Physique Et Biologie Moléculaire De La Vulnérabilité Du Xylème À La Cavitation Aude Tixier

Total Page:16

File Type:pdf, Size:1020Kb

Physique Et Biologie Moléculaire De La Vulnérabilité Du Xylème À La Cavitation Aude Tixier Physique et biologie moléculaire de la vulnérabilité du xylème à la cavitation Aude Tixier To cite this version: Aude Tixier. Physique et biologie moléculaire de la vulnérabilité du xylème à la cavitation. Sciences agricoles. Université Blaise Pascal - Clermont-Ferrand II, 2013. Français. NNT : 2013CLF22420. tel-00968059 HAL Id: tel-00968059 https://tel.archives-ouvertes.fr/tel-00968059 Submitted on 31 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ECOLE DOCTORALE DES SCIENCES DE LA VIE, SANTE, AGRONOMIE, ENVIRONNEMENT Présentée à l’Université Blaise Pascal Pour l’obtention du grade de DOCTEUR D’UNIVERSITE Spécialité : Physiologie et Génétique moléculaires Aude TIXIER Date de soutenance le 16 décembre 2013 PHYSIQUE ET BIOLOGIE MOLECULAIRE DE LA VULNERABILITE DU XYLEME A LA CAVITATION Rapporteurs Sylvain Delzon Chargé de recherche, Université de Bordeaux Mylène Durand-Tardif Directeur de recherche, INRA, Versailles Examinateurs Jean-Louis Julien Professeur, Université Blaise Pascal Eric Badel Chargé de recherche, INRA, Clermont-Ferrand Stéphane Herbette Maître de conférences, Université Blaise-Pascal (directeur de recherche) Steven Jansen Professeur, Université d’Ulm (directeur de recherche) ABBREVIATIONS A : assimilation nette de CO2 GDP : guanosine diphosphate Ap : Aire de ponctuation GFP : Green Fluorescent Protein As : surface de section de bois fonctionnel de GIEC : Groupe Intergouvernemental d’Expert la tige sur l’évolution du Climat ADN : Acide désoxyribonucléique GMD : GDP mannose 4-6 dehydratase ADNc : ADN complémentaire GUS : glucuronosidase ADNg : ADN génomique gs : conductance stomatique ADNp : ADN plasmidique H : Heure AFM : Atomic Force Microscopy HG : Homogalacturonanes AGA : Apiogalacturonanes IMFT : Institut de Mécanique des Fluides de ANOVA : Analyse de variance Toulouse ANR : Agence Nationale de la recherche k : conductance ARN : Acide ribonucléique Kh : Conductivité hydraulique (mesurée) AXS : Apiose xylose synthase Kht : Conductivité théorique b : diamètre de la lumière d’un vaisseau kJ : kilo Joule BIA : Unité INRA Biopolymères, Interactions, Ks : Conductivité spécifique Assemblages Khts : Conductivité théorique spécifique BP : réaction de recombinaison entre site attB L : Longueur de segment de tige ou de et attP vaisseaux (m) CamR : gène de résistance au chloramphénicol LB : bordure gauche ccdB : inhibiteur de girase A462 LR : réaction de recombinaison entre site attL Csl : Cellulose synthase like et attR CT : Cycle seuil (threshold cycle) M : Margo D : diamètre de vaisseau MAP : microtubule associated protein DIG : digoxygénine MET : Microscopie électronique à D.O : densité optique transmission E : Taux d’évaporation MEB : Microscopie électronique à balayage FAA : formol, acide acétique, alcool (éthanol) MPa : Méga Pascal Fc : Intervessel contact fraction MS : Matière sèche FPF : Intervessel pit-field fraction NCBI : National center for biotechnology FW : Amorce sens (forward) information gb : Conductance de la couche limite nt : nucléotides ONF : Office National des Forêts v : Volume P : Pression VPD : vapor pressure deficit Pe : pression d’entrée WUE : Water Use efficiency P50 : pression su xylème induisant 50% de XGA : xylogalacturonanes perte de conductance XTH : xyloglucane endo transglucosylase Pa : Pascal η: viscosité de l’eau PB : Lignée transgénique PitBulle τ : tension de surface de l’eau PCR : Polymerase chain reaction Ψ : Potentiel hydrique pDEST : plasmide de destination : densité de l’eau pDONR : plasmide donneur PEG : polyéthylène glycol pENTR : plasmide d’entrée PG : Polygalacturonase pEXPR : plasmide d’expression PIAF : UMR Physique et physiologie de l’arbre fruitier et forestier PLC : Pourcentage de perte de conductance PME : pectine méthylestérase R : Résistance RB : bordure droite RG-II : rhamnogalacturonane RT : reverse transcription RV : Amorces antisens (reverse) S : pente de courbe de vulnérabilité à la cavitation au niveau de P50 SD : écart-type SE : erreur standard SNP : Single Nucleotide Polymorphism SVP : Saturated vapor pressure t : épaisseur de la paroi des vaisseaux T : Torus T35S : Terminateur 35S Tm : Température d’hybridation des amorces TDZ : thiadiazuron UDP : Uridine diphosphate SOMMAIRE INTRODUCTION BIBLIOGRAPHIQUE ....................................... 