when compared with participants without visual responses to illness which could influence the perceived impairment and correctable visual impairment.9 severity or consequences of fatigue in people with low Symptoms of fatigue have been found to have a nega- vision. Qualitative research methods allow an in-depth tive impact on psychological well-being, quality of life, exploration of subjective symptoms such as the expe- employment and work-related activities among patients rience of fatigue. The aim of this qualitative study is, with chronic disease.10–16 Similar results have been therefore, to explore the patient perspective of perceived reported with respect to the consequences of fatigue in symptoms, causes, consequences and coping strategies patients with vision loss. In the study of Bruijning et al,17 to deal with fatigue in a sample of Dutch patients with consequences of fatigue mentioned by visually impaired visual impairment (≥18 years). patients included difficulty maintaining energy to endure daily activities (eg, running errands, cooking and work), difficulty concentrating and processing or memo- METHODS rising information, crossing one’s personal boundaries Design and participants regarding energy balance and requiring extra effort to Patients aged 18 years or older registered at two large perceive and process visual stimuli.17 Dutch low vision rehabilitation organisations were invited Studies have shown that fatigue is related specifically to participate in this study. Patients can be referred to to underlying disease mechanisms in different patient these centres based on criteria described in the Dutch populations.13 18 19 Fatigue in visual impairment might guideline ‘Vision disorders, rehabilitation and referral’33 be related to the difficulty of processing visual stimuli that mainly follow the WHO criteria, where low vision is which may require more concentration and may result defined as the best-corrected visual acuity in the better in eye strain. An association between fatigue-related and eye of <0.3, but ≥0.05 (Snellen notation) and/or visual sleep-related problems has been mentioned in visually field of <20° around the central fixation point, or other impaired patients with some remaining vision20–22 and severe visual field defects. Blindness is defined as the in blind patients because of the disturbance in circa- best-corrected visual acuity in the better eye of <0.05 and/ dian rhythms.23 The positive effect of physical activity or a visual field of <10° around the central fixation point. on reduction of fatigue24 may be difficult to achieve in Selection criteria for the study were: (1) sufficient mastery visually impaired adults because they engage in less phys- of the Dutch language and (2) having severe symptoms of ical activity compared with persons without vision loss.25 fatigue as assessed by professionals of the centres (based http://bmjopen.bmj.com/ Moreover, fatigue can be a symptom of depression,26 a on their observations of the patient and patient’s self-re- psychological (sub)clinical disorder which is highly prev- ported fatigue). By purposive sampling, participants were alent in persons with visual impairment.27 Therefore, selected to reflect a mix of ophthalmic diagnosis, disease fatigue may also be related to psychological factors. duration,
Recommended publications
  • Hereditary Reversion Pigmentation of the Eyelids with Heterochromia of the Iris
    874 LEE MASTEN FRANCIS enucleated. The following report on the Other cells were round with hyper- specimen was submitted from the New chromatic nuclei; while scattered thruout York State Institute for the Study of the tumor were large deeply staining Malignant Diseases: cells with one or two nuclei but free from The gross appearance of a cross sec- pigment. There were apparently two tion of the eye shows a tumor lying in types of pigmented cells, the one a large the lower temporal quadrant of the eye, irregular cell with long protoplasmic evidently springing from the choroid processes densely filled with fine yellow- near the margin of the optic disc. This ish granules, evidently chromatophores. tumor measured 15x10 mm. and was The other type of pigmented cell was a slightly nodular irregular ovoid tumor. evidently a tumor cell of the type men- The surface appeared smooth, was dark tioned above but containing fewer gran- gray in color and was of a soft consist- ules than the chromatophores. Thruout ency. The retina was markedly detached the tumor were small areas of hemor- and contained a clear serous fluid. Cross rhage and between the cells could be section of the tumor mass showed a demonstrated here and there, free pig- deeply pigmented homogeneous surface. ment granules. Microscopically, the tumor varied as From this picture, we would make a to the cellular constituents. There were diagnosis of malignant melanoma, fre- areas showing many pigment cells and quently called melanosarcoma, but by other areas almost free from the same. some authorities considered as melanotic The tumor was very vascular showing many fine capillaries around which in carcinoma.