1 I PROPRIETES HYDRIQUES DE LA PLANTE ............................................................................ 3 1) Quelques propriétés de l’eau ................................................................................. 3 2) Notions de potentiel hydrique ................................................................................ 5 3) Potentiels hydriques dans la plante ........................................................................ 7 II FONCTIONNEMENT ET ARCHITECTURE HYDRAULIQUE DE LA PLANTE ............................... 9 1) Fonctionnement hydraulique ................................................................................. 9 a. La théorie de la tension-cohésion .................................................................................. 9 b. Les voies de circulation de l’eau dans les plantes ........................................................ 11 2) Le paradigme de la nutrition des plantes : mourir de faim ou de soif ? .................. 13 3) Impacts de la sècheresse .................................................................................... 15 a. Contexte de changements climatiques et impacts écologiques et économiques ....... 15 b. Impacts sur la productivité et la survie ....................................................................... 17 4) La résistance à la sécheresse ............................................................................... 19 III STRUCTURE ET FORMATION DU XYLEME ET DES PONCTUATIONS .................................. 27 1) Structure du xylème et xylogenèse ....................................................................... 27 a. Structure du xylème et variabilité interspécifique ....................................................... 27 b. Xylogénèse et mise en place des cellules conductrices .............................................. 35 2) Structure et synthèse des ponctuations ............................................................... 38 a. Contrôle génétique de l’organisation des ponctuations ............................................. 39 b. Structure des ponctuations entre cellules conductrices ............................................. 39 c. Composition des membranes de ponctuations ........................................................... 41 d. Variabilité structurelle des ponctuations .................................................................... 43 e. Tori et pseudo-tori chez les angiospermes .................................................................. 45 f. Ornementations des ponctuations d’angiospermes .................................................... 49 IV PROPRIETES HYDRAULIQUES DU XYLEME ET EFFICIENCE DU TRANSPORT DE L’EAU ....... 53 1) Les variables hydrauliques .................................................................................. 53 2) Propriétés du xylème contrôlant l’efficience hydraulique ..................................... 53 a. Structure du xylème et conductance hydraulique ........................................................ 53 b. Contrôle ionique de la conductance des vaisseaux ....................................................... 59 V VULNERABILITE A LA CAVITATION ET SECURITE DU TRANSPORT DE L’EAU ..................... 63 1) Un paramètre clé de la résistance à la sècheresse................................................. 63 2) Mécanismes de cavitation .................................................................................. 63 3) Techniques de mesures de la vulnérabilité à la cavitation .................................... 67 4) Variabilité de la vulnérabilité à la cavitation ........................................................ 69 5) Résorption de l’embolie et fatigue de la cavitation ............................................... 73 6) Compromis entre résistance à la cavitation et les propriétés du bois .................... 75 7) Les ponctuations : structures clés de la vulnérabilité à la cavitation ...................... 77 a. Implication du nombre de ponctuations ...................................................................... 77 b. Aspects qualitatifs des ponctuations chez les gymnospermes .................................... 79 c. Aspects qualitatifs des ponctuations chez les angiospermes ...................................... 81 VI OBJECTIFS DE THESE .................................................................................................... 85 RESULTATS ........................................................................... 93 CHAPITRE 1 ..........................................................................................
Recommended publications
  • Picconia Excelsa (Oleaceae)
    situation on scoria (e.g. Rangitoto) and perhaps there for the same reasons (excellent drainage? aeration of roots?). Other matters of interest and/or concern were the site of the old native plant plantation and the tragic devastation wrought by possums on the pohutukawas. All our thanks to the leader and the organisers. Received 5 July 1989. PICCONIA EXCELSA (OLEACEAE) R.O. Gardner The current Auckland City Council Proposed District Scheme lists two Picconia excelsa trees in Remuera at St Kentigern School and at 115 Victoria Avenue that are to be protected for their botanical (rarity) value. This species the Canary Islands olive is not mentioned in most horticultural works. It forms a tree of medium size heavy in foliage with the rough bark and crooked branching typical of its family. Sterile specimens have a deceptive likeness to those of Nestegis spp. even having a waxy bloom on the petioles — (like N. cunninghamii but not N. apetala) (Johnson 1957). The older AK material was first determined by Dr Peter Green of Kew. There are several other individuals in Auckland like the above of good size but almost certainly less than a hundred years old. There are trees at 2 Woodside Ave Mt Eden at 277 Mt Eden Rd and on a farmhouse drive in Ihumatao Rd; there is a AK specimen from the Wilson Home in Takapuna and until recently there was a tree in the crater of Mt St John. Perhaps the importation of Picconia might be the result of a nurserymans recognizing that Canary Islands species should flourish in what is literally the opposite side of the world.
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Laurisilva of Madeira Portugal
    LAURISILVA OF MADEIRA PORTUGAL The Laurisilva of Madeira is the largest surviving relict of a virtually extinct laurel forest type once widespread in Europe. It is still 90% primary forest and is a centre of plant diversity, containing a unique suite of rare and relict plants and animals, especially endemic bryophytes, ferns, vascular plants, animals such as the Madeiran long-toed pigeon and a very rich invertebrate fauna. COUNTRY Portugal NAME Laurisilva of Madeira NATURAL WORLD HERITAGE SITE 1999: Inscribed on the World Heritage List under Natural Criteria ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee adopted the following Statement of Outstanding Universal Value at the time of inscription: Brief Synthesis The Laurisilva of Madeira, within the Parque Natural da Madeira (Madeira Natural Park) conserves the largest surviving area of primary laurel forest or "laurisilva", a vegetation type that is now confined to the Azores, Madeira and the Canary Islands. These forests display a wealth of ecological niches, intact ecosystem processes, and play a predominant role in maintaining the hydrological balance on the Island of Madeira. The property has great importance for biodiversity conservation with at least 76 vascular plant species endemic to Madeira occurring in the property, together with a high number of endemic invertebrates and two endemic birds including the emblematic Madeiran Laurel Pigeon. Criterion (ix): The Laurisilva of Madeira is an outstanding relict of a previously widespread laurel forest type, which covered much of Southern Europe 15-40 million years ago. The forest of the property completely covers a series of very steep, V-shaped valleys leading from the plateau and east-west ridge in the centre of the island to the north coast.