    [Show full text]
  • Blue Light and Your Eyes
    Blue Light and Your Eyes What is blue light? 211 West Wacker Drive, Suite 1700 Sunlight is made up of red, orange, yellow, green, blue, indigo and Chicago, Illinois 60606 violet light. When combined, it becomes the white light we see. 800.331.2020 Each of these has a different energy and wavelength. Rays on the PreventBlindness.org red end have longer wavelengths and less energy. On the other end, blue rays have shorter wavelengths and more energy. Light that looks white can have a large blue component, which can expose the eye to a higher amount of wavelength from the blue end of the spectrum. Where are you exposed to blue light? The largest source of blue light is sunlight. In addition, there are many other sources: • Fluorescent light • CFL (compact fluorescent light) bulbs • LED light • Flat screen LED televisions • Computer monitors, smart phones, and tablet screens Blue light exposure you receive from screens is small compared to the amount of exposure from the sun. And yet, there is concern over the long-term effects of screen exposure because of the close proximity of the screens and the length of time spent looking at them. According to a recent NEI-funded study, children’s eyes absorb more blue light than adults from digital device screens. This publication is copyrighted. This sheet may be reproduced—unaltered in hard print (photocopied) for educational purposes only. The Prevent Blindness name, logo, telephone number and copyright information may not be omitted. Electronic reproduction, other reprint, excerption or use is not permitted without written consent.
    [Show full text]
  • Eyemed Blue Light
    BLUE LIGHT: FREQUENTLY ASKED QUESTIONS From ZZZs to disease, the blue light battle is on It’s indisputable: our eyes are overexposed to digital devices like never before. And in the background hides potentially harmful blue light that may affect our sleep, or even cause long-term vision issues. But, here’s some good news — you can act now to potentially minimize vision issues later with advanced lens filtering technology formulated to guard your eyes. Q: WHAT IS BLUE LIGHT? A: Blue light is a natural part of the light spectrum visible to the human eye; it can come from fluorescent lighting, electronic screens, and of course, the sun. By day, blue light can be associated with boosted mood and attention, but by night, it can be a culprit of interrupted sleep. 1 Q: HOW DOES BLUE LIGHT INTERRUPT SLEEP? A: Researchers know that exposure to light at night suppresses the secretion of melatonin, a hormone that tells us when it is time to sleep. And an extended lack of deep sleep has been linked to depression and a decline in the body’s ability to fight off certain diseases. 1 Q: CAN BLUE LIGHT EXPOSURE CAUSE LONG-TERM DAMAGE TO MY EYESIGHT? A: In addition to disrupting sleep, blue light has been found to contribute to retinal stress, which could lead to an early onset of age-related macular degeneration (AMD).2 Macular degeneration deteriorates healthy cells within the macula, creating a loss of central vision that may impact reading, writing, driving, color perception and other cognitive functions. In serious cases, blindness can occur.
    [Show full text]
  • Taking Care of Our Eyes in the 21St Century Presented By: Carla Haynal Proprietary and Confidential | 1 HOW HAS the 21ST CENTURY AFFECTED OUR EYES?
    Taking Care of Our Eyes in the 21st Century Presented by: Carla Haynal Proprietary and Confidential | 1 HOW HAS THE 21ST CENTURY AFFECTED OUR EYES? • Lots of apps, social media, smartphones, and tablets • Time is spent looking at screens and not outside • More close-up work Proprietary and Confidential | 2 HOW HAS THE 21ST CENTURY AFFECTED OUR EYES? • Digital eye strain • Increased cases of myopia (nearsightedness) • Unprotected UV ray exposure Proprietary and Confidential | 3 DIGITAL EYE STRAIN DIGITAL EYE STRAIN • Digital eye strain is the physical discomfort felt after prolonged exposure to digital screens. • The light intensity increases the closer our eyes are to the source, so it’s important to maintain your digital distance. Proprietary and Confidential | 5 SYMPTOMS OF DIGITAL EYE STRAIN • Sore, tired, burning or itching eyes • Watery or dry eyes • Blurred or double vision • Headache • Sore neck, shoulders, or back • Increased light sensitivity • Difficulty concentrating • Feeling that you cannot keep your eyes open Proprietary and Confidential | 6 DIGITAL EYE STRAIN ProprietaryProprietary andand ConfidentialConfidential || 77 DIGITAL EYE STRAIN Millennials GenXers Boomers 40% 60% 25% use devices use devices use devices 9 hours a day 9 hours a day 9 hours a day Proprietary and Confidential | 8 DIGITAL EYE STRAIN KEEP AN Reduce exposure with INCREASE BLUE LIGHT- ARM’S FONT SIZE REDUCING on digital devices LENGTH eyewear from computer 20 | 20 | 20 Every 20 minutes, look 20 feet away for 20 seconds. Proprietary and Confidential | 9 WHAT IS BLUE LIGHT? BLUE LIGHT • Blue light is the highest energy portion of visible light. • The sun, smart phones, tablets, computer monitors, TVs, and LED and CFL all emit blue light.
    [Show full text]
  • Assessing the Factors and Prevalence of Digital Eye Strain Among Digital
    Int J Med. Public Health. 2021; 11(1):19-23. A Multifaceted Peer Reviewed Journal in the field of Medicine and Public Health Original Article www.ijmedph.org | www.journalonweb.com/ijmedph Assessing the Factors and Prevalence of Digital Eye Strain among Digital Screen Users using a Validated Questionnaire – An Observational Study Shashi Ahuja1,*, Mary Stephen1, Naveen Ranjith1, Parthiban2 ABSTRACT Introduction: Digital screen usage has grown up rampantly and various ocular complaints arise as a result of the same. Digital eye strain causes constant trouble to people with prolonged digital screen usage and this study was done to find the factors in digital screen that could be modified to reduce the eye strain.Methods: In this study a validated questionnaire was used among computer users and various symptoms people experienced were analysed. Dry eye test i.e. Schirmer’s tests I and II were performed in all the study subjects and dry eye was confirmed among the users. Results: In our study grittiness was the most common complaint and questionnaire employed in this study was 85 % sensitive and 72 % specific for identifying Digital eye strain. It also has a high positive predictive value of 85.6% in identifying dry eye among the users. In this study it has been found that almost all people with computer screen usage of >5 hr had symptoms of dry eye and also test positive for the same. Conclusion: Digital eye strain present most commonly as minor complaints like grittiness of eyes and more symptoms are seen in people who used contact lens and used digital screen for prolonged duration.
    [Show full text]
  • Blue Light and Digital Eye Strain Educating Patients and Providing Solutions
    Blue Light and Digital Eye Strain Educating Patients and Providing Solutions Anne-Marie Lahr, OD Dangers of Blue Light Dangers of blue light Ocular discomfort Interruption of sleep patterns and circadian rhythms Link between blue light exposure and macular degeneration Increased prevalence of blue light Solutions for Protection What Is Blue Light? Visible Light Spectrum 390 nm to 750 nm Blue Light 380 nm – 500 nm High Energy Visible HEV Blue Light is All Around Us The Tablet Revolution The Tablet Revolution April 2010: First iPad released A family portable computer Held at 12-24 inched from eyes Backlit display Moving into schools Outselling computers Same apps as the Smartphones Easier to read on than iPhone 35% of Americans own a tablet Digital Usage The Age of Digital Devices Typical Viewing Distances for New Media Devices 2 to 4 ft As the day 12 to 24 in progresses..we actually move closer to the back lit devices because our focusing system begins to 'lock-up'...bringing 12 to 18 in the device closer in order to keep the muscle in focus..... In turn, adding even more stress! Effects of Chromatic Aberration When light from a small white object is refracted by a prism, it is dispersed into its monochromatic constituents, the blue wavelengths being deviated more than the red To an eye viewing through the prism, the image of the object appears fringed with blue on the apex side of the prism Images: Nikon Courtesy of Mark Mattison-Shupnick Our Eyes and Digital Devices Our eyes can properly focus on images and print on back-lit digital devices.
    [Show full text]
  • FY2022 NIH, NEI Funding
    Iris M. Rush, CAE Executive Director Association for Research in Vision and Ophthalmology [email protected]; 240-221-2906 TESTIMONY SUPPORTING INCREASED FISCAL YEAR 2022 FUNDING FOR THE NATIONAL INSTITUTES OF HEALTH (NIH) AND NATIONAL EYE INSTITUTE (NEI) LABOR, HEALTH AND HUMAN SERVICES, EDUCATION AND RELATED AGENCIES SUBCOMMITTEE OF THE HOUSE COMMITTEE ON APPROPRIATIONS May 19, 2021 EXECUTIVE SUMMARY The Association for Research in Vision and Ophthalmology (ARVO), on behalf of the eye and vision research community, thanks Congress, especially the House and Senate LHHS Appropriations Subcommittees, for the strong bipartisan support for the National Institutes of Health (NIH) funding increases from Fiscal Year (FY) 2016 through FY2021. This past investment in NIH has improved our understanding of fundamental life and health sciences and prepared the nation to combat unprecedented health threats, including COVID-19. To maintain this momentum in FY2022, ARVO strongly supports $51 billion in NIH funding as proposed by President Biden, including no less than $46.1 billion for NIH’s base program level budget (absent proposed funding for the Advanced Research Projects Agency–Health [ARPA-H]), an increase of at least $3.177 billion or 7.4%, which would allow NIH’s base budget to keep pace with the Biomedical Research and Development Price Index (BRDPI) and allow for 5% growth. This increase will support promising science across all Institutes and Centers (ICs), ensure continued Innovation Account funding established through the 21st Century Cures Act for special initiatives, and support early-stage investigators. Along with partners and other scientific societies, ARVO also urges one-time emergency funding for federal agency “research recovery” investment to enable NIH to mitigate pandemic-related disruptions without foregoing promising new science.