    [Show full text]
  • Canary Islands Greentours Itinerary Botanical Birdwatching Holiday
    Canary Islands A Greentours Itinerary Days 1, 2 & 4 Montanas de Teno - Laurel Forests Rugged mountains are cut by deep valleys and massive cliffs plunge precipitously into the sea in the northwest of Tenerife. This is the sparsely populated Montanas de Teno and it has some of the best remaining Laurel Forests in the archipelago. A verdant landscape, it is fed by moist air from the Atlantic, and has a soft yet uncompromising beauty. El Fraille has one of the richest floras in the Canaries with over 300 species of flowering plant, including endemics such as the Centaurea canariensis, Limonium fruticans and Tolpis crassiuscula. Strange Sow-thistles form an important part of the flora of these islands - here there's locally common Sonchus radicatus and the almost tree-like Sonchus arboreus. Amongst Maytenus canariensis and Picconia excelsa shrubs bloom rare Dorycnium broussonetii and Marcetella moquiniana. In the Barranco de Masca we'll find enormous Aeonium pseudourbicum with the impressive spires of Echium virescens and on dry slopes amongst pretty Euphorbia atropurpurea we'll seek little endemic Orchis canariensis. The Euphorbia covered Punta de Teno is the most westerly point on the island and is a good place to observe seabirds such as the very common Cory's Shearwaters. Whales, dolphins and even sharks are frequently seen from here. Between the peaceful villages of Erjos and Masca lies an important remnant of Laurel forest, now protected as a reserve. We will wander along tracks through this unusual deep-green mossy forest looking for exotic and unusual species such as Habenaria tridactylites, a member of a large genus of orchids.
    [Show full text]
  • Acteoside and Related Phenylethanoid Glycosides in Byblis Liniflora Salisb
    Vol. 73, No. 1: 9-15, 2004 ACTA SOCIETATIS BOTANICORUM POLONIAE 9 ACTEOSIDE AND RELATED PHENYLETHANOID GLYCOSIDES IN BYBLIS LINIFLORA SALISB. PLANTS PROPAGATED IN VITRO AND ITS SYSTEMATIC SIGNIFICANCE JAN SCHLAUER1, JAROMIR BUDZIANOWSKI2, KRYSTYNA KUKU£CZANKA3, LIDIA RATAJCZAK2 1 Institute of Plant Biochemistry, University of Tübingen Corrensstr. 41, 72076 Tübingen, Germany 2 Department of Pharmaceutical Botany, University of Medical Sciences in Poznañ w. Marii Magdaleny 14, 61-861 Poznañ, Poland 3 Botanical Garden, University of Wroc³aw Sienkiewicza 23, 50-335 Wroc³aw, Poland (Received: May 30, 2003. Accepted: February 4, 2004) ABSTRACT From plantlets of Byblis liniflora Salisb. (Byblidaceae), propagated by in vitro culture, four phenylethanoid glycosides acteoside, isoacteoside, desrhamnosylacteoside and desrhamnosylisoacteoside were isolated. The presence of acteoside substantially supports a placement of the family Byblidaceae in order Scrophulariales and subclass Asteridae. Moreover, the genera containing acteoside are listed; almost all of them appear to belong to the order Scrophulariales. KEY WORDS: Byblis liniflora, Byblidaceae, Scrophulariales, chemotaxonomy, phenylethanoid gly- cosides, acteoside, in vitro propagation. INTRODUCTION et Conran, B. filifolia Planch, B. rorida Lowrie et Conran, and B. lamellata Conran et Lowrie. Byblidaceae are a small family of essentially Western Byblis liniflora Salisb. grows erect to 15-20 cm. Its lea- and Northern Australian (extending to Papuasia) herbs ves are alternate, involute in vernation, simple, linear with with exstipulate, linear sticky leaves spirally arranged a clavate apical swelling, and with stipitate, adhesive and along a more or less upright or sprawling stem and solita- sessile, digestive glands on the lamina (Huxley et al. 1992; ry, ebracteolate, pentamerous, weakly sympetalous, very Lowrie 1998).