    [Show full text]
  • The Digital Eye Strain FINAL Jan 2020
    2/2/20 Digital use around the World The Digital Eyestrain EXPLOSION! KRIS KERESTAN GARBIG, O.D. [email protected] 2 3 Mobile Device use Digital Device usage § 30% of all adults are High users spending 9+ hrs. per day § 45% in 2012 § 61% use 5+ hrs. per day § 67% 2019 § 47% of US smartphone users say they couldn’t live without their devices § Over 80% use at least 2 hrs. per day § 66% of smartphone users are addicted to their phones § 67% of internet users worldwide visit the web on their phone § 67% use 2 devices simultaneously 4 5 Internet Use Digital Device Sources § Average time spent ONLINE is 6 hours 42 minutes per day which § 77% TV equates to close to 100 days of ONLINE time each year for every § 69% Smart Phone internet user § 58% Laptop § 52% Desktop § 58% stream TV § 43% TaBlet § 30% stream gaming content § 17% Video game console § 23% watch live streams of gaming content § 67% use 2 devices simultaneously § 16% watch sporting tournaments 6 7 1 2/2/20 Activities using Digital Devices Digital Device Impact Gen. Z (Born between 1997-2010) § 57% “Alarm clock” § 54% Weather § Learned to use technology at a age young § 44% Work § Continually “Connected”… § 43% Recreational Reading Snap chat, Instagram, Twitter, FB, others??? § 26% Meal Preparation/Recipes § 32% Travel/Flight/Ticketing § Operate appliances, garage doors, lights, etc. § Unlimited Apps 8 9 But wait…Generation Alpha! AOA's American Eye-Q Survey Born after 2011 § Kids connected longer than parents think § Grow up with I-pads in hand § Will never live without a smartphone 80% use electronic devices 2+ hrs.
    [Show full text]
  • Visual Impairment Age-Related Macular
    VISUAL IMPAIRMENT AGE-RELATED MACULAR DEGENERATION Macular degeneration is a medical condition predominantly found in young children in which the center of the inner lining of the eye, known as the macula area of the retina, suffers thickening, atrophy, and in some cases, watering. This can result in loss of side vision, which entails inability to see coarse details, to read, or to recognize faces. According to the American Academy of Ophthalmology, it is the leading cause of central vision loss (blindness) in the United States today for those under the age of twenty years. Although some macular dystrophies that affect younger individuals are sometimes referred to as macular degeneration, the term generally refers to age-related macular degeneration (AMD or ARMD). Age-related macular degeneration begins with characteristic yellow deposits in the macula (central area of the retina which provides detailed central vision, called fovea) called drusen between the retinal pigment epithelium and the underlying choroid. Most people with these early changes (referred to as age-related maculopathy) have good vision. People with drusen can go on to develop advanced AMD. The risk is considerably higher when the drusen are large and numerous and associated with disturbance in the pigmented cell layer under the macula. Recent research suggests that large and soft drusen are related to elevated cholesterol deposits and may respond to cholesterol lowering agents or the Rheo Procedure. Advanced AMD, which is responsible for profound vision loss, has two forms: dry and wet. Central geographic atrophy, the dry form of advanced AMD, results from atrophy to the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye.
    [Show full text]
  • Study of Intraocular Pressure Among Individuals Working on Computer Screens for Long Hours
    Ann Med Physiol . 2017; 1 (1): 22- 25 Quench Academy of Medical Education and Research Annals of Medical Physiology www.amphysiol . c o m Original Research Article Study of intraocular pressure among individuals working on computer screens for long hours Sanam Maria Qudsiya1 , Farisa Khatoon1, Aftab Abdul Khader2, Mohammed Asghar Ali3, Mohammed Abdul Hannan Hazari1 , Fareen Sultana1, Ayesha Farheen1 1Department of Physiology and 2Department of Ophthalmology, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad-500058, Telangana, India. 3Department of Physiology Fatima Institute of Medical Sciences, Ramarajupalli, Pulivendula Road, Kadapa-516003, Andhra Pradesh, India. Article history Abstract Received 05 April 2017 In today’s world computers are ubiquitous and found in different forms which Accepted 07 April 2017 can effect intraocular pressure (IOP). Present study was undertaken to find Early online 11 April 2017 Print 30 April 2017 out effect of day-to-day exposure to computer screen on IOP in normal individuals. 70 individuals (who met the screening conditions and devoid of Keywords obvious ocular pathology and systemic diseases) had their IOP’s checked Computer screens before and 4 hour after computer session on same day, all working in Intraocular pressure (IOP) general day shift, involving reading English printed material. The results Long hours showed significant (p<0.005) increase with IOP values before exposure Schiotz tonometry being 17.893.25 and 16.992.84 and after exposure being 19.673.4 and 18.702.4 in left and right eye respectively. Increase in IOP was noted in 70% and 67% individuals in left and right eye. Differences in IOP of right and left eye may be due to dominance of eye or direction of script from left to right.
    [Show full text]
  • Computer Vision Syndrome—A Common Cause of Unexplained Visual Symptoms in the Modern Era
    Received: 1 March 2017 | Accepted: 10 April 2017 DOI: 10.1111/ijcp.12962 REVIEW ARTICLE Computer vision syndrome—A common cause of unexplained visual symptoms in the modern era Sunil Munshi1 | Ashley Varghese1 | Sushma Dhar-Munshi2 1Department of Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK Summary 2Department of Ophthalmology, Kings Mill Objectives: The aim of this study was to assess the evidence and available literature Hospital, Sherwood Forest Hospitals NHS on the clinical, pathogenetic, prognostic and therapeutic aspects of Computer vision Trust, Sutton-In-Ashfield, UK syndrome. Correspondence Methods: Information was collected from Medline, Embase & National Library of Dr Sunil Munshi, Honorary Clinical Associate Professor, Department of Stroke, Nottingham Medicine over the last 30 years up to March 2016. The bibliographies of relevant arti- City Hospital, Nottingham University cles were searched for additional references. Hospitals NHS Trust, Nottingham, UK Email: [email protected] Findings: Patients with Computer vision syndrome present to a variety of different specialists, including General Practitioners, Neurologists, Stroke physicians and Ophthalmologists. While the condition is common, there is a poor awareness in the public and among health professionals. Interpretations and Implications: Recognising this condition in the clinic or in emer- gency situations like the TIA clinic is crucial. The implications are potentially huge in view of the extensive and widespread use of computers and visual display units. Greater public awareness of Computer vision syndrome and education of health pro- fessionals is vital. Preventive strategies should form part of work place ergonomics routinely. Prompt and correct recognition is important to allow management and avoid unnecessary treatments.
    [Show full text]
  • 8 Ways to Reduce Digital Eye Strain
    8 Ways to Reduce Digital Eye Strain Digital Eye Strain (DES), sometimes called Computer Vision Syndrome (CVS) is a term used to describe the eye strain experienced with extended digital screen use (smartphones, tablets, computer monitors, etc.). The symptoms of digital eye strain can include headaches, tired eyes, dry eyes, red eyes, neck and back pain, and overall fatigue and discomfort. What can be done about digital eye strain? We can all agree that these digital devices we spend our day using aren’t going away any time soon, so lets discuss some steps we can take to help our eyes work more easily and comfortably when browser surfing, checking Facebook and email, and oh yes, working also! Many of the preventive measures may sound obvious, but they are frequently overlooked or ignored. 1. Take vision breaks. Extended amounts of time spent focusing on a computer monitor or digital device stresses the eye’s focusing (accommodative) system because we don’t tend to shift our focus away from the screen. This extended focus can last for hours at a time. Just like any other muscle in the body, the focusing muscles can fatigue and tire and lead to eye strain, digital eye strain. Following the 20-20-20 rule can help. After every 20- minutes of screen time, shift your focus away from the screen and look at an object at least 20 feet away from you (preferably out a window), for 20 seconds. This will help “stretch” the focusing muscles and help curb the effects of digital eye strain.
    [Show full text]