    [Show full text]
  • The Ancient Forests of La Gomera, Canary Islands, and Their Sensitivity to Environmental Change
    Journal of Ecology 2013, 101, 368–377 doi: 10.1111/1365-2745.12051 The ancient forests of La Gomera, Canary Islands, and their sensitivity to environmental change Sandra Nogue1*, Lea de Nascimento2, Jose María Fernandez-Palacios 2,3, Robert J. Whittaker3,4 and Kathy J. Willis1,5 1 Long-term Ecology Laboratory, Biodiversity Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, 2 UK; Island Ecology and Biogeography Group, Instituto Universitario de Enfermedades Tropicales y Salud Publica de Canarias (IUETSPC), University of La Laguna, La Laguna, 38206, Canary Islands, Spain; 3School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK; 4Department of Biology, Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark; and 5Department of Biology, University of Bergen, Post Box 7803, N-5020, Bergen, Norway Summary 1. Garajonay National Park in La Gomera (Canary Islands) contains one of the largest remnant areas of a forest formation once widespread throughout Europe and North Africa. Here, we aim to address the long-term dynamics (the last 9600 cal. years) of the monteverde forest (laurel forest and Morella-Erica heath) located close to the summit of the National Park (1487 m a.s.l.) and determine past environmental and human impacts. 2. We used palaeoecological (fossil pollen, microscopic and macroscopic charcoal) and multivariate ecological techniques to identify compositional change in the monteverde forest in relation to poten- tial climatic and human influences, based on the analysis of a core site at 1250-m elevation. 3. The regional mid-Holocene change towards drier conditions was matched in this system by a fairly rapid shift in representation of key forest elements, with declines in Canarian palm tree (Phoenix canariensis), Canarian willow (Salix canariensis) and certain laurel forest taxa and an increase in representation of the Morella–Erica woody heath.
    [Show full text]
  • Downloaded from Brill.Com09/28/2021 08:11:44AM Via Free Access 410 IAWA Journal, Vol
    IAWA Journal, Vol. 29 (4), 2008: 409– 424 MICROMORPHOLOGY AND SYSTEMATIC DISTRIBUTION OF PIT MEMBRANE THICKENINGS IN OLEACEAE: TORI AND PSEUDO-TORI David Rabaey1, Suzy Huysmans1, Frederic Lens1, Erik Smets1,2 and Steven Jansen3 SUMMARY Recent studies on the functional significance of pit membranes in water conducting cells have renewed general interest in their micromorphol- ogy. At least two types of pit membrane thickenings have been described in angiosperm families, i.e. genuine tori and pseudo-tori. This study explores the distribution and morphology of pit membrane thickenings in 69 species and 23 genera within Oleaceae using light and electron microscopy. Torus-bearing pit membranes are confirmed forOsmanthus , and new records are reported for Chionanthus retusa, Picconia azorica, and P. excelsa, but not for the other species studied of Chionanthus. This infrageneric variation suggests that tori represent a plastic feature that has evolved more than once within the family as the result of functional adap- tation to efficient and safe water transport. Pseudo-tori are observed in species of Abeliophyllum, Fontanesia, Forsythia, Jasminum, Ligustrum, Menodora, and Syringa. Based on structural differences, we state that tori and pseudo-tori can be distinguished as non-homologous features. Key words: Electron microscopy, pit aperture, pit membrane, plasmodes- mata, pseudo-torus, torus, tracheid, vessel element. INTRODUCTION Recently, the interest in pit morphology has been renewed by physiological experi- ments that illustrate the importance of pit membranes in the hydraulic system of plants (Choat et al. 2003, 2004, 2006, 2008; Pitterman et al. 2005; Wheeler et al. 2005). Most angiosperm pit membranes possess a homogeneous pit membrane, while the majority of conifer pit membranes show a central thickening or ʻtorusʼ surrounded by a highly porous margo.
    [Show full text]
  • 9360 Macaronesian Laurel Forests
    Technical Report 2008 23/24 MANAGEMENT of Natura 2000 habitats * Macaronesian laurel forests (Laurus, Ocotea) 9360 Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora The European Commission (DG ENV B2) commissioned the Management of Natura 2000 habitats. 9360 *Macaronesian laurel forests (Laurus, Ocotea) This document was prepared by Ana Guimarães & Concha Olmeda, ATECMA, Spain Comments, data and general information were generously provided by: Angel Fernández, Garajonay National Park, Spain José María Fernández-Palacios, Universidad de La Laguna, Spain Pascual Gil Muñoz, Cabildo Insular de Tenerife, Spain Eduardo Dias, Universidade dos Açores, Portugal Jorge Naranjo, Gobierno de Canarias, Spain Paulo Oliveira, Madeira National Park, Portugal Rafael Serrada, Escuela Superior de Ingenieros de Montes, Spain Suzana Fontinha, Madeira National Park, Portugal Coordination: Concha Olmeda, ATECMA & Daniela Zaghi, Comunità Ambiente ©2008 European Communities ISBN 978-92-79-08341-9 Reproduction is authorised provided the source is acknowledged Guimarães A. & Olmeda C. 2008. Management of Natura 2000 habitat. 9360 *Macaronesian laurel forests (Laurus, Ocotea). European Commission This document, which has been prepared in the framework of a service contract (7030302/2006/453813/MAR/B2 "Natura 2000 preparatory actions: Management Models for Natura 2000 Sites”), is not legally binding. Contract realized by: ATECMA S.L. (Spain), COMUNITÀ AMBIENTE (Italy), DAPHNE (Slovakia), ECOSYSTEMS (Belgium), ECOSPHÈRE (France)
    [Show full text]
  • The Canary Islands
    The Canary Islands Naturetrek Tour Report 11 - 18 November 2017 Blue Chaffinch by Andrew Bray Dragon Tree by Andrew Bray Tenerife Lizard by Martin Beaton Fuerteventura Chat by Martin Beaton Report and images by Andrew Bray and Martin Beaton Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report The Canary Islands Tour participants: Andrew Bray and Martin Beaton (leaders) with 14 Naturetrek clients Day 1 Saturday 11th November We arrived at Tenerife South airport to join the throngs, and meet up with the earlier arrivals. After lunch at a small cafe called Casa Pedro in Las Chafiras, we went to a small reservoir where we saw our first Little Egret (one ringed with a yellow Darvic ring) and Spanish Sparrow. The landscape here is a semi-desert plain, typical of the south coast, with plants like Canary Islands Candle Plant or Verode (Kleinia neriifolia), Canary Island Cactus- spurge (Euphorbia canariensis), Balsam Spurge (Euphorbia balsamifera), Canary Samphire or Schizogyne (Schizogyne sericea), Barbed-wire Bush (Launaea arborescens) and Balo or Plocama (Plocama pendula). From here we drove to Amarilla Golf Course and Golf de Sur which were teeming with golfers and one Little Egret. We moved on to the dam to the north of Los Abrigos, but there was no water at all and the only bird seen was a Kestrel. As it had been a very early start for the group, we headed up the mountain to our hotel at Vilaflor, stopping only for cold water from the garage at San Isidro.
    [Show full text]
  • Resolving the Phylogeny of the Olive Family (Oleaceae): Confronting Information from Organellar and Nuclear Genomes
    G C A T T A C G G C A T genes Article Resolving the Phylogeny of the Olive Family (Oleaceae): Confronting Information from Organellar and Nuclear Genomes Julia Dupin 1,†, Pauline Raimondeau 1,†, Cynthia Hong-Wa 2, Sophie Manzi 1 , Myriam Gaudeul 3 and Guillaume Besnard 1,* 1 Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France; [email protected] (J.D.); [email protected] (P.R.); [email protected] (S.M.) 2 Claude E. Phillips Herbarium, Delaware State University, 1200 N. Dupont Hwy, Dover, DE 19901-2277, USA; [email protected] 3 Institut de Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, 75005 Paris, France; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 25 September 2020; Accepted: 11 December 2020; Published: 16 December 2020 Abstract: The olive family, Oleaceae, is a group of woody plants comprising 28 genera and ca. 700 species, distributed on all continents (except Antarctica) in both temperate and tropical environments. It includes several genera of major economic and ecological importance such as olives, ash trees, jasmines, forsythias, osmanthuses, privets and lilacs. The natural history of the group is not completely understood yet, but its diversification seems to be associated with polyploidisation events and the evolution of various reproductive and dispersal strategies. In addition, some taxonomical issues still need to be resolved, particularly in the paleopolyploid tribe Oleeae.
    [Show full text]
  • Ecological Strategies of Tree Species in the Laurel Forest of Tenerife
    Ecological strategies of tree species in the laurel forest of Tenerife (Canary Islands): an insight into cloud forest natural dynamics using long-term monitoring data Elias Ganivet, Olivier Flores, Eduardo Balguerias, Lea de Nascimento, José Ramón Arévalo, Silvia Fernández-Lugo, José María Fernández-Palacios To cite this version: Elias Ganivet, Olivier Flores, Eduardo Balguerias, Lea de Nascimento, José Ramón Arévalo, et al.. Ecological strategies of tree species in the laurel forest of Tenerife (Canary Islands): an insight into cloud forest natural dynamics using long-term monitoring data. European Journal of Forest Research, Springer Verlag, 2019, 138 (1), pp.93-110. 10.1007/s10342-018-1156-6. hal-02877828 HAL Id: hal-02877828 https://hal.archives-ouvertes.fr/hal-02877828 Submitted on 22 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecological strategies of tree species in the laurel forest of Tenerife (Canary Islands): an insight into cloud forest natural dynamics using long-term monitoring data Elias Ganivet1*, Olivier Flores2, Eduardo Balguerías1, Lea de Nascimento1, José Ramón Arévalo1, Silvia Fernández-Lugo1 and José Maria Fernández-Palacios1 1 Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
    [Show full text]
  • In Vitro Foliage Susceptibility of Canary Islands Laurel Forests: a Model for Better Understanding the Ecology of Phytophthora Ramorum1
    Proceedings of the Sudden Oak Death Third Science Symposium In Vitro Foliage Susceptibility of Canary Islands Laurel Forests: A Model for Better Understanding the Ecology of 1 Phytophthora ramorum Eduardo Moralejo2 and Enrique Descals2 Abstract The tree species that dominate the cloud-zone forests of Macaronesia, the coastal redwoods of California, the Valdivian forests of Chile, the Atlantic forests of Brazil and the podocarp forests of New Zealand are all examples of paleoendemic species that once had a much wider distribution. They appear to owe their survival to the particular environmental conditions provided by coastal sites or oceanic islands. Some of these coastal areas unfortunately have proved unique scenarios for the establishment and spread of exotic aerial Phytophthoras such as P. ramorum and P. kernoviae. The most reasonable explanation to these invasions is that these ecosystems share climatic and taxonomic affinities with the pathogen’s original localities and hosts, but not the defence strategies evolved during the long arms race between the host(s) and pathogen in their original centre. In other words, they have not coevolved into tolerance relationships. Then it would be expected that forest ecosystems showing higher taxonomic affinities to those of the original centre would show more tolerance to the pathogen than those less related. This explanation assumes, however, that (i) there is a common basal defence system in plants (Heath 1991) to which multiple host pathogens, such as P. ramorum, are trained to overcome and (ii) a relative ancestral origin of these Phytophthoras. We provide the results of in vitro foliage inoculations of plant members of the Canary Islands laurel forest as a model for a better understanding of the ecology of P.
    [Show full text]